JPS5939123Y2 - Lubricating oil heating device for Rankine cycle system - Google Patents

Lubricating oil heating device for Rankine cycle system

Info

Publication number
JPS5939123Y2
JPS5939123Y2 JP7152577U JP7152577U JPS5939123Y2 JP S5939123 Y2 JPS5939123 Y2 JP S5939123Y2 JP 7152577 U JP7152577 U JP 7152577U JP 7152577 U JP7152577 U JP 7152577U JP S5939123 Y2 JPS5939123 Y2 JP S5939123Y2
Authority
JP
Japan
Prior art keywords
lubricating oil
rankine cycle
heat
expander
cycle system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7152577U
Other languages
Japanese (ja)
Other versions
JPS53165950U (en
Inventor
正浩 杉原
利秀 幸田
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP7152577U priority Critical patent/JPS5939123Y2/en
Publication of JPS53165950U publication Critical patent/JPS53165950U/ja
Application granted granted Critical
Publication of JPS5939123Y2 publication Critical patent/JPS5939123Y2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Description

【考案の詳細な説明】 この考案は、ランキンサイクル用膨張機の密封容器内に
寝込んた液冷媒や潤滑油中に溶解した冷媒を追出す潤滑
油加熱装置の改良に関するものである。
[Detailed Description of the Invention] This invention relates to an improvement of a lubricating oil heating device for expelling liquid refrigerant trapped in a sealed container of a Rankine cycle expander and refrigerant dissolved in lubricating oil.

第1図は従来の太陽熱利用ランキンサイクルのシンナム
の一例を示す図である。
FIG. 1 is a diagram showing an example of a conventional solar heat-utilizing Rankine cycle.

図において太陽熱は集熱器1によって集められ、蓄熱槽
2に貯えられている。
In the figure, solar heat is collected by a heat collector 1 and stored in a heat storage tank 2.

この蓄熱槽2の中には蒸発器3が設置されており、ポン
プ9によって高圧力に昇圧され送り込まれる液体状態の
作動流体(普通フロンR,114,R11等が使われて
いる)を蒸発させて比較的高温、高圧状態の蒸気を作り
出し、それを膨張機6に導いて低圧力まで膨張させて、
膨張後の蒸気を凝縮器8において凝縮、液化し、液化し
た作動流体をポンプ9によって蒸発器3に送り込むこと
によってランキンサイクルを構成している。
An evaporator 3 is installed in this heat storage tank 2, and evaporates the working fluid in liquid state (usually Freon R, 114, R11, etc. is used), which is pumped to a high pressure by a pump 9 and sent. to produce relatively high temperature and high pressure steam, which is led to the expander 6 and expanded to a low pressure,
The expanded vapor is condensed and liquefied in a condenser 8, and the liquefied working fluid is sent to the evaporator 3 by a pump 9, thereby forming a Rankine cycle.

ランキンサイクルにおいては膨張機において比較的高温
高圧力の蒸気を低圧力まで膨張させる事によって出力軸
から動力を取出し任意の負荷を駆動する事が可能となる
が、この膨張機6は作動流体の漏洩防止と潤滑油タンク
、油分離機能を兼ね備えた密封容器4の中に納められて
いるのが普通であり、密封容器の中には潤滑油7が溜め
られている。
In the Rankine cycle, it is possible to extract power from the output shaft and drive any load by expanding relatively high-temperature, high-pressure steam to a low pressure in the expander, but this expander 6 can leak working fluid. It is usually housed in a sealed container 4 that has both the functions of prevention, lubricating oil tank, and oil separation, and lubricating oil 7 is stored in the sealed container.

以上の様な太陽熱を利用したランキンサイクルシステム
の稼動は、太陽熱入力が多く且つ比較的高温の集熱が可
能な初夏から初秋にかげての晴天日の日中の数時間に限
られる場合が多く、膨張機が停止している期間が比較的
長いことは周知の通りである。
The operation of the Rankine cycle system that uses solar heat as described above is often limited to a few hours during the day on sunny days from early summer to early autumn when there is a large amount of solar heat input and relatively high temperature heat can be collected. It is well known that the period during which the expander is stopped is relatively long.

膨張機の停止は蒸発器3の出入口に設けられた弁12及
び13を閉じる事によって行なわれるが、この様な状態
で長時間放置されると、膨張機6、凝縮器8及び潤滑油
7の温度は周囲の空気温度に近い温度まで低下してくる
The expander is stopped by closing the valves 12 and 13 provided at the inlet and outlet of the evaporator 3, but if left in this condition for a long time, the expander 6, condenser 8, and lubricating oil 7 will be damaged. The temperature decreases to a temperature close to that of the surrounding air.

ランキンサイクルの作動流体として使われるフロン系の
冷媒は油との親和性が強いので潤滑油中に事象に溶は込
むが、特に油の温度の低下と共にその傾向は著しくなり
潤滑油温度がフロンガスの飽和温度近くになるとほぼ1
00%近いフロンガスの溶解が起り得ることは第2図に
示すフロンガスR114の溶解曲線からも明らかである
The fluorocarbon-based refrigerant used as the working fluid in the Rankine cycle has a strong affinity with oil, so it dissolves into the lubricating oil, but this tendency becomes more pronounced as the oil temperature decreases, and the temperature of the lubricating oil becomes higher than that of the fluorocarbon gas. Almost 1 when near the saturation temperature
It is clear from the dissolution curve of fluorocarbon gas R114 shown in FIG. 2 that nearly 00% fluorocarbon gas dissolution can occur.

この様に、膨張機の停止中に密封容器内の潤滑油に作動
流体であるフロンガスが多計に溶解したまま起動すると
、フロンガスの溶解による粘性係数の大巾な低下、油ポ
ンプ吸込口におけるフロンガスの急激な蒸発によるポン
プ機能の低下、密封容器内の潤滑油の沸騰によって起る
油の発泡に伴なう潤滑油の流出、などによって軸受は潤
滑不良を起して焼付く恐れがある。
In this way, if the expander is started with a large amount of fluorocarbon gas dissolved in the lubricating oil in the sealed container while the expander is stopped, the viscosity coefficient will drop significantly due to the dissolution of the fluorocarbon gas, and the fluorocarbon gas will be present at the oil pump suction port. The bearing may seize due to poor lubrication due to a drop in pump function due to rapid evaporation of lubricating oil, leakage of lubricating oil due to oil foaming caused by boiling of lubricating oil in a sealed container, etc.

この為第1図に示す従来のランキンサイクルシステムに
おいては密封容器の外周又は、内部にクランクケースヒ
ータ1oを取付けて、運転開始の12時間以上前から電
源11を入れて密封容器内の油を加熱し、油の中に溶解
したフロンガスを追い出している。
For this reason, in the conventional Rankine cycle system shown in Fig. 1, a crankcase heater 1o is attached to the outside or inside of the sealed container, and the power supply 11 is turned on at least 12 hours before the start of operation to heat the oil in the sealed container. The fluorocarbon gas dissolved in the oil is expelled.

従って第1図に示す従来のランキンサイクルシステムに
おいては膨張機を停止した後も次回の運転開始を予測し
たクランクケースヒータの制御を必要とする等装置が複
雑、高価になるだけでなく、クランクケースヒータ10
VCよって余分な電力を消費する欠点を有していた。
Therefore, in the conventional Rankine cycle system shown in Fig. 1, even after the expander is stopped, it is necessary to control the crankcase heater in anticipation of the next start of operation, which not only makes the device complicated and expensive, but also Heater 10
It has the disadvantage of consuming excess power due to VC.

この考案は蓄熱槽2に貯えられている熱着の一部を密封
容器内の潤滑油に与えて、潤滑油に溶解したフロンガス
を追出す事によって、クランクケースヒータと同様な効
果を補助電力を使う事なく得る事によって、上記従来の
ものの欠点を改良しようとするものである。
This idea uses a portion of the heat deposits stored in the heat storage tank 2 to the lubricating oil in the sealed container and expels the fluorocarbon gas dissolved in the lubricating oil, thereby achieving the same effect as a crankcase heater and using auxiliary power. This is an attempt to improve the above-mentioned drawbacks of the conventional products by obtaining the product without using it.

第3図はこの考案の一実施例を示すランキンサイクルシ
ステムで、図において、14は膨張機の密封容器4の内
部の潤滑油7の中に設置された凝縮器、15は蓄熱槽2
の内部に設置された蒸発器、16.17は凝縮器14と
蒸発器15を連絡し閉ループを作る為の配管、18は流
量調節用の弁を示し、配管内部にはフロンガスのごとき
凝縮性流体が封入されている。
Fig. 3 shows a Rankine cycle system showing an embodiment of this invention.
The evaporator is installed inside the evaporator, 16.17 is a pipe connecting the condenser 14 and evaporator 15 to form a closed loop, 18 is a valve for controlling the flow rate, and inside the pipe is a condensable fluid such as CFC gas. is included.

膨張機の駆動が停止された状態においては?M油の温度
Toは徐々に低下してくるのに対して、蓄熱槽の温度T
wはランキンサイクルを運転する為に必要な温度になる
まで上昇させられるから常に Tw>T。
What happens when the expander is stopped? While the temperature To of M oil gradually decreases, the temperature T of the heat storage tank
Since w is raised until it reaches the temperature required to operate the Rankine cycle, Tw>T.

の状態にあると考えてよい。It can be considered that the situation is as follows.

従って第3図に示す様に蒸発器15を凝縮器14よりも
低い位置に設置すると、配管内に封入されたフロンガス
のごとき凝縮性流体は潤滑油7に熱を放出して凝縮し、
凝縮した液は重力によって配管17の中を流動して蒸発
器15に達し、蓄熱槽から熱を奪って蒸発する。
Therefore, if the evaporator 15 is installed at a lower position than the condenser 14, as shown in FIG.
The condensed liquid flows through the pipe 17 due to gravity, reaches the evaporator 15, takes heat from the heat storage tank, and evaporates.

蒸発したガスは配管16を通って凝縮器14に達して凝
縮するといった具合に自然循環を繰返しつつ蓄熱槽内の
熱はを潤滑油7に与える事ができるので、潤滑油内に溶
解したフロンガスを追出す作用を、外部からの補助入力
なしに達成することが可能となり、上記従来のものの欠
点を改良する事ができる。
The evaporated gas passes through the pipe 16, reaches the condenser 14, and is condensed, repeating a natural circulation process, and the heat in the heat storage tank can be applied to the lubricating oil 7, so that the fluorocarbon gas dissolved in the lubricating oil can be The expelling action can be achieved without external auxiliary input, and the above-mentioned drawbacks of the conventional method can be improved.

なお、この考案は太陽熱利用ランキンサイクルシステム
についてその実施例を述べたが、これは排熱利用等、他
の熱源を利用したランキンサイクルシステムに対しても
利用できるのは勿論であるし、膨張機によって駆動され
る冷媒圧縮機に対しても適用できる。
Although this invention has been described as an example for a Rankine cycle system using solar heat, it can of course be used for a Rankine cycle system using other heat sources such as exhaust heat, and it can also be used with an expander. It can also be applied to refrigerant compressors driven by.

この考案は以上説明したように、膨張機や圧縮機の潤滑
油内に設置した凝縮器と蓄熱槽内に設置した蒸発器の間
で、フロンガスのごとき凝縮性流体を自然循環させるこ
とによって、潤滑油の加熱を行なう事ができるので、外
部からの補助入力を使う事なく、停止時に膨張機や圧縮
機内の潤滑油に溶解していたフロンガスを追出すことが
可能となる。
As explained above, this idea achieves lubrication by naturally circulating a condensable fluid such as fluorocarbon gas between the condenser installed in the lubricating oil of the expander or compressor and the evaporator installed in the heat storage tank. Since the oil can be heated, it is possible to expel the fluorocarbon gas dissolved in the lubricating oil in the expander and compressor when the engine is stopped without using any external auxiliary input.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の太陽熱利用ランキンサイクルシステムを
示す系統図、第2図はフロンガスR114と潤滑油の溶
解曲線を示す特性図、第3図はこの考案の一実施例に係
る太陽熱利用ランキンサイクルシステムを示す系統図で
ある。 図において、1は太陽熱集熱器、2は蓄熱槽、3は蒸発
器、4は密封容器、6は膨張機、7は潤滑油、8は凝縮
器、10はクランクケースヒータ、14は凝縮器、15
は蒸発器、16.17は自然循環回路の配管を示す。
Fig. 1 is a system diagram showing a conventional solar heat-based Rankine cycle system, Fig. 2 is a characteristic diagram showing the dissolution curve of fluorocarbon gas R114 and lubricating oil, and Fig. 3 is a solar heat-based Rankine cycle system according to an embodiment of this invention. FIG. In the figure, 1 is a solar heat collector, 2 is a heat storage tank, 3 is an evaporator, 4 is a sealed container, 6 is an expander, 7 is lubricating oil, 8 is a condenser, 10 is a crankcase heater, and 14 is a condenser. , 15
16.17 shows the evaporator, and 16.17 shows the piping of the natural circulation circuit.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 熱源側に設置された蒸発器によって熱媒流体を蒸発させ
、そのガスを膨張装置により膨張させて動力を取出し、
かつ上記ガスを凝縮器において液化して上記蒸発器に送
り込むようにしたランキンサイクルシステムにおいて、
上記熱媒流体の混入する上記膨張機等の潤滑油の貯溜部
の内部と上記熱源側とに、上記潤滑油の貯溜部側が他方
より高位置となるようそれぞれ熱交換器を設置すると共
に、これらの熱交換器を閉ループを構成するよう相互に
結合してこの閉ループ内に凝縮性熱媒物質を封入し、上
記熱交換器により上記潤滑油を加熱し得るようにしたこ
とを特徴とするランキンサイクルシステムの潤滑油加熱
装置。
The heat medium fluid is evaporated by an evaporator installed on the heat source side, and the gas is expanded by an expansion device to extract power.
and a Rankine cycle system in which the gas is liquefied in a condenser and sent to the evaporator,
A heat exchanger is installed inside the lubricating oil reservoir of the expander or the like in which the heat transfer fluid is mixed, and on the heat source side so that the lubricating oil reservoir side is at a higher position than the other. A Rankine cycle characterized in that heat exchangers are connected to each other to form a closed loop, a condensable heating medium is enclosed in the closed loop, and the lubricating oil can be heated by the heat exchanger. System lubricating oil heating device.
JP7152577U 1977-06-03 1977-06-03 Lubricating oil heating device for Rankine cycle system Expired JPS5939123Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7152577U JPS5939123Y2 (en) 1977-06-03 1977-06-03 Lubricating oil heating device for Rankine cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7152577U JPS5939123Y2 (en) 1977-06-03 1977-06-03 Lubricating oil heating device for Rankine cycle system

Publications (2)

Publication Number Publication Date
JPS53165950U JPS53165950U (en) 1978-12-26
JPS5939123Y2 true JPS5939123Y2 (en) 1984-10-31

Family

ID=28982364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7152577U Expired JPS5939123Y2 (en) 1977-06-03 1977-06-03 Lubricating oil heating device for Rankine cycle system

Country Status (1)

Country Link
JP (1) JPS5939123Y2 (en)

Also Published As

Publication number Publication date
JPS53165950U (en) 1978-12-26

Similar Documents

Publication Publication Date Title
US4185465A (en) Multi-step regenerated organic fluid helical screw expander hermetic induction generator system
CN101796355A (en) Thermally activated high efficiency heat pump
JPH01131860A (en) Refrigeration system using combustion as power
US4218891A (en) Cooling and heat pump systems and methods
CN103206802B (en) A kind of pulse tube expander
US4214170A (en) Power generation-refrigeration system
CN2733274Y (en) Air source heat pump hot-water supply apparatus
JPS5939123Y2 (en) Lubricating oil heating device for Rankine cycle system
US3902546A (en) Gas fired heat/cool system
JP2001248936A (en) Exhaust heat absorbing refrigeration system
JP4301666B2 (en) Waste heat absorption refrigerator
JP2007183078A (en) Refrigerating machine and refrigerating device
US4389858A (en) Heat engine
JP2008014598A (en) Bleeder for compression type refrigerating machine
US20220403760A1 (en) Plant based upon combined joule-brayton and rankine cycles working with directly coupled reciprocating machines
EP2744989B1 (en) Compression and energy-recovery unit
US2305162A (en) Method of refrigeration
EP2748433B1 (en) Bladed expander
CN113932472A (en) Operation method based on gas engine heat pump and organic Rankine cycle coupling system
RU2614133C1 (en) Throttle-free heat pump unit
US2909902A (en) Refrigerant engine and work device
CN105526728B (en) A kind of supermarket's cold chain system
SU591667A1 (en) Method of cooling working body
SU1774142A1 (en) Heat-condensation method
RU2617039C1 (en) Low-temperature refrigeration equipment