JPS6141843B2 - - Google Patents

Info

Publication number
JPS6141843B2
JPS6141843B2 JP56110970A JP11097081A JPS6141843B2 JP S6141843 B2 JPS6141843 B2 JP S6141843B2 JP 56110970 A JP56110970 A JP 56110970A JP 11097081 A JP11097081 A JP 11097081A JP S6141843 B2 JPS6141843 B2 JP S6141843B2
Authority
JP
Japan
Prior art keywords
activated carbon
coal
volume
mechanical strength
adsorption capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56110970A
Other languages
Japanese (ja)
Other versions
JPS5815019A (en
Inventor
Kunoburaufu Kaaru
Furyuubusu Hainritsuhi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bergwerksverband GmbH
Original Assignee
Bergwerksverband GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bergwerksverband GmbH filed Critical Bergwerksverband GmbH
Priority to JP56110970A priority Critical patent/JPS5815019A/en
Publication of JPS5815019A publication Critical patent/JPS5815019A/en
Publication of JPS6141843B2 publication Critical patent/JPS6141843B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 本発明は、機械的強度が高く、とくに二酸化硫
黄の吸着に好適な成形活性炭の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing shaped activated carbon that has high mechanical strength and is particularly suitable for adsorbing sulfur dioxide.

成形活性炭は、吸着装置内で流動床の形でしば
しば使用され、かつ著しい機械的な摩耗を生じ
る。その結果、活性炭の摩耗損失が生じる。した
がつて、本発明は、機械的強度が高く、特に流動
床内で二酸化硫黄の吸着に好適な活性炭の製造方
法に関するものである。成形活性炭粒子の機械的
強度が高ければ高いほど、流動床内の摩耗により
生じる活性炭の損失は少なくなる。
Shaped activated carbon is often used in the form of fluidized beds in adsorption devices and is subject to significant mechanical wear. As a result, abrasion losses of the activated carbon occur. Therefore, the present invention relates to a method for producing activated carbon that has high mechanical strength and is particularly suitable for adsorbing sulfur dioxide in a fluidized bed. The higher the mechanical strength of the shaped activated carbon particles, the less activated carbon will be lost due to abrasion within the fluidized bed.

驚くべきことに、比較的高いイナーチニツト
(inertinite)含量を有する硬質石炭が高い機械的
強度を有する成形活性炭を生ずることが見出され
た。現在までは、硬質石炭中に含まれているイナ
ーチニツトは活性炭後の最終生成物の吸着能力に
寄与せず、このため望ましくない死重と考えられ
なければならなかつたので、できるだけ低いイナ
ーチニツト含量を示す硬質石炭だけが使用されて
いた。
Surprisingly, it has been found that hard coals with relatively high inertinite contents yield shaped activated carbons with high mechanical strength. Until now, the inertinites contained in hard coals did not contribute to the adsorption capacity of the final product after activated carbon and had to be considered as an undesirable dead weight, so the inertinite content should be as low as possible. Only hard coal was used.

さらに、このような状態の技術により製造さ
れ、かつ、例えば二酸化硫黄の吸着に使用される
成形活性炭は、吸着剤としての繰り返し使用およ
び引続き行なわれる再活性化により増大した最終
二酸化硫黄吸着能力を示すので、高い初期吸着能
力は、常に二次的な重要性を有していた。しかし
ながら、この徐々に増大する吸着能力は、成形粒
子の機械的強度に対して害を与える。
Furthermore, shaped activated carbon produced by this state of the art and used for example for the adsorption of sulfur dioxide exhibits an increased final sulfur dioxide adsorption capacity with repeated use as an adsorbent and subsequent reactivation. Therefore, high initial adsorption capacity has always been of secondary importance. However, this gradually increasing adsorption capacity is detrimental to the mechanical strength of the shaped particles.

本発明は、前記のごとき従来法の諸欠点を解消
するためになされたもので、供給原料としての25
重量%以上のイナーチニツト含量を有する石炭が
使用され、かつ0.2mの高さのベツトを形成する
425mlの活性炭を充填した反応基に0.1容量%の
SO2、6容量%のO2、9.8のH2O、0.01容量%の
NOおよび0.048容量%のNH3(残余はN2)よりな
るガスを1.5m3/hrで流すことにより測定される
SO2吸着能力を70mg/g以上に活性化が行なわれ
ることを特徴とする粉末状歴青炭を酸化し、この
ようにして得られる酸化石炭にビチユーメン、タ
ールまたはピツチを添加して成型し、かつ該成形
物を650〜900℃で熱分解することによる機械的強
度の高い成形活性炭の製造方法である。
The present invention was made in order to eliminate the various drawbacks of the conventional method as described above.
Coal with an inertinite content of at least % by weight is used and forms a bed with a height of 0.2 m.
0.1% by volume into a reactive group filled with 425ml of activated carbon.
SO 2 , 6% O 2 by volume, 9.8% H 2 O, 0.01% by volume
Measured by flowing a gas consisting of NO and 0.048% by volume NH 3 (the balance is N 2 ) at 1.5 m 3 /hr
oxidizing powdered bituminous coal, which is characterized by activation to an SO 2 adsorption capacity of 70 mg/g or more, adding bitumen, tar or pitch to the oxidized coal thus obtained, and molding it; The present invention also provides a method for producing molded activated carbon having high mechanical strength by thermally decomposing the molded product at 650 to 900°C.

結果として、本発明によれば、25重量%以上の
高いイナーチニツト含量を有する硬質石炭から製
造される成形粒子の活性化は、現状の技術により
製造される成形活性炭の最終吸着能力にほぼ相当
する初期吸着能力の点から制御される。この生成
物は、徐々に増大する活性の利点を示さないとは
いえ、移動床におけるその使用は、従来知られて
いるよりもはるかに高い摩耗度を意味するのでは
ないので、現在までに知られている成形活性炭と
比べて全体的に著しい利点が得られる。
As a result, according to the present invention, the activation of shaped particles produced from hard coals with a high inertinite content of 25% or more by weight can be achieved with an initial adsorption capacity approximately corresponding to the final adsorption capacity of shaped activated carbon produced by current technology Controlled in terms of adsorption capacity. Although this product does not exhibit the advantage of progressively increasing activity, its use in moving beds does not imply a much higher degree of wear than previously known, since Significant overall advantages are obtained compared to conventional shaped activated carbon.

したがつて、本発明によれば、増大する活性の
利点は、高い機械的強度を有する最終生成物を高
い初期吸着能力で直接得るために高いイナーチニ
ツチ含量を有する石炭を原料として使用するため
に放棄される。これは、70mg/g以上の最終生成
物の初期吸着能力を目的とするものであることを
意味する。
Therefore, according to the present invention, the advantage of increased activity is given up in favor of using coal with a high inertness content as feedstock in order to directly obtain a final product with high mechanical strength with a high initial adsorption capacity. be done. This means that an initial adsorption capacity of 70 mg/g or more of the final product is aimed.

本発明により増大する初期活性を有する生成物
が得られるので、活性が増大しない欠点は完全に
補償されるものと思われる。さらに、増大する機
械的強度は、現状の技術により製造される成形活
性炭の場合のようには、非常に急速に減少しな
い。これは、移動床で成形活性炭を用いたときの
低い摩耗損失を意味する。
Since the invention provides products with increased initial activity, the disadvantage of no increased activity appears to be fully compensated. Furthermore, the increased mechanical strength does not decrease very rapidly as in the case of shaped activated carbon produced by current technology. This means lower abrasion losses when using shaped activated carbon in a moving bed.

実施例 26重量%の揮発分含量および26重量%のイナー
チニツト含量を有する1000Kgの石炭を粉砕し(40
μm以下の篩通過が80%)、かつ流動床内で220℃
で空気で酸素付着量8重量%に処理した。このよ
うにして、揮発分含有量を14%に減少させた。
Example 1000 Kg of coal with a volatile content of 26% by weight and an inertinite content of 26% by weight was ground (40
(80% passing through a sieve of less than μm) and 220℃ in a fluidized bed.
The sample was treated with air to give an oxygen adhesion amount of 8% by weight. In this way, the volatile content was reduced to 14%.

このようにして得られた酸化石炭を、冷却後に
130℃の軟化点を有する粉末状ピツチ260Kgおよび
250Kgの水にブレンドし、ついて押出成形した。
このようにして、4〜6mmの直径の成形粒子が得
られた。
After cooling the oxidized coal obtained in this way,
260Kg of powdered pitch with a softening point of 130℃ and
It was blended in 250Kg of water and extruded.
In this way, shaped particles with a diameter of 4-6 mm were obtained.

これらの成形された粒子は、間接的に加熱され
かつほとんど密閉されたロータリーキルン中で、
10m3/hrの水蒸気を注入しながら徐々に900℃に加
熱し、蒸気は向流でロータリーキルンから連続的
に排出された。
These shaped particles are heated in an indirectly heated and nearly enclosed rotary kiln.
It was gradually heated to 900 °C while injecting 10 m 3 /hr of steam, and the steam was continuously discharged from the rotary kiln in countercurrent.

活性炭の収量は850Kgであり、機械的強度の値
はほぼ84%であつた。上記方法で得られた生成物
のSO2吸着能力は75mg/gであつた。機械的強度
は、次の方法により測定された。すなわち、直径
26.6mmのチユーブ内の10gの試料上に、414mmの
高さから326.5gの重量を有する10回の衝撃を与
えた。各衝撃後、試料は直径5mm以下に篩分し
た。10回の衝撃後の残りの試料の量を重量%で機
械的強度を表現する。
The yield of activated carbon was 850Kg, and the mechanical strength value was approximately 84%. The SO 2 adsorption capacity of the product obtained by the above method was 75 mg/g. Mechanical strength was measured by the following method. i.e. diameter
Ten impacts with a weight of 326.5 g were applied from a height of 414 mm onto a 10 g sample in a 26.6 mm tube. After each impact, the samples were sieved to 5 mm diameter or less. Express the mechanical strength in weight percent by the amount of sample remaining after 10 impacts.

30回の再活性化サイクル後、機械的強度は81%
であつた。SO2吸着能力は80mgSO2/gであつ
た。30回の再活性化サイクル後の全摩耗損失は15
重量%であつた。
Mechanical strength is 81% after 30 reactivation cycles
It was hot. The SO 2 adsorption capacity was 80 mgSO 2 /g. Total wear loss after 30 reactivation cycles is 15
It was in weight%.

比較例 1 比較のために、22重量%の揮発分含量および8
重量%のイナーチニツト含量を有する石炭を、得
られる成形活性炭に対して水蒸気を添加しない以
上は実施例と同様な方法で処理した。この成形活
性炭の機械的強度は、ほぼ83%であり、SO2吸着
能力は45mg/gであつた。30回の再活性化サイク
ル後、その機械的強度は68%に低下し、またSO2
吸着能力は83mgSO2/gに増加した。30回の再活
性化リサイクル後の摩耗損失は、35重量%であつ
た。
Comparative Example 1 For comparison, a volatile content of 22% by weight and 8
Coal having an inertinite content of % by weight was treated in the same manner as in the example except that no steam was added to the resulting shaped activated carbon. The mechanical strength of this shaped activated carbon was approximately 83%, and the SO 2 adsorption capacity was 45 mg/g. After 30 reactivation cycles, its mechanical strength decreases to 68%, and SO2
The adsorption capacity increased to 83mgSO2 /g. The wear loss after 30 reactivation cycles was 35% by weight.

比較例 2 さらに比較するために、同一の供給石炭を、活
性化段階の間ロータリーキルン内で水蒸気で処理
し、比較例1と同様な方法で処理した。この活性
炭の機械的強度は68%であり、またSO2吸着能力
は79mgSO2/gであり、30回の再活性化サイクル
後のSO2吸着能力は81mgSO2/gであり、機械的強
度は46%に低下し、また30回の再活性化サイクル
後の摩耗損失は50重量%であつた。
Comparative Example 2 For further comparison, the same feed coal was treated with steam in a rotary kiln during the activation stage and treated in a manner similar to Comparative Example 1. The mechanical strength of this activated carbon is 68%, and the SO 2 adsorption capacity is 79 mg SO 2 /g, and the SO 2 adsorption capacity after 30 reactivation cycles is 81 mg SO 2 /g, and the mechanical strength is The wear loss after 30 reactivation cycles was 50% by weight.

Claims (1)

【特許請求の範囲】[Claims] 1 供給原料として25重量%以上のイナーチニツ
ト含量を有する石炭を使用し、該石炭を粉砕し、
このようにして得られた粉末状石炭を酸化し、該
粉末状酸化石炭にビチユーメン、タールまたはピ
ツチを添加して成形し、かつ該成形物を水蒸気を
添加しながら650〜900℃で熱分解することによ
り、0.2mの高さのベツトを形成する425mlの活性
炭を充填した反応器に0.1容量%のSO2、6容量
%のO2、9.8容量%のH2O、0.01容量%のNOおよ
び0.048容量%のNH3(残余はN2)よりなるガスを
1.5m3/hrで流して測定されるSO2吸着能力が70
mg/g以上になるように活性化することを特徴と
する機械的強度の高い成形活性炭の製造方法。
1. Using coal having an inertinite content of 25% by weight or more as a feedstock, pulverizing the coal,
The powdered coal thus obtained is oxidized, bitumen, tar, or pitch is added to the powdered oxidized coal and molded, and the molded product is pyrolyzed at 650 to 900°C while adding steam. In this way, a reactor filled with 425 ml of activated carbon forming a 0.2 m high bed was charged with 0.1% by volume SO 2 , 6% by volume O 2 , 9.8% by volume H 2 O, 0.01% by volume NO and A gas consisting of 0.048% by volume of NH 3 (the remainder is N 2 )
SO 2 adsorption capacity measured by flowing at 1.5 m 3 /hr is 70
A method for producing shaped activated carbon with high mechanical strength, characterized by activating it to a level of mg/g or more.
JP56110970A 1981-07-17 1981-07-17 Manufacture of molded activated carbon having high mechanical strength Granted JPS5815019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56110970A JPS5815019A (en) 1981-07-17 1981-07-17 Manufacture of molded activated carbon having high mechanical strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56110970A JPS5815019A (en) 1981-07-17 1981-07-17 Manufacture of molded activated carbon having high mechanical strength

Publications (2)

Publication Number Publication Date
JPS5815019A JPS5815019A (en) 1983-01-28
JPS6141843B2 true JPS6141843B2 (en) 1986-09-18

Family

ID=14549113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56110970A Granted JPS5815019A (en) 1981-07-17 1981-07-17 Manufacture of molded activated carbon having high mechanical strength

Country Status (1)

Country Link
JP (1) JPS5815019A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104129777A (en) * 2014-08-26 2014-11-05 武汉科技大学 Multifunctional bio-charcoal and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339436U (en) * 1986-08-28 1988-03-14

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329157A (en) * 1976-08-30 1978-03-18 Osaka Kiko Co Ltd Threeepoint roundness measuring method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329157A (en) * 1976-08-30 1978-03-18 Osaka Kiko Co Ltd Threeepoint roundness measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104129777A (en) * 2014-08-26 2014-11-05 武汉科技大学 Multifunctional bio-charcoal and preparation method thereof

Also Published As

Publication number Publication date
JPS5815019A (en) 1983-01-28

Similar Documents

Publication Publication Date Title
JP3669373B2 (en) Process for producing activated coke for simultaneous desulfurization and denitrification
US3864277A (en) Hard granular activated carbon and preparation from a carbonaceous material a binder and an inorganic activating agent
ES2209931T3 (en) PROCEDURE TO PREPARE CONFORMED ACTIVATED CARBON.
IL43737A (en) Manufacture of activated carbon
CA2128979A1 (en) Activated carbon spherules produced from ion-exchangers
WO1986005711A1 (en) Use of an active coke for removal of nitrogen oxide from exhaust gases
JPS5945914A (en) Preparation of carbonaceous molecular sieve
JP2001294414A (en) Manufacturing method of activated coke having high strength and high adsorpability
JPS6141843B2 (en)
JPH07267619A (en) Production of granular activated carbon
JPH0624725A (en) Manufacturing process of activated carbon
DE1800238A1 (en) Process for the production of shaped cokes in spherical shape
JPS61151012A (en) Method of activating carbide
US2809938A (en) Activatable chars, activated carbons, and process for preparing the same
WO1982002537A1 (en) Process for preparing carbonaceous material for use in desulfurization
US6090362A (en) Method of producing free-flowing carbon
JPH05105415A (en) Production of formed activated coke
GB2140790A (en) A process for the manufacture of hydrophobic adsorbents
JP2727001B2 (en) Manufacturing method of carbon material for desulfurization
JPH0248409A (en) Production of active coke
US4144193A (en) Granular activated carbon manufacture from sub-bituminous coal treated with dilute inorganic acid
SU562508A1 (en) The method of obtaining spherical carbon sorbents
SU1414777A1 (en) Method of producing granulated activated carbon
DE2627479A1 (en) USE OF A MOLDED COCK AS AN ADSORPTION AGENT FOR SULFUR OXIDE FROM EXHAUST GASES
JPH07505116A (en) Sulfide removal method using catalytic carbon