JPH07505116A - Sulfide removal method using catalytic carbon - Google Patents

Sulfide removal method using catalytic carbon

Info

Publication number
JPH07505116A
JPH07505116A JP6517278A JP51727894A JPH07505116A JP H07505116 A JPH07505116 A JP H07505116A JP 6517278 A JP6517278 A JP 6517278A JP 51727894 A JP51727894 A JP 51727894A JP H07505116 A JPH07505116 A JP H07505116A
Authority
JP
Japan
Prior art keywords
temperature
char
carbonaceous char
nitrogen
sulfides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6517278A
Other languages
Japanese (ja)
Other versions
JP2572206B2 (en
Inventor
ハイデン,リチャード,エー.
Original Assignee
カルゴン カーボン コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルゴン カーボン コーポレーション filed Critical カルゴン カーボン コーポレーション
Publication of JPH07505116A publication Critical patent/JPH07505116A/en
Application granted granted Critical
Publication of JP2572206B2 publication Critical patent/JP2572206B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8606Removing sulfur compounds only one sulfur compound other than sulfur oxides or hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8612Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0404Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process
    • C01B17/046Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process without intermediate formation of sulfur dioxide
    • C01B17/0469Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process without intermediate formation of sulfur dioxide at least one catalyst bed operating below the dew-point of sulfur
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 発明の名称 触媒炭素による硫化物の除去法 発明の分野 本発明は、酸素および水の存在Fにガスまたは液媒体がら硫化物を除去するのに 高触媒活性炭素質チャーを使うことに関する。[Detailed description of the invention] name of invention Sulfide removal method using catalytic carbon field of invention The present invention is suitable for removing sulfides from gaseous or liquid media in the presence of oxygen and water. Relating to the use of highly catalytically active carbonaceous char.

発明の背景 炭素質チャーを使いH2Sを除去する種々の方法が知られている。Background of the invention Various methods are known for removing H2S using carbonaceous char.

たとえば、木炭は硫化水素の酸化を触媒する能力をもつことが知られている。湿 った酸素含有ガス流から硫化水素および種々のメルカプタンを除去するために活 性炭が使われてきた。除去工程中、チャー表面にアンモニアまたは水酸化物のよ うな塩基を添加することによって、炭素質チャーの除去能力の改良が実現されて きた。ある種のハロゲン右よび(または)遷移金属含浸剤を炭素質チャー基質に 添加すると、湿った空気流から硫化水素右よびメルカプタンの除去を増加するこ とも見出されている。しかし、水酸化ナトリウム、ヨウ化カリウム、または他の 化合物のような促進剤の不在下でも観察される現象に基本的に寄与する炭素質チ ャー固有の性質を、上記改良のどれも変えてはいない。For example, charcoal is known to have the ability to catalyze the oxidation of hydrogen sulfide. dampness active to remove hydrogen sulfide and various mercaptans from oxygen-containing gas streams Charcoal has been used. During the removal process, substances such as ammonia or hydroxide are added to the char surface. Improvement of carbonaceous char removal ability was achieved by adding base. came. Adding some type of halogen and/or transition metal impregnant to the carbonaceous char matrix Addition can increase the removal of hydrogen sulfide and mercaptans from humid air streams. It has also been found that However, sodium hydroxide, potassium iodide, or other Carbonaceous chips, which fundamentally contribute to the phenomena observed even in the absence of promoters such as compounds, None of the above improvements have changed the inherent properties of the camera.

活性炭の細孔径分布における若干の改良が記載されてあり、この場合高温活性化 炭素質チャーを尿素またはメラミン化合物で処理し。Some improvements in the pore size distribution of activated carbon have been described, in which case high temperature activation Carbonaceous char is treated with urea or melamine compounds.

高温で仮焼する。この方法で製造したチャーは増加した硫化水素吸着能力をもつ が、このチャーの接触酸化による硫化水素除去能力は試験されておらず、または 報告されていない、高温活性化炭素またはコークスを酸化し、350℃以上の温 度で窒素含有アンモニウム塩にさらす、接触的硫化水素酸化に適した炭素質チャ ーの製造が教示されている。Calculate at high temperature. Char produced in this way has increased hydrogen sulfide adsorption capacity. However, the ability of this char to remove hydrogen sulfide by catalytic oxidation has not been tested or Oxidizing high-temperature activated carbon or coke, which has not been reported, Carbonaceous charcoal suitable for catalytic hydrogen sulfide oxidation, exposed to nitrogen-containing ammonium salts at The production of

上記従来技術の方法は、その応用を限定するある種の欠点をもつ。The above prior art methods have certain drawbacks that limit their application.

硫化水素の接触的除去に商業上入手できる未含浸活性炭を使用した場合には、除 去速度が低く、シたがって硫化水素の除去能力は低くなる。上記炭素質チャー存 在下における促進剤の使用もある種の欠点を伴なう、たとえば、アンモニアの使 用は、アンモニア添加設備および添加量の制御における費用と危険を増大させる 。水酸化ナトリウムおよび他の金属塩の使用も、追加の費用を伴い、またチャー 発火温度の低下による熱的暴走の危険が増す。If commercially available unimpregnated activated carbon is used for catalytic removal of hydrogen sulfide, The removal rate is low and therefore the hydrogen sulfide removal capacity is low. The above carbonaceous char exists The use of accelerators in the increases the cost and risk of ammonia dosing equipment and dosing control. . The use of sodium hydroxide and other metal salts also involves additional cost and The risk of thermal runaway increases due to a decrease in ignition temperature.

従って2本発明の目的は、他の未含浸チャーに比較するとき、また硫化物および メルカプタンの除去に影響を与えることが知られている外因的パラメータとは別 に、酸素および水の存在下における硫化物およびメルカプタンの除去に触媒活性 な炭素質チャーを提供するにある。たとえば、外因的パラメータとして粒度分布 、細孔容積分布、接触時間を挙げることができる。さらに、本発明の目的は。Therefore, two objects of the present invention are that when compared to other unimpregnated chars, sulfides and Apart from extrinsic parameters known to influence mercaptan removal. has catalytic activity in the removal of sulfides and mercaptans in the presence of oxygen and water. The aim is to provide a carbonaceous char. For example, particle size distribution as an extrinsic parameter , pore volume distribution, and contact time. Furthermore, it is an object of the present invention.

従来技術に比較するとき、最小の費用と危険性で上記炭素質チャーを製造し使用 することである。Producing and using the above carbonaceous char with minimal cost and risk when compared to conventional techniques. It is to be.

発明の概要 一般に、本発明は、炭素質チャーの触媒作用により、酸素および水を含む媒体か ら硫化物上よびメルカプタンを除去することからなる。これらのチャーは、貧富 素原料(窒素含有量が少ない原料)の低温炭化および酸化により製造される。つ いで2酸化した低温チャーを、初期仮焼または仮焼/活性化中に、高温で窒素含 有化合物にさらす、全ての場合、高温炭素質チャーは700℃以上の温度で熱処 理して製造されたものである。低温炭素質チャーは700℃以上の温度を経験し ていないものである。Summary of the invention Generally, the present invention provides a method for catalyzing a carbonaceous char into a medium containing oxygen and water. The process consists of removing sulfides and mercaptans. These chars are rich and poor Produced by low-temperature carbonization and oxidation of raw materials (raw materials with low nitrogen content). One The low-temperature char, which has been oxidized by In all cases where high temperature carbonaceous char is exposed to chemical compounds, it must be heat treated at temperatures above 700°C. It was manufactured by Low-temperature carbonaceous char experiences temperatures of over 700℃. It is something that has not been done yet.

好ましい貧富素原料は、歴青炭または種々の化学処理により高品位または低品位 のビチューメン1石炭またはリグノセルロース物質から誘導された物質のような 歴青縦様物質である。高品位石炭としては無煙炭または半無煙炭が挙げられ、一 方低品位石炭の例としては泥炭、亜炭、亜歴青炭が挙げられる。これら原料の化 学処理の例は、 高品位材料のアルカリ金属処理、低品位材料の塩化亜鉛または リン酸処理を含む、この型の処理はリグノセルロース物質にも応用できる。Preferred rich-poor feedstocks are bituminous coal or various chemical treatments to produce high-grade or low-grade bitumen 1 such as materials derived from coal or lignocellulosic materials It is a bituminous vertical-like material. High-grade coal includes anthracite or semi-anthracite; Examples of low-grade coal include peat, lignite, and subbituminous coal. conversion of these raw materials Examples of chemical treatments include alkali metal treatment for high-grade materials, zinc chloride or This type of treatment, including phosphoric acid treatment, can also be applied to lignocellulosic materials.

本発明の好ましい実施態様においては、原料物質を微粉砕し、必要なときはピッ チのような適当な結合剤の少量と混合し、ブリケラティングまたは他の方法で成 形し、分粒する。この分粒した物質を、ついで700℃未満、好ましくは400 ℃未満の温度で大いに酸化する。最終生成物の触媒活性のさらなる獲得が最早明 確でなくなるまで、酸化を続ける。この酸化は、歴青炭のコークス化性を除去す るのに典型的に要求される程度を十分越え、最適に酸化したチャーを生じる。出 発物質の低温酸化および炭化を行うために、他の便利な酸化法を使うこともでき る。In a preferred embodiment of the invention, the raw material is finely ground and, if necessary, pitted. Mixed with a small amount of a suitable binder such as Shape and size. This sized material is then heated to a temperature below 700°C, preferably 400°C. Oxidizes greatly at temperatures below °C. It is now clear that further catalytic activity of the final product can be obtained. Continue oxidizing until it is no longer reliable. This oxidation removes the coking properties of bituminous coal. yields an optimally oxidized char well beyond that typically required for oxidation. Out Other convenient oxidation methods can also be used to achieve low temperature oxidation and carbonization of the emitting material. Ru.

酸化した低温炭素質チャーを次いで、初期仮焼および炭素構造の縮合の後ではな くて、その仮焼および縮合中に、尿素のような安価で多量にあり、比較的無毒性 の窒素含有化合物の少量にさらす、使う窒素含有化合物の量は典型的には少量で 、好ましくは酸化した低温炭素質チャーの5重量%未満、または最終生成物の触 媒活性のさらなる獲得が最早明日でないような量である。酸化した低温チャーを 高温に、好ましくは850〜950℃に窒素含有化合物の存在下に加熱すること により、上記処理を行う、チャーおよび(または)窒素含有化合物に帰せられる ガスおよび蒸気を別にすれば不活性な雰囲気中でこの加熱を行うのが好ましい、 加熱速度と温度とは、最終生成物の触媒活性のさらなる獲得が最早明白でないよ うに選ぶのが好ましい。The oxidized low-temperature carbonaceous char is then heated, but not after initial calcination and condensation of the carbon structure. During its calcination and condensation, cheap, plentiful and relatively non-toxic substances such as urea are used. exposure to small amounts of nitrogen-containing compounds; the amount of nitrogen-containing compounds used is typically small. , preferably less than 5% by weight of the oxidized low temperature carbonaceous char, or the catalytic content of the final product. The amount is such that further acquisition of medium activity is no longer possible tomorrow. Oxidized low temperature char heating to an elevated temperature, preferably 850-950°C in the presence of a nitrogen-containing compound; Attributable to char and/or nitrogen-containing compounds, which carry out the above treatment by This heating is preferably carried out in an otherwise inert atmosphere apart from gases and steam; The heating rate and temperature are such that further gain of catalytic activity in the final product is no longer evident. It is preferable to choose sea urchin.

窒素処理した高温炭素質チャーを、空気のような他のガス化剤を添加しまたは添 加せずに、水蒸気および(または)二酸化炭素中で700℃以上の温度で所望の 密度に活性化できる。仮焼しまたは仮焼/活性化した炭素質チャーを、ついで酸 素を含まないまたは不活性雰囲気中で400℃未満の、好ましくは200℃未満 の温度に冷却する。所望の回数、酸化/窒素含有化合物への露出/仮焼または仮 焼/活性化/不活性雰囲気中での冷却をくり返すことによって、触媒活性のさら なる獲得を実現できる。一方、触媒活性をさらに増すために、高温炭素質チャー に触媒活性を発現する他の既知法を生成物に適用できる。Nitrogen-treated high-temperature carbonaceous char is added or doped with other gasifying agents such as air. the desired temperature in water vapor and/or carbon dioxide at temperatures above 700°C without adding Can be activated to density. The calcined or calcined/activated carbonaceous char is then heated with acid. below 400°C, preferably below 200°C in a free or inert atmosphere Cool to temperature. Exposure to oxidation/nitrogen-containing compounds/calcination or calcination for desired number of times. Further catalytic activity can be achieved by repeating calcination/activation/cooling in an inert atmosphere. It is possible to achieve a certain amount of acquisition. On the other hand, in order to further increase the catalytic activity, high-temperature carbonaceous char Other known methods of developing catalytic activity can be applied to the product.

上記方法によって製造した触媒活性炭素質チャーを、ついで水および酸素の存在 下に硫化物含有媒体と接触させる。tli化物は、主として硫酸場名よび元素硫 黄への接触酸化によって、媒体から除去される。操作温度は約0〜300℃、好 ましくは約0〜100℃、さらに好ましくは約25〜90℃である。The catalytically activated carbonaceous char produced by the above method is then treated in the presence of water and oxygen. contact with a sulfide-containing medium below. tli compounds are mainly based on the sulfuric acid field name and elemental sulfuric acid. It is removed from the medium by catalytic oxidation to yellow. The operating temperature is about 0-300℃, preferably Preferably, the temperature is about 0 to 100°C, more preferably about 25 to 90°C.

現在好ましい態様 本発明の有用性を次の2実施例により示す、各実施例において、粒度効果を無効 にするために、炭素質チャーの等しいメツシュ寸法画分を評価した。これらの実 施例で使ったチャーは、はぼ同一の密度とCCiz4活性をもっている。この殆 んど同等とは、両チャーの細孔容量が殆んど等しいことを意味する。従って、硫 化物除去に影響を与える外因的性質はこれらの試料では殆んど等しいから、本発 明の利点は明白である。実施例1は、市販活性炭の特定のメツシュ寸法画分のH 2S除去能力を示す、実施例2は本発明のH,S除去能力を示す、この2実施例 の比較によって、本発明の性能は典型的な活性炭より著しく優れていることがわ かる。Currently preferred embodiment The usefulness of the present invention is illustrated by the following two examples. In each example, the particle size effect is disabled. Equal mesh size fractions of carbonaceous char were evaluated in order to these fruits The chars used in the examples have nearly identical density and CCiz4 activity. Most of this Almost equal means that the pore volumes of both chars are almost equal. Therefore, sulfur Since the extrinsic properties that affect chemical removal are almost the same in these samples, the present invention The advantages of light are obvious. Example 1 shows the H of a specific mesh size fraction of commercially available activated carbon. Example 2 shows the 2S removal ability, and Example 2 shows the H,S removal ability of the present invention. The comparison shows that the performance of the present invention is significantly superior to that of typical activated carbon. Karu.

実施例1 商業上入手できる活性炭、B P L (Calgon Carbon Cor poration、ビッッパーグ PA製)を、5メツシユより小さく6メツシ ユより大きい(米国標準系列ふるい)ものに分粒した。こうして分粒したとき、 この炭素は0.504g/ccの見掛密度(試験法TM−7、Calgon C arbon Corporation 、ピッツバーグ PA)gよび55.1 %のCCQ4数(試験法TM−6、Calgon Carbon Corpor ation、ピッツバーグ PA)を示した0分粒した炭素を、9インチの床深 さを与えるように、内径的0.73インチをもっカラムに充填した。Example 1 Commercially available activated carbon, BPL (Calgon Carbon Cor) poration, made by Bipperg PA), 6 mesh smaller than 5 mesh. The granules were sized into pieces larger than U.S. standard sieves. When granulated in this way, This carbon has an apparent density of 0.504 g/cc (Test method TM-7, Calgon C arbon Corporation, Pittsburgh PA) g and 55.1 % CCQ4 number (Test method TM-6, Calgon Carbon Corporation tion, Pittsburgh, PA) at a bed depth of 9 inches. The column was packed with an internal diameter of 0.73 inch to provide a uniformity.

見掛密度に等しい充填密度を達成するような方式で、力°ラム充填を行った。相 対湿度50%以上、酸素含量17 v / v%以上、約lv / v%の既知 Has濃度をもつガス流を2通常の条件で1450±20cc/分の流量でこの カラムを通した。このカラムからの流出物を監視し、50ppmのH2S貫流を 達成するのに要した経過時間を測定した。この炭素試料では、経過時間は9分で あった。Force ram filling was carried out in such a way as to achieve a packing density equal to the apparent density. phase Known relative humidity of 50% or more, oxygen content of 17 v/v% or more, approximately lv/v% A gas stream with a Has concentration was generated at a flow rate of 1450 ± 20 cc/min under normal conditions. passed through the column. The effluent from this column was monitored to ensure a 50 ppm H2S throughflow. The elapsed time required to achieve this was measured. For this carbon sample, the elapsed time was 9 minutes. there were.

実施例2 歴青炭を微粉砕し、コールタールピッチ約4〜6%と混合し、ブリケッテインク した。生成ブリケットを破砕し5分粒し、はぼ4メツシユ寸法より小さく10メ ツシュ寸法より大きい(米国標準系列ふるい)ものを得た。多量の過剰空気の存 在で、この物質を200’C/hの速度で100℃から200℃に、Zoo℃/ hの速度で200℃から350℃に加熱し、ついで350℃に4h保ち、最後に 100℃/hの速度に350℃から450℃に加熱することにより酸化した。得 られた酸化物質を、低酸素含量雰囲気中でほぼ室温に冷却し、分粒してほぼ5メ ツシユより小さく6メツシユより大きい(米国標準系列ふるい)物質を得、つい で尿素水溶液で含浸し、乾燥した。使った尿素溶液の量は、乾燥重量基準で尿素 4%含浸を得るのに十分なものであった。含浸後、酸化し含浸した低温チャーの 一部分を、不活性ガス雰囲気下で迅速に950℃に加熱した。この仮焼処理直後 、生成物質を所望の収率な達成するのに十分な時間950℃で水蒸気で活性化し た。活性化後、物質を不活性ガ囲気下常温に冷却した。こうして製造した触媒活 性の活性化炭素質チャーは、これを集めて5メツシユより小さく、6メツシユよ り大きし1(米国標準系列ふるい)ものに分粒したとき、0.495g/ccの 見掛密度(試験法T M −7,Calgon Carbon Corpora tion、ピッツバーグ PA)を示した1分粒し集めたチャーのCCQ 4数 tよ55.5%であった。Example 2 Bituminous coal is finely ground and mixed with about 4-6% coal tar pitch to create briquette ink. did. The produced briquettes are crushed and divided into 5 pieces, and the size is smaller than 4 mesh and 10 mesh. A sieve having a size larger than the sieve size (American standard series sieve) was obtained. Presence of large amounts of excess air At present, this material was heated from 100°C to 200°C at a rate of 200°C/h at Zoo°C/ Heating from 200°C to 350°C at a rate of h, then kept at 350°C for 4h, and finally Oxidation was carried out by heating from 350°C to 450°C at a rate of 100°C/h. profit The oxidized material is cooled to about room temperature in a low oxygen content atmosphere and sized into approximately 5 sized particles. A material smaller than 6 meshes and larger than 6 meshes (US standard series sieves) was obtained, and then It was impregnated with an aqueous urea solution and dried. The amount of urea solution used is urea on a dry weight basis. This was sufficient to obtain 4% impregnation. After impregnation, the oxidized and impregnated low temperature char A portion was rapidly heated to 950° C. under an inert gas atmosphere. Immediately after this calcination treatment , the product material is activated with steam at 950° C. for a period sufficient to achieve the desired yield. Ta. After activation, the material was cooled to ambient temperature under an inert gas atmosphere. Catalytic activity produced in this way The activated carbonaceous char is collected in smaller than 5 meshes and larger than 6 meshes. When sized to size 1 (U.S. standard sieve), 0.495g/cc Apparent density (Test method TM-7, Calgon Carbon Corpora tion, Pittsburgh, PA) CCQ of 1-minute grains and collected char 4 counts It was 55.5%.

上記で製造した分粒した触媒活性の活性化高温炭素質チャーのH2S除去能力を 、実施例1と同一条件な使IA測定した。触媒活性の活性化炭素質チャーのこの 試料では、50ppm H25貫流を達成するのに要した経過時間は326分で あった。The H2S removal ability of the activated high-temperature carbonaceous char with catalytically active granules prepared above is , IA was measured using the same conditions as in Example 1. This activated carbonaceous char with catalytic activity In the sample, the elapsed time required to achieve 50 ppm H25 flow through was 326 minutes. there were.

本発明の現在好ましい実施態様を説明してきたカミ1本発明(ま請求の範囲内で 他に具体化できる。Having described the presently preferred embodiments of the invention, the present invention (within the scope of the claims) It can be embodied in other ways.

Claims (6)

【特許請求の範囲】[Claims] 1.ガスまたは液媒体を酸素および水の存在下に触媒活性炭素質チャーと接触さ せることからなる上記媒体からの硫化物の除去法において、上記チャーが、70 0℃以下の温度で炭化および酸化した歴青炭または歴青炭様物質から製造され、 それをその後700℃以上の温度への初期露出中に窒素含有化合物にさらしたも のである、上記除去法。1. A gaseous or liquid medium is contacted with a catalytically activated carbonaceous char in the presence of oxygen and water. In the method for removing sulfides from the medium, the char is produced from bituminous coal or bituminous coal-like material carbonized and oxidized at temperatures below 0°C; It was then exposed to nitrogen-containing compounds during initial exposure to temperatures above 700°C. This is the above removal method. 2.該触媒活性炭素質チャーが、水蒸気、二酸化炭素、および酸素の少なくとも 一つを使って700℃以上の温度で活性化したものである請求項1記載の方法。2. The catalytically activated carbonaceous char contains at least water vapor, carbon dioxide, and oxygen. 2. The method according to claim 1, wherein the method is activated at a temperature of 700° C. or higher. 3.該硫化物が硫化水素である請求項1記載の方法。3. A method according to claim 1, wherein said sulfide is hydrogen sulfide. 4.該方法を0〜300℃の温度で実施して該硫化物を除去する請求項1記載の 方法。4. 2. The method of claim 1, wherein said process is carried out at a temperature of 0 to 300<0>C to remove said sulfides. Method. 5.該方法を約25〜90℃の温度で実現して該硫化物を除去する請求項1記載 の方法。5. 2. The method of claim 1, wherein said method is carried out at a temperature of about 25 to 90<0>C to remove said sulfides. the method of. 6.該窒素含有化合物が尿素および尿素様化合物である請求項1記載の方法。6. 2. The method of claim 1, wherein said nitrogen-containing compounds are urea and urea-like compounds.
JP6517278A 1993-01-21 1994-01-21 Removal method of sulfide by catalytic carbon Expired - Lifetime JP2572206B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US872393A 1993-01-21 1993-01-21
US008723 1993-01-21
US008,723 1993-01-21
PCT/US1994/000884 WO1994016990A1 (en) 1993-01-21 1994-01-21 Method for removing sulfide with catalytic carbon

Publications (2)

Publication Number Publication Date
JPH07505116A true JPH07505116A (en) 1995-06-08
JP2572206B2 JP2572206B2 (en) 1997-01-16

Family

ID=21733292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6517278A Expired - Lifetime JP2572206B2 (en) 1993-01-21 1994-01-21 Removal method of sulfide by catalytic carbon

Country Status (3)

Country Link
JP (1) JP2572206B2 (en)
CA (1) CA2131987A1 (en)
WO (1) WO1994016990A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018525453A (en) * 2015-06-01 2018-09-06 カルゴン カーボン コーポレーション Method for inactivating activated carbon in a biogas refiner

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637232A (en) * 1996-03-11 1997-06-10 Calgon Carbon Corporation Process for the catalytic oxidation of ferrous iron in liquid media
KR101439504B1 (en) 2012-10-09 2014-09-15 주식회사 포스코 Method of active carbon for removing hydrogen sulfide and active carbon manufactured by the same
KR101512562B1 (en) 2013-08-20 2015-04-16 대전대학교 산학협력단 A process for producing biomass adsorbent from platanus leaves

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US737579A (en) * 1902-12-06 1903-09-01 Ernst Burschell Process of purifying gas.
GB411918A (en) * 1932-01-04 1934-06-18 Franz Krczil Improvements in the methods and means for producing active charcoal or for re-activating spent charcoal
US3630959A (en) * 1969-06-04 1971-12-28 Standard Oil Co Ohio Carbonization of bituminous coals
JPS5220395A (en) * 1975-08-08 1977-02-16 Mitsubishi Petrochem Co Ltd Process for producing porous carbonaceous particles
DE4109892C2 (en) * 1991-03-26 1994-12-22 Metallgesellschaft Ag Process for removing hydrogen sulfide from gases using activated carbon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018525453A (en) * 2015-06-01 2018-09-06 カルゴン カーボン コーポレーション Method for inactivating activated carbon in a biogas refiner
US10633307B2 (en) 2015-06-01 2020-04-28 Calgon Carbon Corporation Method for inerting activated carbon in biogas purification equipment
JP2021073333A (en) * 2015-06-01 2021-05-13 カルゴン カーボン コーポレーション Method for inerting activated carbon in biogas purification machine
US11958803B2 (en) 2015-06-01 2024-04-16 Calgon Carbon Corporation Method for inerting activated carbon in biogas purification equipment

Also Published As

Publication number Publication date
CA2131987A1 (en) 1994-08-04
JP2572206B2 (en) 1997-01-16
WO1994016990A1 (en) 1994-08-04

Similar Documents

Publication Publication Date Title
JP2701985B2 (en) Decomposition and removal method of peroxide using carbonaceous char
US5240474A (en) Air separation by pressure swing adsorption with a high capacity carbon molecular sieve
US5733515A (en) Purification of air in enclosed spaces
KR950000880B1 (en) High capacity coconut shell char for carbon molecular sieves
US4742040A (en) Process for manufacturing a carbon molecular sieve
EP0481218B1 (en) A process for making modified carbon molecular sieve adsorbents
JP6760583B2 (en) How to make activated carbon
WO1996030318A1 (en) Porous carbonaceous material, process for producing the same, and use thereof
Fiuza Jr et al. Preparation of granular activated carbons from yellow mombin fruit stones for CO2 adsorption
Feng et al. Sulfurization of carbon surface for vapor phase mercury removal–I: Effect of temperature and sulfurization protocol
Marsh Activated carbon compendium: a collection of papers from the journal carbon 1996-2000
JP2688386B2 (en) SOx removal method using carbon catalyst
MacDonald et al. Adsorbents for methane storage made by phosphoric acid activation of peach pits
Li et al. Catalytic reduction of NO using iron oxide impregnated biomass and lignite char for flue gas treatment
US4458022A (en) Process for manufacturing molecular sieving carbon
Rubio et al. Influence of low-rank coal char properties on their SO2 removal capacity from flue gases. 2. Activated chars
US3502427A (en) Process for the production of adsorbent carbon and removal of sulfur dioxide,sulfur and nitrogen oxides from gases
US20160228860A1 (en) Catalytic activated carbon structures and methods of use and manufacture
RU2311227C1 (en) Method of production of the nanostructure carbonic material with the high specific surface and microporosity
US6534442B1 (en) Process for production of carbonaceous chars having catalytic activity
KR850001200B1 (en) Process for dry desuifurization of flue gas
JPH07505116A (en) Sulfide removal method using catalytic carbon
JP2000511099A (en) Nonmetal and semimetal hydride removal method
US6114273A (en) Method for sox removal by catalytic carbon
JPH10501174A (en) Air purification in enclosed space