JPS6141603B2 - - Google Patents

Info

Publication number
JPS6141603B2
JPS6141603B2 JP58184450A JP18445083A JPS6141603B2 JP S6141603 B2 JPS6141603 B2 JP S6141603B2 JP 58184450 A JP58184450 A JP 58184450A JP 18445083 A JP18445083 A JP 18445083A JP S6141603 B2 JPS6141603 B2 JP S6141603B2
Authority
JP
Japan
Prior art keywords
test
cerium
absorption liquid
carbon dioxide
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58184450A
Other languages
Japanese (ja)
Other versions
JPS6078616A (en
Inventor
Saburo Morii
Katsumasa Yamaguchi
Toshikazu Nakamura
Tsutomu Toida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP58184450A priority Critical patent/JPS6078616A/en
Publication of JPS6078616A publication Critical patent/JPS6078616A/en
Publication of JPS6141603B2 publication Critical patent/JPS6141603B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/06Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in markedly alkaline liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(目的及び背景) 本発明は炭酸ガス除去装置の防蝕方法に関する
もので、更に詳しくは、天然ガス、ナフサなどの
水蒸気改質、原油・重油等の部分酸化、又は石炭
のガス化等によつて生じた、水素、一酸化炭素、
炭酸ガス等を含有する混合ガス中の炭酸ガスを、
炭酸アルカリ、エタノールアミンまたはこれらの
混合溶液を吸収液として吸収除去する装置の防蝕
方法に関するものである。 上記の吸収液を使用する炭酸ガス除去装置は、
通常炭素鋼が使用出来るように防蝕剤を吸収液に
添加して使用している。 例えば、ジヤンマルコ・ベトロコーク法では20
〜30%の炭酸カリ水溶液を吸収液とし、防蝕剤と
して三酸化砒素(As2O3)を添加している。また
ベンフイールド法およびカタカーブ法では共に20
〜30%の炭酸カリ水溶液に吸収促進のためにアミ
ン液を加えたものを吸収液とし、防蝕剤として五
酸化バナジウムかメタバナジン酸を添加してい
る。 このように従来使用されている防蝕剤は砒素化
合物のようにそれ自体有害物であるために使用が
禁止されているものがあり、またバナジウム化合
物を添加する方法では廃水中にこれらが含まれる
ことが公害上好ましくないと判断している企業も
あり、従つて装置設置上の制約をうけている。 本発明者等は炭酸ガス除去装置において従来の
防蝕剤を使用することによる上記公害上または装
置設置上の問題点を解消するため鋭意研究を行な
つた結果、本発明を完成した。 (構成) 即ち本発明は、炭酸アルカリ溶液、アルカノー
ルアミン溶液、又はこれらの混合溶液を吸収液と
してガス中の炭酸ガスを吸収除去する吸収工程と
炭酸ガスを吸収した吸収液を再生する再生工程か
ら成る炭酸ガス除去装置において、吸収液にセリ
ウム族元素のイオンを存在させることを特徴とす
る炭酸ガス除去装置の防蝕方法である。 以下本発明について詳述する。 本発明で使用するセリウム族元素とは、稀土類
元素のうち、そのR2(SO43・K2SO4(Rは稀土
類元素)型の複塩が過剰の硫酸アルカリ溶液に溶
けない元素を言い、La、Ce、Pr、Nd、および
Smが属する(岩波理化学辞典、増訂版−1958年
11月発行、751頁)。 本発明においては、これらのセリウム族元素を
硝酸塩または塩化物の水溶液として吸収液に添加
し、イオンの状態で存在させる。各元素の純粋な
水溶性塩を単独又は混合して使用してもよいが、
これらは相互の分離が困難で純粋なものは高価で
あるから、粗製混合物、たとえば粗セリウム塩と
か、セリウム族元素を含む塩化稀土とかを使用す
る方が経済的である。但し下記の実施例では、添
加量を明らかにするため、主として硝酸セリウム
を使用した。セリウムイオンには3価のものと4
価のものとがあるが、3価のものより4価のもの
の方が効果が優れている。吸収液中に4価のイオ
ンを存在させるためには、最初から4価のイオン
の状態にして添加してもよいし、3価のイオンを
添加したのち空気を吹き込むなどして4価のイオ
ンにしてもよい。再生工程中に空気吹き込み操作
があるプロセスにおいては、3価のイオンを添加
すれば自動的に4価のイオンとして存在するよう
になる。 <試験方法1> 炭酸カリ(K2CO3)25重量%の水溶液にCO2
吹き込み、KHCO3/(K2CO3+KHCO3)=0.3±
0.03のCO2含有量とした吸収液を調製し、これを
防蝕剤としてセリウム族元素の水溶性塩を所定量
添加したものを誌験液とし、30mm×30mm×2.3mm
の炭素鋼片(重量約10.4g)を予め正確に秤量し
たものをテストピースとして3枚試験液内に設置
し、100℃で300時間経過後テストピースを取り出
し、乾燥・秤量して腐蝕量を求め、防蝕剤無添加
の場合と比較した。 実施例 1 吸収液及び硝酸セリウム[Ce(NO33
6H2O]溶液を空気と接触させぬよう調製し、硝
酸セリウムが0.50重量%(セリウムとして0.16重
量%)となるよう添加したものを試験液とし、
CO2と窒素を送入しながら上記方法により試験し
た。 実施例 2 実施例1と同様の試験液を用意し、CO2と空気
を24時間送入した後実施例1と同様にCO2と窒素
を送入しながら試験した。 実施例 3 硝酸セリウムが0.50重量%(セリウムとして
0.16重量%)になるよう吸収液に添加し、最初か
らCO2と空気を送入しながら試験した。 実施例1、2、3及び無添加の場合の試験結果
を第1表に示す。
(Purpose and Background) The present invention relates to a corrosion prevention method for a carbon dioxide removal device, and more specifically, the present invention relates to a corrosion prevention method for a carbon dioxide removal device. generated hydrogen, carbon monoxide,
Carbon dioxide in a mixed gas containing carbon dioxide, etc.
The present invention relates to a corrosion prevention method for an apparatus that absorbs and removes alkali carbonate, ethanolamine, or a mixed solution thereof as an absorption liquid. The carbon dioxide removal device that uses the above absorption liquid is
Normally, a corrosion inhibitor is added to the absorbing liquid so that carbon steel can be used. For example, in the Gianmarco-Betrocok method, 20
~30% potassium carbonate aqueous solution is used as the absorption liquid, and arsenic trioxide (As 2 O 3 ) is added as a corrosion preventive agent. In addition, both the Benfield method and the Catacurve method have a
The absorption liquid is made by adding amine liquid to ~30% potassium carbonate aqueous solution to promote absorption, and vanadium pentoxide or metavanadate is added as a corrosion inhibitor. Some of the conventionally used anticorrosive agents, such as arsenic compounds, are harmful in themselves and are therefore prohibited from use, and the method of adding vanadium compounds may result in these being contained in wastewater. Some companies have determined that this is undesirable in terms of pollution, and are therefore subject to restrictions on equipment installation. The present inventors completed the present invention as a result of intensive research to solve the above-mentioned problems in terms of pollution and equipment installation caused by the use of conventional anticorrosive agents in carbon dioxide removal equipment. (Structure) That is, the present invention consists of an absorption process in which carbon dioxide gas in a gas is absorbed and removed using an alkali carbonate solution, an alkanolamine solution, or a mixed solution thereof as an absorption liquid, and a regeneration process in which the absorption liquid that has absorbed carbon dioxide gas is regenerated. This is a method for preventing corrosion of a carbon dioxide gas removal device, characterized in that in the carbon dioxide gas removal device, ions of a cerium group element are present in the absorption liquid. The present invention will be explained in detail below. The cerium group element used in the present invention is a rare earth element whose R 2 (SO 4 ) 3 K 2 SO 4 (R is a rare earth element) type double salt is insoluble in an excess sulfuric acid alkaline solution. The elements are La, Ce, Pr, Nd, and
Sm belongs to (Iwanami Science and Chemistry Dictionary, revised edition - 1958)
Published in November, 751 pages). In the present invention, these cerium group elements are added to the absorption liquid as an aqueous solution of nitrate or chloride, and are made to exist in an ion state. Pure water-soluble salts of each element may be used alone or in combination, but
Since it is difficult to separate these from each other and pure ones are expensive, it is more economical to use crude mixtures, such as crude cerium salts or rare earth chlorides containing cerium group elements. However, in the following examples, cerium nitrate was mainly used in order to clarify the amount added. Cerium ions have a valence of 3 and 4.
There are different valent ones, but the tetravalent ones are more effective than the trivalent ones. In order to have quadrivalent ions present in the absorption liquid, they can be added in the form of quadrivalent ions from the beginning, or they can be added in the form of quadrivalent ions from the beginning, or by blowing air into them after adding trivalent ions. You can also do this. In a process that includes an air blowing operation during the regeneration process, when trivalent ions are added, they automatically become present as tetravalent ions. <Test method 1> Blow CO 2 into an aqueous solution of 25% by weight of potassium carbonate (K 2 CO 3 ), and KHCO 3 / (K 2 CO 3 + KHCO 3 ) = 0.3±
An absorption liquid with a CO 2 content of 0.03 was prepared, and a predetermined amount of a water-soluble salt of a cerium group element was added thereto as a corrosion preventive agent.The sample liquid was 30 mm x 30 mm x 2.3 mm.
Three precisely weighed carbon steel pieces (weighing about 10.4 g) were placed as test pieces in the test solution, and after 300 hours at 100°C, the test pieces were taken out, dried, and weighed to determine the amount of corrosion. and compared with the case without corrosion inhibitor. Example 1 Absorption liquid and cerium nitrate [Ce(NO 3 ) 3 .
6H 2 O] solution was prepared so as not to come into contact with air, and cerium nitrate was added to 0.50% by weight (0.16% by weight as cerium) as the test solution.
Tested according to the above method while supplying CO 2 and nitrogen. Example 2 A test solution similar to that in Example 1 was prepared, and after supplying CO 2 and air for 24 hours, a test was conducted while supplying CO 2 and nitrogen in the same manner as in Example 1. Example 3 Cerium nitrate was 0.50% by weight (as cerium)
0.16% by weight) to the absorption liquid, and the test was conducted while supplying CO 2 and air from the beginning. Table 1 shows the test results of Examples 1, 2, and 3 and cases without additives.

【表】 この結果から、セリウムは硝酸セリウムとして
添加した3価のイオンの状態のままでも若干の防
蝕効果が認められるが(実施例1)、空気と接触
して4価のイオンになつた状態(実施例2および
3)では特に顕著な防蝕効果が認められる。また
その顕著な効果は、常時空気を送入していなくて
も、一度空気を送入して4価のイオンにしてしま
えば(実施例2)その後長時間維持されることが
わかる。このような条件は、吸収液の再生工程で
空気を吹き込みCO2をパージする再生方式(空気
ストリツピング法)においては常に存在するか
ら、自動的に良好な防蝕効果が保たれる。 なお硝酸イオンに防蝕効果がないことは、硝酸
セリウムの代りに硝酸カリを添加した試験により
確認した。 実施例 4 硝酸セリウムが0.23重量%(セリウムとして
0.07重量%)になるよう吸収液に添加し、実施例
3と同様にCO2と空気を送入しながら試験した。 実施例 5 硝酸セリウムが0.05重量%(セリウムとして
0.016重量%)になるように吸収液に添加し、実
施例3と同様にCO2と空気を送入しながら試験し
た。 実施例3、4、5及び無添加の場合の試験結果
を第2表に示す(添加量の影響)。
[Table] From this result, it is found that cerium has a slight corrosion-preventing effect even when it is in the form of trivalent ions added as cerium nitrate (Example 1), but when it comes into contact with air and becomes tetravalent ions. In Examples 2 and 3, particularly remarkable anticorrosion effects were observed. Furthermore, it can be seen that the remarkable effect is maintained for a long time even if air is not constantly fed, once air is fed and turned into tetravalent ions (Example 2). Since such conditions always exist in the regeneration method (air stripping method) in which air is blown in and CO 2 is purged during the absorption liquid regeneration process, a good corrosion protection effect is automatically maintained. The fact that nitrate ions have no anticorrosion effect was confirmed by a test in which potassium nitrate was added instead of cerium nitrate. Example 4 Cerium nitrate was 0.23% by weight (as cerium)
0.07% by weight), and the test was conducted in the same manner as in Example 3 while supplying CO 2 and air. Example 5 Cerium nitrate was 0.05% by weight (as cerium)
0.016% by weight) to the absorption liquid, and the test was conducted in the same manner as in Example 3 while supplying CO 2 and air. Table 2 shows the test results of Examples 3, 4, and 5 and cases where no additive was added (influence of the amount added).

【表】 この結果から、セリウム濃度が0.016重量%
(硝酸セリウムとして0.05重量%)以上であれ
ば、無添加の場合よりも腐食が少なくなることが
わかる。 実施例 6 実施例3の試験液にテストピースを48時間浸漬
した後、そのテストピースを用いて実施例4と同
様な試験を行なつた。 実施例 7 実施例3の試験液にテストピースを48時間浸漬
した後、そのテストピースを用いて実施例5と同
様な試験を行なつた。 実施例6及び7の試験結果を第3表に示す(前
処理の影響)。
[Table] From this result, the cerium concentration is 0.016% by weight.
(0.05% by weight as cerium nitrate) or more, it can be seen that corrosion is less than when no additive is used. Example 6 After a test piece was immersed in the test solution of Example 3 for 48 hours, the same test as in Example 4 was conducted using the test piece. Example 7 After immersing the test piece in the test solution of Example 3 for 48 hours, the same test as in Example 5 was conducted using the test piece. The test results of Examples 6 and 7 are shown in Table 3 (influence of pretreatment).

【表】 この結果から、予め高濃度のセリウムイオンで
処理すれば、低濃度セリウムイオンでも防蝕効果
を維持し得ることがわかる。 実施例 8 粗セリウム硝酸塩(Ce以外にLa、Pr等の稀土
類硝酸塩を含む)が0.5重量%になるように吸収
液に添加して試験を行なつた。300時間経過後の
テストピース腐蝕量は0.004gであつた。 実施例 9 塩化稀土(Ce以外にLa、Pr等の稀土類塩化物
を含む)が0.5重量%になるように吸収液に添加
して試験を行なつた。300時間経過後のテストピ
ース腐蝕量は0.0028gであつた。 比較例 1 V2O5を0.5重量%添加した場合の300時間経過
後のテストピース腐蝕量は0.065gであつた。 <試験方法2> モノエタノールアミン(MEA)20重量%の水
溶液にCO2を吹き込み、CO2濃度をCO2モル/
MEAモル=0.6±0.06としたものを吸収液として
用いた以外は試験方法1に準じて試験を行なつ
た。 実施例 10 硝酸セリウムが0.50重量%(セリウムとして
0.16重量%)になるよう上記吸収液に添加し、
CO2と空気を送入しながら試験した。300時間経
過後のテストピース腐蝕量は0.001gであつた。
これに対して防蝕剤無添加の場合の防蝕量は0.9
gであつた。 (効果) (a) 従来の添加物に代えて同等以上の防蝕効果が
得られるので、装置の材質は炭素鋼で十分であ
る。 (b) 最初高濃度の防蝕剤で処理すれば、その後は
低濃度の防蝕剤でも防蝕効果を維持し得る。 (c) セリウム族元素は公害上の問題を生じない。
[Table] From this result, it can be seen that the anticorrosion effect can be maintained even with a low concentration of cerium ions if treated in advance with a high concentration of cerium ions. Example 8 A test was conducted by adding 0.5% by weight of crude cerium nitrate (containing rare earth nitrates such as La and Pr in addition to Ce) to the absorption liquid. The amount of corrosion on the test piece after 300 hours was 0.004 g. Example 9 A test was conducted by adding 0.5% by weight of rare earth chloride (containing rare earth chlorides such as La and Pr in addition to Ce) to the absorption liquid. The amount of corrosion on the test piece after 300 hours was 0.0028 g. Comparative Example 1 When 0.5% by weight of V 2 O 5 was added, the amount of corrosion on the test piece after 300 hours was 0.065 g. <Test method 2> CO 2 was blown into a 20% by weight aqueous solution of monoethanolamine (MEA), and the CO 2 concentration was adjusted to 2 mol/mol of CO 2.
The test was conducted according to Test Method 1, except that MEA mol=0.6±0.06 was used as the absorption liquid. Example 10 Cerium nitrate is 0.50% by weight (as cerium)
0.16% by weight) to the above absorption liquid,
Tested while supplying CO 2 and air. The amount of corrosion on the test piece after 300 hours was 0.001g.
In contrast, the amount of corrosion protection when no corrosion inhibitor is added is 0.9
It was hot at g. (Effects) (a) Carbon steel is sufficient as the material for the equipment because it can provide the same or better corrosion protection effect than conventional additives. (b) If initially treated with a high concentration of corrosion inhibitor, the corrosion prevention effect can be maintained even with a lower concentration of the corrosion inhibitor thereafter. (c) Cerium group elements do not pose a pollution problem.

Claims (1)

【特許請求の範囲】[Claims] 1 炭酸アルカリ溶液、アルカノールアミン溶
液、又はこれらの混合溶液を吸収液としてガス中
の炭酸ガスを吸収除去する吸収工程と炭酸ガスを
吸収した吸収液を再生する再生工程から成る炭酸
ガス除去装置において、吸収液にセリウム族元素
のイオンを存在させることを特徴とする炭酸ガス
除去装置の防蝕方法。
1. A carbon dioxide removal device comprising an absorption step of absorbing and removing carbon dioxide from gas using an alkali carbonate solution, an alkanolamine solution, or a mixed solution thereof as an absorption liquid, and a regeneration step of regenerating the absorption liquid that has absorbed carbon dioxide, A method for preventing corrosion of a carbon dioxide removal device, characterized by causing ions of a cerium group element to be present in an absorption liquid.
JP58184450A 1983-10-04 1983-10-04 Corrosion-proof method of carbon dioxide removing apparatus Granted JPS6078616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58184450A JPS6078616A (en) 1983-10-04 1983-10-04 Corrosion-proof method of carbon dioxide removing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58184450A JPS6078616A (en) 1983-10-04 1983-10-04 Corrosion-proof method of carbon dioxide removing apparatus

Publications (2)

Publication Number Publication Date
JPS6078616A JPS6078616A (en) 1985-05-04
JPS6141603B2 true JPS6141603B2 (en) 1986-09-16

Family

ID=16153359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58184450A Granted JPS6078616A (en) 1983-10-04 1983-10-04 Corrosion-proof method of carbon dioxide removing apparatus

Country Status (1)

Country Link
JP (1) JPS6078616A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0232710U (en) * 1988-08-26 1990-03-01

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8480787B2 (en) * 2010-07-22 2013-07-09 Honeywell International Inc. Ultrasound-assisted electrospray ionic liquid for carbon dioxide capture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0232710U (en) * 1988-08-26 1990-03-01

Also Published As

Publication number Publication date
JPS6078616A (en) 1985-05-04

Similar Documents

Publication Publication Date Title
US4440731A (en) Process for removal of carbon dioxide from industrial gases
JPH0722677B2 (en) Method for removing and recovering sulfur dioxide from gas streams
CN103623689B (en) The method of SOx in polyhydric alcohol composite solution elimination gas
US4081509A (en) Method for removing nitrogen oxides from flue gas by absorption
GB2178734A (en) Flue gas desulfurization/denitrification using metal-chelate additives
US3932585A (en) Method of removing nitrogen oxides from plant exhaust
US4431563A (en) Inhibitors for acid gas conditioning solutions
US6036888A (en) Corrosion inhibitor for alkanolamine units
US4208385A (en) Process for defoaming acid gas scrubbing solutions and defoaming solutions
JPS6141603B2 (en)
EP0102712B1 (en) A process for preventing corrosion in alkaline systems
CN112316669A (en) Organic amine desulfurizer, preparation method and application thereof
US4959177A (en) Reducing stress corrosion cracking in treating gases with alkanol amines
WO2018173150A1 (en) Method for wet desulfurization from hydrogen sulfide-containing gas
US9816029B2 (en) Organic amine decarbonization solutions
RU2542230C2 (en) Improved redox solution for gas desulphurisation
US4452764A (en) Bismuth inhibitors for acid gas conditioning solutions
CA1085590A (en) Process for the removal of acid gases
US5985179A (en) Corrosion inhibitor for alkanolamine units
WO1999010444A1 (en) Corrosion inhibitor for alkanolamine units
EP0043525B1 (en) Corrosion inhibitors for alkanolamine gas treating systems
CA2278455C (en) Amine heat stable salt neutralization having reduced solids
JPH05277342A (en) Carbon dioxide gas absorbing solution
US4434146A (en) Scrubbing of hydrogen sulphide using pH control to control thiosulfate formation
JPH0768528B2 (en) Method for removing carbonyl sulfide in gas