JPH05277342A - Carbon dioxide gas absorbing solution - Google Patents

Carbon dioxide gas absorbing solution

Info

Publication number
JPH05277342A
JPH05277342A JP4080959A JP8095992A JPH05277342A JP H05277342 A JPH05277342 A JP H05277342A JP 4080959 A JP4080959 A JP 4080959A JP 8095992 A JP8095992 A JP 8095992A JP H05277342 A JPH05277342 A JP H05277342A
Authority
JP
Japan
Prior art keywords
solution
absorbing
absorption
side reaction
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4080959A
Other languages
Japanese (ja)
Inventor
Toru Seto
徹 瀬戸
Shigeaki Mitsuoka
薫明 光岡
Michiyasu Honda
充康 本田
Masaki Iijima
正樹 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4080959A priority Critical patent/JPH05277342A/en
Publication of JPH05277342A publication Critical patent/JPH05277342A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PURPOSE:To obtain a CO2 absorbing soln. of which deterioration is prevented with a small amt. of an additive by adding the oxides of the transition elements such as Fe, Co and Ni to an alkanolamine soln. as a CO2 gas absorbing soln. CONSTITUTION:Fe such as ferric oxide and ferrous sulfate and the oxides of the transition elements such as Co and Ni are added to a soln. of an alkanolamine such as monoethanolamine to obtain the CO2 gas absorbing soln. for removing CO2 gas contained in the waste combustion gas. Consequently, the electric charge causing the side reaction of the alkanolamine soln. is inactivated by the oxides of Fe, Co and Ni, and the side-reaction product is drastically reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃焼排ガス中に含まれる
炭酸ガス(CO2 )を除去する炭酸ガス吸収液に関し、
さらに詳しくはCO2 の吸収・再生に際しても劣化しな
いCO2 吸収用アルカノールアミン溶液に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon dioxide absorption liquid for removing carbon dioxide (CO 2 ) contained in combustion exhaust gas,
More specifically, it relates to an alkanolamine solution for CO 2 absorption that does not deteriorate during CO 2 absorption and regeneration.

【0002】[0002]

【従来の技術】近時、地球温暖化問題が提起され、わけ
てもCO2 の寄与度が大きく、その排出量の低減が世界
的な課題となってきている。大気中に排出されるCO2
の大部分は化石燃料の燃焼に起因するところが大きく、
これら燃焼ガス中のCO2 を除去する排出量の低減が重
要である。しかし、重質油、石炭、天然ガスなどを燃焼
させる事業用や自家発電用ボイラ等において、排ガス中
のNOxやSOxを除去する技術は実用化されている
が、公害防止としてCO2 を除去する排煙処理装置は実
用化されていなかった。
2. Description of the Related Art Recently, the problem of global warming has been raised, and in particular, the contribution of CO 2 is large, and the reduction of its emission has become a global issue. CO 2 emitted into the atmosphere
Most of these are largely due to the combustion of fossil fuels,
It is important to reduce the amount of emission for removing CO 2 in these combustion gases. However, the technology for removing NOx and SOx in the exhaust gas has been put to practical use in boilers for business and private power generation that burn heavy oil, coal, natural gas, etc., but removes CO 2 to prevent pollution. The flue gas treatment device has not been put to practical use.

【0003】一方、排煙中のCO2 を原料として回収
し、炭酸ガス含有飲料やさらには2次回収の終了した油
層内へCO2 を圧入し、残原油を回収する、いわゆるE
OR(Enhanced Oil Recoverly )プラント原料として用
いる方法が発表されている。(文献名:「 Process to
recover CO2 from flue gas gets first large-scale t
ryout in Texas」Oil & Journal , Feb. 14 , 1983 )
On the other hand, CO 2 in flue gas is recovered as a raw material, and CO 2 is injected into a carbonated gas-containing beverage or an oil layer after secondary recovery to recover residual crude oil.
A method of using as an OR (Enhanced Oil Recoverly) plant material has been announced. (Reference name: "Process to
recover CO 2 from flue gas gets first large-scale t
ryout in Texas '' Oil & Journal, Feb. 14, 1983)

【0004】これらのCO2 の回収としては、アミン系
化合物、炭酸カリウムのようなアルカリ性水溶液中にC
2 を化学的に吸収させる方法、メタノール、ポリエチ
レングリコールメチルエーテル、プロピレンカーボネイ
ト等を溶剤として物理的に吸収させる方法等各種手段が
とられ得るが、代表的な方法は、吸収剤としてモノエタ
ノールアミン、ジエタノールアミン、トリエタノールア
ミンなどのアミン系化合物の水溶液を用いる吸収方法で
ある。モノエタノールアミンを化学吸収剤として用いた
場合のCO2 ガスの吸収反応式は下記(1)式のとおり
である。 OHCH2 CH2 NH2 +H2 O+CO2 →OHCH2 CH2 CH3 HCO3 ・・・・(1)
For the recovery of these CO 2 , C in an alkaline aqueous solution such as an amine compound or potassium carbonate is used.
Various means such as a method of chemically absorbing O 2 and a method of physically absorbing methanol, polyethylene glycol methyl ether, propylene carbonate or the like as a solvent can be used, and a typical method is monoethanolamine as an absorbent. , An absorption method using an aqueous solution of an amine compound such as diethanolamine and triethanolamine. The absorption reaction formula of CO 2 gas when monoethanolamine is used as a chemical absorbent is as shown in the following formula (1). OHCH 2 CH 2 NH 2 + H 2 O + CO 2 → OHCH 2 CH 2 CH 3 HCO 3 ... (1)

【0005】このモノエタノールアミン等アミン類は水
との溶解性が非常によく、自由な濃度で均一水溶液を形
成するが、通常、20〜30%程度で使用される。さら
に(1)式からもわかるようにモノエタノールアミンと
CO2 は当モル的に反応する。このことからモノエタノ
ールアミンのCO2 吸収容量はかなり大きく、温度にも
よるが50℃程度であれば0.50CO2 /モノエタノ
ールアミン(モル比)に達する。
The amines such as monoethanolamine have a very good solubility in water and form a uniform aqueous solution at a free concentration, but they are usually used at about 20 to 30%. Further, as can be seen from the formula (1), monoethanolamine and CO 2 react equimolarly. From this fact, the CO 2 absorption capacity of monoethanolamine is considerably large, and depending on the temperature, it reaches 0.50 CO 2 / monoethanolamine (molar ratio) at about 50 ° C.

【0006】またCO2 を吸収したアミン系水溶液は熱
をかけることによって、(1)式の左方向の反応が容易
に進みCO2 を放出し再生できる。このようにアミン系
吸収液はCO2 の吸収と放出が容易に行え、繰り返し使
用できることからCO2 の吸収液として広く使用されて
いる。
When the amine-based aqueous solution having absorbed CO 2 is heated, the reaction in the left direction of the formula (1) easily proceeds to release CO 2 and regenerate it. As described above, the amine-based absorbing solution is widely used as a CO 2 absorbing solution because it can easily absorb and release CO 2 and can be repeatedly used.

【0007】しかしながら、吸収と再生を繰り返しなが
ら長時間使用し続けると、副反応による生成物が徐々に
増加し、CO2 吸収作用のある活性なアミンの濃度が減
少するために、CO2 吸収性能が低下する。このCO2
吸収性能の低下を防ぐために、新しい吸収液を補給し、
濃度を一定に保つ方法が一般的に採用されている。従っ
て、副反応生成物ができやすく、劣化の激しい吸収液ほ
ど補給量が増加し、ランニングコストの上昇につなが
る。コスト低減を計るためには、補給量を低減すること
が必須であるが、このためにはCO2 吸収液の劣化を抑
え、耐久性を向上させることが重要である。
However, when it is used for a long time while repeating absorption and regeneration, the products due to side reactions gradually increase and the concentration of the active amine having a CO 2 absorbing action decreases, so that the CO 2 absorbing performance is reduced. Is reduced. This CO 2
To prevent the deterioration of absorption performance, replenish with new absorption liquid,
A method of keeping the concentration constant is generally adopted. Therefore, the side reaction product is likely to be formed, and the replenishing amount increases as the absorbing liquid that deteriorates more severely, leading to an increase in running cost. In order to reduce the cost, it is essential to reduce the supply amount, but for this purpose, it is important to suppress the deterioration of the CO 2 absorbing solution and improve the durability.

【0008】従来、CO2 吸収液の劣化を抑制する方法
として、(1)モノエタノールアミン、ジエタノールア
ミン等はCO2 吸収速度が速く、吸収容量も大きい利点
があるが、吸収液劣化が大きい欠点を有する1級、2級
アルカノールアミンを主溶剤とし、これにメチルジエタ
ノールアミン等の3級アミンを劣化防止剤として添加す
る方法(米国特許第4840777号)及び(2)吸収
剤劣化を促進する性質を有する鉄、ニッケルなどの遷移
金属のイオン濃度を抑制のため、吸収液に腐食防止剤を
添加する方法(米国特許第4440731号及び第44
77419号)などがある。
Conventionally, as a method for suppressing the deterioration of the CO 2 absorbing solution, (1) monoethanolamine, diethanolamine and the like have the advantages that the CO 2 absorption rate is fast and the absorption capacity is large, but there is a drawback that the deterioration of the absorbing solution is large. A method in which the primary and secondary alkanolamines are used as a main solvent and a tertiary amine such as methyldiethanolamine is added as a deterioration inhibitor (US Pat. No. 4,840,777), and (2) it has a property of promoting deterioration of the absorbent. A method of adding a corrosion inhibitor to the absorbing solution for suppressing the ion concentration of transition metals such as iron and nickel (US Pat. Nos. 4,440,731 and 44).
77419).

【0009】しかし、上記(1)の方法は劣化防止剤た
る3級アミンを吸収量全体の4〜25%とかなり多量添
加するものであり、これら劣化防止剤はCO2 の吸収に
はほとんど寄与せず、単に吸収−再生の系内を循環する
ため、ポンプ動力や吸収−再生での加熱・冷却などに要
するエネルギの損失が大きく得策でない。また、上記
(2)の方法は装置材料の防腐と吸収剤の劣化防止を同
時に行なえる点において好ましいが、CO2 を吸収する
主溶剤の鉄、ニッケルイオンによる劣化の促進を防止す
るにとどまり、主溶剤自体が有する劣化の性質はそのま
ゝ残存することになり、それ以下に劣化を抑制すること
ができない限界がある。
However, the above-mentioned method (1) involves the addition of a tertiary amine as a deterioration inhibitor, which is a considerably large amount of 4 to 25% of the total absorption amount, and these deterioration inhibitors almost contribute to the absorption of CO 2. Instead, since it simply circulates in the absorption-regeneration system, the loss of energy required for pump power and heating / cooling in absorption-regeneration is large, which is not a good idea. Further, the above method (2) is preferable in that it is possible to simultaneously prevent the preservative of the device material and the deterioration of the absorbent, but only prevent the deterioration of the main solvent that absorbs CO 2 due to iron and nickel ions. The deterioration property of the main solvent itself remains as it is, and there is a limit below which deterioration cannot be suppressed.

【0010】そこで、本発明者らはこれらの提案方法の
問題点を克服するために、先に燃焼排ガス中に含まれる
炭酸ガスをアミン溶液に吸収・除去する方法において、
該アミン溶液に第3物質としてオキシアルキルアミンお
よび脂肪族アミンから選ばれた物質を少なくとも1種類
添加することを特徴とする炭酸ガス用吸収液の劣化防止
方法を提案した(特願平3−291303号)。
In order to overcome the problems of these proposed methods, the present inventors have previously proposed a method of absorbing and removing carbon dioxide gas contained in combustion exhaust gas into an amine solution.
A method for preventing deterioration of an absorbent for carbon dioxide, characterized by adding at least one substance selected from oxyalkylamines and aliphatic amines as a third substance to the amine solution, has been proposed (Japanese Patent Application No. 3-291303). issue).

【0011】[0011]

【発明が解決しようとする課題】上述のように燃焼排ガ
スからCO2 を除去する上で、吸収剤の劣化を防止し、
経済的性を向上するための、吸収剤劣化防止剤が望まれ
ている。特に、本発明者らが先に提案した方法(特願平
3−291303号)のように、CO2 を吸収する主溶
剤に対して、添加する劣化防止剤の量ができるだけ少量
であることおよび劣化促進の防止でなくCO2 吸収液そ
のものの劣化防止であることが望まれている。
As described above, in removing CO 2 from combustion exhaust gas, deterioration of the absorbent is prevented,
There is a demand for an absorbent deterioration preventive agent for improving economic efficiency. In particular, as in the method previously proposed by the present inventors (Japanese Patent Application No. 3-291303), the amount of the deterioration inhibitor to be added to the main solvent absorbing CO 2 is as small as possible, and It is desired to prevent deterioration of the CO 2 absorbing solution itself, not prevention of deterioration promotion.

【0012】本発明は上記技術水準及び上記要望に応
じ、少量の添加剤で劣化防止されたCO2 吸収用アミン
溶液を提供しようとするものである。
According to the above-mentioned state of the art and the above-mentioned demands, the present invention aims to provide a CO 2 absorbing amine solution which is prevented from deterioration with a small amount of additives.

【0013】[0013]

【課題を解決するための手段】本発明は (1)アルカノールアミン溶液にFe,Co及びNiの
遷移元素の酸化物を添加してなる炭酸ガス吸収液。
MEANS FOR SOLVING THE PROBLEMS The present invention is (1) a carbon dioxide gas absorbing solution obtained by adding oxides of transition elements of Fe, Co and Ni to an alkanolamine solution.

【0014】(2)アルカノールアミン溶液にカルボキ
シル基を有する有機酸を添加してなる炭酸ガス吸収液。
である。
(2) A carbon dioxide gas absorbing solution obtained by adding an organic acid having a carboxyl group to an alkanolamine solution.
Is.

【0015】[0015]

【作用】アルカノールアミン溶液として、モノエタノー
ルアミン溶液がCO2 と反応する際、前記(1)式の主
反応のほかに、例えば下記(2)式のような副反応が生
じ、生成した副反応生成物がさらに分解してグリコール
酸、蓚酸、蟻酸、N−(2−ヒドロキシエチル)−エチ
レンジアミンなどが生成し、これらがモノエタノールア
ミンなどのアルカノールアミン溶液のCO2 吸収能を劣
化させるものと推定されている。
When a monoethanolamine solution as an alkanolamine solution reacts with CO 2 , a side reaction such as the following formula (2) occurs in addition to the main reaction of the above formula (1), and a side reaction generated It is presumed that the product is further decomposed to produce glycolic acid, oxalic acid, formic acid, N- (2-hydroxyethyl) -ethylenediamine, etc., which deteriorate the CO 2 absorption ability of the alkanolamine solution such as monoethanolamine. Has been done.

【0016】[0016]

【化1】 [Chemical 1]

【0017】本発明者らは鉄イオンが副反応生成物を促
進するとの従来の知見から、モノエタノールアミン溶液
を吸収剤として鉄イオン濃度減少による副反応生成物抑
制効果をみるために、吸収液中の鉄イオンを酸化させて
酸化鉄を生成させたところ、副反応生成物の生成は極端
に低減し、単にモノエタノールアミン自体の副反応物生
成レベルにとゞまらず、それ以下の生成レベルに低減す
ることを見出した。そこで、モノエタノールアミン溶液
に酸化鉄粉末を添加して副反応生成物の生成を調べたと
ころ、上記と同様にモノエタノールアミン自体の副反応
物生成レベル以下にとゞまることを確認した。そこで、
酸化鉄と同系統の酸化コバルト、酸化ニッケル粉につい
て酸化鉄と同様な調査をしたところ同様の結果が得られ
ることを確認して、第1発明を完成するに到ったもので
ある。
Based on the conventional knowledge that iron ions promote side reaction products, the inventors of the present invention used a monoethanolamine solution as an absorbent to observe the effect of suppressing side reaction products by reducing the iron ion concentration. When the iron ions in the product were oxidized to produce iron oxide, the production of side reaction products was extremely reduced, and it was not only the level of the side reaction products of monoethanolamine itself, but less than that. It was found to be reduced to the level. Then, when iron oxide powder was added to the monoethanolamine solution and the production of the side reaction product was examined, it was confirmed that it was below the side reaction product production level of monoethanolamine itself as in the above. Therefore,
When cobalt oxide and nickel oxide powders of the same system as iron oxide were investigated in the same manner as iron oxide, it was confirmed that similar results were obtained, and the first invention was completed.

【0018】第1発明の炭酸ガス吸収液による副反応生
成物抑制のメカニズムについては明確ではないが、アル
カノールアミン溶液のCO2 吸収反応はイオン反応であ
ることから、Fe,Co及びNiの酸化物がアルカノー
ルアミン溶液の副反応を起こさせる電気的チャージを不
活性化する役割を担っているものと推定される。
Although the mechanism of suppressing the side reaction product by the carbon dioxide gas absorbing liquid of the first invention is not clear, the CO 2 absorption reaction of the alkanolamine solution is an ionic reaction, and therefore oxides of Fe, Co and Ni are used. Is assumed to play a role of inactivating the electric charge that causes the side reaction of the alkanolamine solution.

【0019】なお、アルカノールアミン溶液に添加する
Fe,Co及びNiの遷移元素の酸化物の量は0.1〜
5wt%で効果がある。
The amount of transition element oxides of Fe, Co and Ni added to the alkanolamine solution is 0.1 to 0.1%.
It is effective at 5 wt%.

【0020】また、本発明者らは副反応生成物(オキザ
ゾリドン)によって生成する最終的生成物を調べるため
に、液体クロマト法でモノエタノールアミン溶液のCO
2 吸収液を分析したところ、乳酸、マロン酸、蟻酸、グ
リコール酸、イソ酪酸、プロピオン酸、こはく酸などの
有機酸が主体に生成していることを見出した。そこで、
モノエタノールアミン溶液にあらかじめカルボキシル基
を有する有機酸の試薬の少量を添加した溶液を用意して
CO2 吸収を継続したところ、モノエタノールアミン溶
液の場合に生成した前述の有機酸の生成速度が大幅に低
下することを確認し、第2発明を完成するに到ったもの
である。
The present inventors have also investigated the final product formed by the side reaction product (oxazolidone) by liquid chromatography using CO of a monoethanolamine solution.
Analysis of the two absorbents revealed that organic acids such as lactic acid, malonic acid, formic acid, glycolic acid, isobutyric acid, propionic acid and succinic acid were mainly formed. Therefore,
When a solution prepared by previously adding a small amount of a reagent of an organic acid having a carboxyl group to a monoethanolamine solution and continuing CO 2 absorption, the rate of formation of the above-mentioned organic acid produced in the case of the monoethanolamine solution was significantly increased. It was confirmed that the second invention was completed, and the second invention was completed.

【0021】第2発明の炭酸ガス吸収液による副反応生
成物抑制のメカニズムも明確ではないが、前記(2)式
で示すオキザゾリドンなどの副反応の原発物質の生成を
抑制する役割を、添加したカルボキシル基を有する有機
酸が担っているものと推定される。
Although the mechanism of suppressing the side reaction product by the carbon dioxide absorbing solution of the second invention is not clear, the role of suppressing the generation of the side reaction primary substance such as oxazolidone represented by the formula (2) is added. It is presumed that the organic acid having a carboxyl group is responsible.

【0022】なお、第2発明においても、アルカノール
アミン溶液に添加するカルボキシル基を有する有機酸
(蟻酸、蓚酸、リンゴ酸など)の量も0.1〜5wt%
で効果がある。
In the second invention, the amount of the organic acid having a carboxyl group (formic acid, oxalic acid, malic acid, etc.) added to the alkanolamine solution is also 0.1 to 5 wt%.
Is effective.

【0023】[0023]

【実施例】本発明の有効性を実施例にもとずいて説明す
る。 (実施例1)モノエタノールアミン(以下、MEAと略
す)30wt%水溶液に二三酸化鉄(Fe2 3 )特級
試薬粉末を溶液に対して0.1wt%になるようにCO
2 吸収液を調製し、その吸収液にCO2 を吸収させる吸
収装置とCO2 を放出させる再生装置からなる実験装置
を用いて、連続的に吸収と再生を行わせ、液中の副反応
生成物の濃度を経時的に追跡した。吸収条件は温度60
℃、CO2 濃度:15vol%、O2 :5vol%、N
2 :残であり、全ガス流量は2リットル/minであっ
た。一方再生は外部加熱方式で充填材を充填した内部の
温度が120℃になるように制御して行った。
EXAMPLES The effectiveness of the present invention will be described based on examples. (Example 1) Monoethanolamine (hereinafter abbreviated as MEA) 30 wt% aqueous solution was mixed with 0.13 wt% of ferric oxide (Fe 2 O 3 ) special grade reagent powder in a CO solution.
(2) Prepare an absorbing liquid, and use an experimental device consisting of an absorbing device for absorbing CO 2 and a regenerating device for releasing CO 2 in the absorbing liquid to allow continuous absorption and regeneration to generate a side reaction in the liquid. The concentration of the substance was followed over time. Absorption condition is temperature 60
C, CO 2 concentration: 15 vol%, O 2 : 5 vol%, N
2 : Remaining, total gas flow rate was 2 liters / min. On the other hand, the regeneration was carried out by controlling the internal temperature of the filling material to 120 ° C. by the external heating method.

【0024】この結果を図1にMEA30wt%(対象
品)の吸収液(図1のa)とあわせて示した。この実施
例1のCO2 吸収液(図1のb)は試験開始50時間に
おいて副反応生成物は約1500ppmであり、対象品
吸収液の場合と比べて約1/6〜1/7の生成量である
結果を得た。
The results are shown in FIG. 1 together with the absorption liquid of MEA 30 wt% (target product) (a in FIG. 1). In the CO 2 absorbing solution of Example 1 (b in FIG. 1), the side reaction product was about 1500 ppm at the start of the test for 50 hours, which was about 1/6 to 1/7 that of the target absorbing solution. The result was a quantity.

【0025】副反応生成物は液体クロマトグラフ法で同
定したところ、グリコール酸、蓚酸、蟻酸など有機酸が
主成分として検出されたので、定量分析法として試験液
を陽イオン樹脂カラムで処理して、MEA吸収剤を吸着
分離し、ろ液中の有機酸物質をアルカリ中和滴定法にて
定量し求めた。
When the side reaction product was identified by liquid chromatography, organic acids such as glycolic acid, oxalic acid, and formic acid were detected as the main components. Therefore, the test solution was treated with a cation resin column as a quantitative analysis method. , The MEA absorbent was adsorbed and separated, and the organic acid substance in the filtrate was quantitatively determined by an alkali neutralization titration method.

【0026】添加することによる吸収液のCO2 吸収容
量に及ぼす影響を、液中のCO2 を炭酸分析計で分析
し、その量を比較するやり方で調べたが、二三酸化鉄添
加によるCO2 吸収容量の有意差は認められなかった。
The effect of the addition of CO 2 on the CO 2 absorption capacity of the absorbing solution was analyzed by analyzing the CO 2 in the solution with a carbonic acid analyzer and comparing the amounts. 2 No significant difference in absorption capacity was observed.

【0027】(実施例2)MEA30wt%水溶液に硫
酸第一鉄(Fe2 SO4 )特級試薬を溶液に対して0.
19wt%となるようにCO2 吸収液を調製した。次
に、該吸収液を常温にて酸素通気したところ、溶解して
いる鉄分はかつ色沈澱物として懸濁した。鉄分は溶解状
態ではアミン錯体を生成していたものが、酸素通気によ
り錯体が分解して含水酸化鉄に変化したと考えられる。
Example 2 A ferrous sulfate (Fe 2 SO 4 ) special grade reagent was added to a 30 wt% MEA aqueous solution in an amount of 0.
The CO 2 absorbing solution was prepared so as to be 19 wt%. Next, when the absorbing solution was aerated with oxygen at room temperature, dissolved iron was also suspended as a color precipitate. It is considered that the iron content, which had formed an amine complex in the dissolved state, was decomposed by oxygen aeration and changed into hydrous iron oxide.

【0028】この吸収液を実施例1と同様の方法で、連
続的にCO2 吸収と再生とを行わせ、液中の副反応生成
物の濃度を、実施例1と同様の分析法で追跡した。その
結果を図1に併せて示す(図1のc)。この吸収液の副
反応生成物は約1400ppmであり、実施例1の場合
と同様に対象吸収液と比較して約1/6〜1/7程度で
あることを確認した。
CO 2 absorption and regeneration were continuously performed on this absorbing solution by the same method as in Example 1, and the concentration of the side reaction product in the solution was traced by the same analytical method as in Example 1. did. The results are also shown in FIG. 1 (FIG. 1c). It was confirmed that the side reaction product of this absorbing solution was about 1400 ppm, which was about 1/6 to 1/7 as compared with the target absorbing solution as in Example 1.

【0029】これらの実施例は鉄を用いた本発明方法の
効果を示す一例であるが、副反応生成物抑制の原理効果
からして、Co,Niの酸化物も同様の効果が得られる
ことは明らかである。
These examples are examples showing the effect of the method of the present invention using iron, but from the principle effect of suppressing side reaction products, similar effects can be obtained with Co and Ni oxides. Is clear.

【0030】(実施例3)MEA30wt%水溶液に乳
酸、酢酸、蟻酸、マロン酸、ホルムアルデヒドを各々、
0.1wt%になるように添加したCO2 吸収液を調製
し(A,B,C,D,E液と呼ぶ)、その吸収液にCO
2 を吸収させる吸収装置とCO2 を放出させる再生装置
からなる実験装置を用いて、連続的に吸収と再生を行わ
せ、液中の副反応生成物の濃度を経時的に追跡した。吸
収条件は温度60℃、CO2 濃度:15vol%、
2 :5vol%、N2 :残であり、全ガス流量は2リ
ットル/minであった。一方再生は外部加熱方式で充
填材を充填した内部の温度が120℃になるように制御
して行った。
Example 3 Lactic acid, acetic acid, formic acid, malonic acid, and formaldehyde were added to a 30 wt% MEA aqueous solution.
A CO 2 absorbing solution added so as to have a concentration of 0.1 wt% was prepared (referred to as A, B, C, D, and E solutions), and CO was added to the absorbing solution.
Absorption and regeneration were carried out continuously by using an experimental apparatus consisting of an absorber for absorbing 2 and a regenerator for releasing CO 2, and the concentration of the side reaction product in the liquid was monitored with time. Absorption conditions are temperature 60 ° C, CO 2 concentration: 15 vol%,
O 2 : 5 vol%, N 2 : balance, and the total gas flow rate was 2 liters / min. On the other hand, the regeneration was carried out by controlling the internal temperature of the filling material to 120 ° C. by the external heating method.

【0031】この結果を表1に、MEA30wt%(対
象液)吸収液とあわせて示した。表1に示すように、5
0時間の吸収−再生試験後の副反応生成物の量は、対象
液が8,000ppm程度でほゞ一定に達しているに比
較して、A〜E液については初期添加量1,000pp
mに対して、C液を除き最高20%程度の増加量でほゞ
一定に達しており、また、C液についても対象液の1/
3程度に減少したことが明らかになった。
The results are shown in Table 1 together with the MEA 30 wt% (target liquid) absorbing liquid. As shown in Table 1, 5
The amount of the side reaction product after the 0-hour absorption-regeneration test was approximately 8,000 ppm in the target liquid, which was almost constant compared to the amount of the target liquid in which the initial addition amount was 1,000 pp.
With respect to m, except for C liquid, the maximum amount increased by about 20%, and it was almost constant.
It became clear that it decreased to about 3.

【0032】副反応生成物の分析は試験液を陽イオン樹
脂カラムで処理して、MEA吸収剤を吸着分離し、ろ液
中のCO2 ガスをN2 バブリングで放散除去した後、ろ
液中の全有機酸物質をアルカリ滴定法にて定量し求め
た。
The side reaction product was analyzed by treating the test solution with a cation resin column to adsorb and separate the MEA absorbent, and after removing CO 2 gas in the filtrate by N 2 bubbling, The total organic acid substance of was determined by the alkali titration method.

【0033】添加することによる吸収液のCO2 吸収容
量に及ぼす影響を、液中のCO2 を炭酸分析計で分析
し、その量を比較するやり方で調べたが、有機酸添加に
よるCO2 吸収容量の有意差は認められなかった。
[0033] The effect on the CO 2 absorption capacity of the absorption liquid by the addition, to analyze the CO 2 in the solution in carbonate analyzer, were examined in a manner of comparing the amount, CO 2 absorption by the organic acid added No significant difference in volume was observed.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】従来法は、CO2 の吸収工程あるいは再
生工程時に再生工程で分解され得ない副反応生成物の生
成速度が大きく、CO2 吸収に寄与する有効なアミン濃
度の低下が早いために、アミン濃度の低下を防ぐ策とし
てフレッシュ吸収液を頻繁に補給する必要があったが、
本発明の炭酸ガス吸収液では、副反応生成物を大幅に抑
制できることからフレッシュ吸収液の補給頻度が極端に
少なくなり、補給回数増からくるコスト増の低減が計
れ、実運用上、そのメリットは大である。
The conventional method has a large rate of formation of side reaction products that cannot be decomposed in the regeneration step during the CO 2 absorption step or the regeneration step, and the effective concentration of amine contributing to CO 2 absorption decreases rapidly. In addition, it was necessary to frequently replenish the fresh absorbent as a measure to prevent the amine concentration from decreasing.
In the carbon dioxide gas absorbing solution of the present invention, since the side reaction products can be significantly suppressed, the replenishment frequency of the fresh absorbing solution is extremely reduced, the cost increase due to the increase in the number of replenishment times can be reduced, and in actual operation, the merit is Is large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の炭酸ガス吸収液の一実施例の効果を示
す図表。
FIG. 1 is a chart showing the effect of one embodiment of a carbon dioxide gas absorbent of the present invention.

フロントページの続き (72)発明者 飯島 正樹 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社本社内Front page continuation (72) Inventor Masaki Iijima 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルカノールアミン溶液にFe,Co及
びNiの遷移元素の酸化物を添加してなる炭酸ガス吸収
液。
1. A carbon dioxide gas absorption liquid obtained by adding oxides of transition elements of Fe, Co and Ni to an alkanolamine solution.
【請求項2】 アルカノールアミン溶液にカルボキシル
基を有する有機酸を添加してなる炭酸ガス吸収液。
2. A carbon dioxide gas absorption liquid obtained by adding an organic acid having a carboxyl group to an alkanolamine solution.
JP4080959A 1992-04-02 1992-04-02 Carbon dioxide gas absorbing solution Withdrawn JPH05277342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4080959A JPH05277342A (en) 1992-04-02 1992-04-02 Carbon dioxide gas absorbing solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4080959A JPH05277342A (en) 1992-04-02 1992-04-02 Carbon dioxide gas absorbing solution

Publications (1)

Publication Number Publication Date
JPH05277342A true JPH05277342A (en) 1993-10-26

Family

ID=13733053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4080959A Withdrawn JPH05277342A (en) 1992-04-02 1992-04-02 Carbon dioxide gas absorbing solution

Country Status (1)

Country Link
JP (1) JPH05277342A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275487A (en) * 2005-03-30 2006-10-12 Shimizu Corp Carbon dioxide removing air conditioning system
JP2011506080A (en) * 2007-12-13 2011-03-03 アルストム テクノロジー リミテッド Absorbent solution regeneration system and method
JP2011515210A (en) * 2008-03-21 2011-05-19 アルストム テクノロジー リミテッド System and method for enhancing the removal of CO2 from a mixed gas stream through the use of a catalyst
JP2015523904A (en) * 2012-05-15 2015-08-20 ユニバーシティー オブ ニューキャッスル アポン タインUniversity Of Newcastle Upon Tyne Carbon capture
WO2019087762A1 (en) * 2017-10-31 2019-05-09 三菱重工エンジニアリング株式会社 Method and system for recovering acidic gas

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275487A (en) * 2005-03-30 2006-10-12 Shimizu Corp Carbon dioxide removing air conditioning system
JP2011506080A (en) * 2007-12-13 2011-03-03 アルストム テクノロジー リミテッド Absorbent solution regeneration system and method
JP2011515210A (en) * 2008-03-21 2011-05-19 アルストム テクノロジー リミテッド System and method for enhancing the removal of CO2 from a mixed gas stream through the use of a catalyst
JP2015523904A (en) * 2012-05-15 2015-08-20 ユニバーシティー オブ ニューキャッスル アポン タインUniversity Of Newcastle Upon Tyne Carbon capture
WO2019087762A1 (en) * 2017-10-31 2019-05-09 三菱重工エンジニアリング株式会社 Method and system for recovering acidic gas
JP2019081151A (en) * 2017-10-31 2019-05-30 三菱重工エンジニアリング株式会社 Acidic gas recovery method and system
US11311833B2 (en) 2017-10-31 2022-04-26 Mitsubishi Heavy Industries Engineering, Ltd. Method and system for recovering acidic gas

Similar Documents

Publication Publication Date Title
CN100493673C (en) Compound decarburization solution for recovering carbon dioxide in gas mixture
CN100512927C (en) Method for recovery of CO2 from gas streams
KR101157141B1 (en) CO2 absorbent based on alkali carbonate solution promoted by hindered cyclic amines and CO2 removing method using the same
JP5506486B2 (en) Aqueous solution that effectively absorbs and recovers carbon dioxide contained in gas
JPH0134092B2 (en)
KR101239380B1 (en) An absorbent for capturing carbon dioxide comprising amino acid having multi amine groups and metal hydrate
JP2005528208A (en) NOx oxidation with sodium chlorite combined with a hot NOx removal process
CN113713612B (en) Magnesium method ship exhaust gas desulfurization and carbon fixation integrated system and method
US8765088B2 (en) Absorbent solution containing a thiadiazole-derived degradation inhibitor and method for limiting the degradation of an absorbent solution
CN102847418A (en) Additive for limestone-gypsum wet flue gas desulfurization and denitration process
US5202103A (en) Removal of sulfur dioxide from gas streams
KR102134129B1 (en) ACTIVATED CARBON FOR REDUCTION OF Fe(Ⅲ)-EDTA AND REGENERATION OF Fe(Ⅱ)-EDTA-NO, AND THE PROCESS USING Fe(Ⅱ)-EDTA FOR REMOVING NITROGEN OXIDE AND SULFUR OXIDE
JP2016000381A (en) Acidic gas treatment method and acidic gas treatment device
JPH05277342A (en) Carbon dioxide gas absorbing solution
JPH09875A (en) Absorbing solution for carbon dioxide and carbon dioxide absorption process in gas to be treated using the absorbing solution
KR20130001467A (en) Carbon dioxide absorbents having a protection from corrosion and method for preparing the same
US10814273B2 (en) Method for simultaneously removing SO2 and NOX in flue gas
JPH05245340A (en) Treatment of combustion exhaust gas
US20150139876A1 (en) Amine-containing scrubbing solution with ozone and/or hydrogen peroxide for absorbing carbon dioxide
KR101889552B1 (en) Method for preventing solvent degradation in acid gas capture system
JPH05123535A (en) Method for preventing deterioration of carbon dioxide-absorbing solution
KR20150036067A (en) Washing solution for the absorption of carbon dioxide with reduced formation of nitrosamines
CN106559989A (en) The process of nitrogen oxides in flue gas stream
NL2031615B1 (en) Absorption medium and method for carbon dioxide absorption from flue gas
AU633292B2 (en) Primary hindered aminoacids for promoted acid gas scrubbing process

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608