JPS6141329B2 - - Google Patents

Info

Publication number
JPS6141329B2
JPS6141329B2 JP13078A JP13078A JPS6141329B2 JP S6141329 B2 JPS6141329 B2 JP S6141329B2 JP 13078 A JP13078 A JP 13078A JP 13078 A JP13078 A JP 13078A JP S6141329 B2 JPS6141329 B2 JP S6141329B2
Authority
JP
Japan
Prior art keywords
reaction
carried out
iodine
diol
butene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13078A
Other languages
Japanese (ja)
Other versions
JPS5495501A (en
Inventor
Masanori Ikeda
Juichi Doi
Hiroaki Watanabe
Nobuhiro Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP13078A priority Critical patent/JPS5495501A/en
Publication of JPS5495501A publication Critical patent/JPS5495501A/en
Publication of JPS6141329B2 publication Critical patent/JPS6141329B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は共役ジエン類より不飽和グリコール類
を製造する方法に関するものである。 さらに詳しくは、本発明は水存在下で共役ジエ
ン類を酸化して不飽和グリコール類を製造する方
法に関する。 本発明で製造される不飽和グリコール類は、種
種の化学製品の中間体として重要なものである。
特に、1・3−ブタジエンより製造される2−ブ
テン−1・4−ジオールおよび1−ブテン−3・
4−ジオールは、異性化、水素添加、脱水等の操
作により工業的に有用な1・4−ブタンジオー
ル、テトラヒドロフラン等が製造される重要な化
学製品である。 これらの不飽和グリコールを製造する既知方法
としては、次の方法が知られている。 (1) 共役ジエン類に塩素単体を付加させた後、ア
ルカリで処理する方法。 (2) カルボン酸中で、パラジウム等の触媒の存在
下で共役ジエン類を酸化して不飽和グリコール
ジエステルを製造し、さらにそれを加水分解す
る方法。 (3) アセチレンにホルマリンを付加させた後、水
素添加する方法。 これらの方法は、操作が煩雑な事、多量のエネ
ルギーを消費する事、原料価格が高い事等の理由
により必らずしも経済的な製造方法ではない。 本発明者等は、安価な共役ジエン類より効率的
かつ経済的に不飽和グリコール類を製造する方法
を開発すべく鋭意研究を重ねた結果、水存在下で
共役ジエン類を酸化して不飽和グリコール類を製
造する方法を見出し、本発明を完成するに至つ
た。 すなわち、本発明に従えば、一般式() (一般式()において、R1、R2、R3、R4、R5
よびR6は水素または炭化水素残基である。) で表わされる共役ジエン類を水存在下で酸化して
一般式()、()および()
The present invention relates to a method for producing unsaturated glycols from conjugated dienes. More specifically, the present invention relates to a method for producing unsaturated glycols by oxidizing conjugated dienes in the presence of water. The unsaturated glycols produced by the present invention are important as intermediates for various chemical products.
In particular, 2-butene-1,4-diol and 1-butene-3-diol produced from 1,3-butadiene
4-Diol is an important chemical product from which industrially useful 1,4-butanediol, tetrahydrofuran, etc. are produced through operations such as isomerization, hydrogenation, and dehydration. The following methods are known as known methods for producing these unsaturated glycols. (1) A method in which simple chlorine is added to conjugated dienes and then treated with alkali. (2) A method in which conjugated dienes are oxidized in a carboxylic acid in the presence of a catalyst such as palladium to produce an unsaturated glycol diester, which is then hydrolyzed. (3) A method in which formalin is added to acetylene and then hydrogenated. These methods are not necessarily economical manufacturing methods because of the complicated operations, the consumption of a large amount of energy, and the high cost of raw materials. The present inventors have conducted intensive research to develop a method for producing unsaturated glycols more efficiently and economically than using inexpensive conjugated dienes. They discovered a method for producing glycols and completed the present invention. That is, according to the present invention, the general formula () (In the general formula (), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are hydrogen or hydrocarbon residues.) expressions (), () and ()

【式】【formula】

【式】【formula】

【式】 (一般式()、()および()中のR1、R2
R3、R4、R5およびR6の定義は一般式()中の
定義と同じ。) で表わされる不飽和グリコール類を製造するにあ
たり、(A)ヨウ素単体、反応系中でヨウ素単体を生
成するヨウ素含有物質あるいは組成物の少なくと
も一種と、(B)銅イオン、鉄イオンおよびタリウム
イオンから選ばれる少なくとも一種の成分の存在
下で該反応を行うことにより容易に不飽和グリコ
ール類を得ることが出来る。 本発明によれば、安価な共役ジエン類より温和
な反応条件下で実質的に一段の反応で不飽和グリ
コール類が得られるので、非常に経済的な不飽和
グリコール類の製造が可能となる。 以下、本発明をさらに詳細に説明する。 本発明で使用される共役ジエン類は上記一般式
()で表わされる。上記共役ジエン類に特に制
限は無いが、望ましくは、一般式()中の
R1、R2、R3、R4、R5、およびR6が、炭素数が6
以下のアルキル基であるものが好ましい。また、
R1、R2、R3、R4、R5およびR6から選ばれる2つ
の基が互いに連結して環状化合物を形成していて
も良い。さらに、R1、R2、R3、R4、R5およびR6
はアルコキシ基、含窒素置換基、カルボニル基、
水酸基等の本反応に実質的に不活性な置換基で置
換された炭化水素残基であつても良い。これらの
共役ジエン類の例としては、例えば1・3−ブタ
ジエン、イソプレン、1・3−ペンタジエン、
1・3−ヘキサジエン、シクロペンタジエン、
1・3−シクロヘキサジエン等が挙げられるが、
これらに限定されるものではない。 本発明に使用されるヨウ素は必らずしもヨウ素
単体として添加される必要はなく、反応系中でヨ
ウ素単体を生成するヨウ素含有物質または反応系
中でヨウ素単体を生成するヨウ素含有組成物とし
て添加してもよい。反応系中でヨウ素単体を生成
するヨウ素含有物質としては、例えば、ヨウ素単
体を含む錯化合物、I イオン、共役ジエン類と
の反応により還元されてヨウ素単体を生成するヨ
ウ素酸化物(例えば、ヨウ素酸あるいはその塩
等)等が挙げられる。反応系中でヨウ素単体を生
成するヨウ素含有組成物としては、例えば(a)ヨウ
化水素酸、金属ヨウ化物、加溶媒置換反応により
ヨウ素イオン等を生成する有機ヨウ化物(例えば
ヨウ化アリルあるいはヨウ化イソプロピル等)等
のヨウ素化合物と(b)第2銅塩、第2鉄塩等の酸化
力を有する金属化合物、窒素酸化物、分子状酸
素、塩素単体等の酸化剤との組み合わせが挙げら
れる。 本発明に使用する銅イオン、鉄イオン、タリウ
ムイオンの添加方法に特に制限は無いが、カルボ
ン酸、スルホン酸、硫酸、硝酸、リン酸、塩化水
素酸、臭化水素酸、ヨウ化水素酸等の酸との塩と
して、あるいはそれらの塩の錯体として添加する
のが好ましい。 本発明に採用されるような温和な反応条件下で
は、本発明の反応は、上記ヨウ素種と上記金属イ
オンの組み合わせでの協奏作用によつて円滑に進
行するものであり、上記ヨウ素種のみの存在下あ
るいは上記金属イオンのみの存在下では反応はほ
とんど起らない。 また、本発明の反応は、酸化剤を添加しない場
合には化学量論的な反応であるが、窒素酸化物あ
るいは分子状酸素等の酸化剤の添加により触媒的
な反応が可能となる。本発明に使用する酸化剤と
しては安価な分子状酸素が有利である。 本発明における銅イオン、鉄イオンおよびタリ
ウムイオンの作用機構は明らかでは無いが、これ
らの金属イオンは、化学量論的反応および酸化剤
存在下での触媒的反応のいずれの場合においても
顕著な添加効果を示す。酸化剤存在下での触媒的
な反応の場合には、これらの金属イオンはヨウ素
単体の還元により生成したヨウ素イオンの再酸化
触媒として作用するものと考えられるが、酸化剤
不在下での化学量論的反応においても著るしい添
加効果を示す事は従来の知見からは予測されない
驚くべき事実である。 本発明の反応液のPHについては特に厳しい制限
は無く、中性付近でも円滑に反応は進行するが望
ましくは酸性領域が好ましく、特に望ましくはPH
=0.5〜7が好ましい。 本発明の反応においては、特許請求の範囲に示
した以外の触媒成分の添加は必らずしも必要では
ないが、臭素イオン、塩素イオンおよび窒素酸化
物の添加により活性および触媒寿命を向上させる
事が可能であり、触媒の種類に応じこれらの活性
化剤は適宜使用出来る。本発明に使用される臭素
イオン源としては、例えば、臭化水素酸、臭化カ
リウム、臭化ナトリウム、臭化銅等の金属臭化
物、本反応条件下において加溶媒置換反応により
容易に臭素イオンを生成する臭化アリル、共役ジ
エン類の臭素付加物等の有機臭化物、臭化水素酸
のアンモニウム塩、水に溶けて臭素イオンを発生
する臭素単体等が挙げられる。また、塩素イオン
源としては、例えば、塩化水素酸、塩化カリウ
ム、塩化ナトリウム、塩化銅等の金属塩化物、塩
化水素酸のアンモニウム塩、水に溶けて塩素イオ
ンを発生する塩素単体等が挙げられる。本発明に
使用する窒素酸化物としては、例えば、硝酸、硝
酸リチウム、硝酸カリウム、硝酸銅等の硝酸塩、
亜硝酸ナトリウム等の亜硝酸塩等が挙げられる。 本発明の反応は通常液相にて行なわれる。本反
応には水以外の溶媒は必らずしも必要ではない
が、本反応に実質的に不活性な溶媒を用いること
もできる。特に、アセトニトリル、アセトン、ピ
リジン、エチレングリコール、ブテンジオール等
の水と相溶性のある有機溶媒を用いる事は、共役
ジエン類の溶解度を高めるため有効な方法であ
る。 本発明は常圧又は加圧下で実施することができ
加圧の場合は150Kg/cm2以下の圧力で実施すること
が望ましい。本反応の際には希釈ガスを用いるこ
とは必らずしも必要ではないが、窒素、炭酸ガス
等の本反応に悪影響を与えないガスを希釈ガスと
して使用することも出来る。 本発明の反応は、反応温度が低くても容易に進
行するのが特長である。又、本発明の反応によつ
て得られる不飽和グリコール類は熱的に不安定な
ため、高温度での反応は適当でない。したがつ
て、反応温度は、通常は30〜200℃が望ましく、
特に望ましくは50〜150℃である。 本発明を実施する場合、触媒量は任意に選択出
来るが、通常は反応液1に対するヨウ素単体の
量は10〜200gが望ましく、銅イオン、鉄イオ
ン、あるいはタリウムイオンを含む化合物の量は
分子量によつても異なるが10〜500gが望まし
い。 以下実施例により本発明を更に具体的に説明す
るが、本発明はその要旨を越えない限り、以下の
実施例に限定されるものではない。 実施例 1 撹拌器、温度計、還流冷却器およびガス導入管
を備えた内容積200mlの四ツ口フラスコに、ヨウ
素6.35g(50ミリグラム原子)、塩化第二銅
(CuCl2・2H2O)8.52g(50ミリモル)、アセトニ
トリル50mlおよび水50mlを入れ70℃に加熱した
後、1・3−ブタジエンおよび酸素を各々40ml/
minの流速で供給した。4時間の反応後、反応液
をガスクロマトグラフイーで分析したところ、1
−ブテン−3・4−ジオール10.88gおよび2−
ブテン−1・4−ジオール0.96gが生成してい
た。 比較例 1 実施例1と同様の操作を行なうが、塩化第二銅
は使用しなかつた。その結果、1−ブテン−3・
4−ジオールおよび2−ブテン−1・4−ジオー
ルはいずれもほとんど生成していなかつた。 実施例 2 実施例1と同様の操作を行なうが、塩化第二銅
のかわりに塩化第一銅(CuCl)4.95g(50ミリ
モル)を使用し、1時間反応を行なつた。その結
果を表1に示す。 実施例 3 実施例1と同様の操作を行なうが、塩化第二銅
のかわりに塩化第二タリウム(TlCl3・4H2O)
19.14g(50ミリモル)を使用し、2時間反応を
行なつた。その結果を表1に示す。 実施例 4 実施例1と同様の操作を行なうが、塩化第二銅
のかわりに硝酸第二鉄(Fe(NO33・9H2O)
20.20g(50ミリモル)を使用し、2時間反応を
行なつた。その結果を表1に示す。 実施例 5 実施例1と同様の操作を行なうが、酸素を供給
しないで、塩化第二銅のかわりに臭化第二銅
(CuBr2)11.17g(50ミリモル)を使用し、1時
間反応を行なつた。その結果を表1に示す。 実施例 6 実施例5と同様の操作を行なうが、臭化第二銅
のかわりに臭化第一銅(CuBr)7.17g(50ミリ
モル)を使用し、2時間反応を行なつた。その結
果を表1に示す。 実施例 7 実施例5と同様の操作を行なうが、臭化第二銅
のかわりに硝酸第二銅(Cu(NO32・3H2O)
12.08g(50ミリモル)を使用し、2時間反応を
行なつた。その結果を表1に示す。 実施例 8 実施例5と同様の操作を行なうが、ヨウ素のか
わりにヨウ化カリウム8.30g(50ミリモル)を使
用し、2時間反応を行なつた。その結果を表1に
示す。 実施例 9 実施例1と同様の操作を行なうが、ヨウ素のか
わりにヨウ化水素6.40g(50ミリモル)を使用
し、2時間反応を行なつた。その結果を表1に示
す。 実施例 10 実施例9と同様の操作を行なうが、塩化第二銅
のかわりに塩化第一銅(CuCl)4.96g(50ミリ
モル)を使用した。その結果を表1に示す。 実施例 11 ヨウ化カリウム8.30g(50ミリモル)と硝酸第
二銅(Cu(NO32・3H2O)12.08g(50ミリモ
ル)を水100mlに溶かした溶液を用いて実施例1
と同様の操作で、1時間反応を行なつた。その結
果、1−ブテン−3・4−ジオール0.12gと少量
の2−ブテン−1・4−ジオールが生成した。 実施例 12 実施例11の系に更に臭化カリウム5.95g(50ミ
リモル)と硝酸リチウム3.45g(50ミリモル)を
加えて実施例11と同様の操作で1時間反応を行な
つた。その結果、1−ブテン−3・4−ジオール
0.32gと2−ブテン−1・4−ジオール0.12gが
生成した。 実施例 13 実施例12と同様の操作を行なうが、水100mlの
かわりに水50mlとアセトニトリル50mlの混合溶媒
を用いて1時間反応を行なつた。その結果、1−
ブテン−3・4−ジオール1.83gと2−ブテン−
1・4−ジオール0.75gが生成した。 実施例 14 実施例13と同様の操作を行なうが、ヨウ化カリ
ウムのかわりにヨウ素6.35g(50ミリグラム原
子)を用いて1時間反応を行なつた。その結果、
1−ブテン−3・4−ジオール1.63gと2−ブテ
ン−1・4−ジオール0.52gが生成した。 実施例 15 実施例12と同様の操作を行なうが、硝酸第二銅
のかわりに硝酸第二鉄(Fe(NO33・9H2O)
20.20g(50ミリモル)を用いて、1時間反応を
行なつた。その結果、1−ブテン−3・4−ジオ
ール0.81gと少量の2−ブテン−1・4−ジオー
ルが生成した。 比較例 2 実施例13と同様の操作を行なうが、硝酸第二銅
を使用しなかつた。その結果、1−ブテン−3・
4−ジオールおよび2−ブテン−1・4−ジオー
ルはいずれもほとんど生成していなかつた。 比較例 3 実施例11と同様の操作を行なうが、ヨウ化カリ
ウムのかわりに臭化カリウム5.95g(50ミリモ
ル)を使用した。その結果、痕跡量の1−ブテン
−3・4−ジオールが生成したのみであつた。 比較例 4 実施例11と同様の操作を行なうが、ヨウ化カリ
ウムのかわりに臭素単体2.00g(25ミリモル)を
使用した。その結果、痕跡量の1−ブテン−3・
4−ジオールが生成したのみであつた。 比較例 5 比較例1と同様の操作を行なうが、硝酸5ミリ
モルを加えて反応を行なつた。その結果、1−ブ
テン−3・4−ジオールおよび2−ブテン−1・
4−ジオールはいずれもほとんど生成していなか
つた。
[Formula] (R 1 , R 2 in general formulas (), () and (),
The definitions of R 3 , R 4 , R 5 and R 6 are the same as in the general formula (). ) To produce unsaturated glycols represented by Unsaturated glycols can be easily obtained by carrying out the reaction in the presence of at least one component selected from the following. According to the present invention, unsaturated glycols can be obtained in a substantially one-step reaction under milder reaction conditions than those of inexpensive conjugated dienes, making it possible to produce unsaturated glycols very economically. The present invention will be explained in more detail below. The conjugated dienes used in the present invention are represented by the above general formula (). There is no particular restriction on the above conjugated dienes, but preferably
R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 have 6 carbon atoms
The following alkyl groups are preferred. Also,
Two groups selected from R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be linked to each other to form a cyclic compound. Furthermore, R 1 , R 2 , R 3 , R 4 , R 5 and R 6
is an alkoxy group, a nitrogen-containing substituent, a carbonyl group,
It may also be a hydrocarbon residue substituted with a substituent that is substantially inert to this reaction, such as a hydroxyl group. Examples of these conjugated dienes include 1,3-butadiene, isoprene, 1,3-pentadiene,
1,3-hexadiene, cyclopentadiene,
Examples include 1,3-cyclohexadiene,
It is not limited to these. The iodine used in the present invention does not necessarily need to be added as simple iodine, but as an iodine-containing substance that produces simple iodine in the reaction system or an iodine-containing composition that produces simple iodine in the reaction system. May be added. Examples of iodine-containing substances that produce simple iodine in the reaction system include complex compounds containing simple iodine, I - 3 ions, and iodine oxides that produce simple iodine when reduced by reaction with conjugated dienes (e.g., (iodic acid or its salts, etc.). Examples of iodine-containing compositions that produce elemental iodine in the reaction system include (a) hydriodic acid, metal iodides, and organic iodides that produce iodine ions through solvent displacement reactions (such as allyl iodide or iodine). Examples include combinations of iodine compounds such as isopropyl chloride, etc. and (b) metal compounds with oxidizing power such as cupric salts and ferric salts, and oxidizing agents such as nitrogen oxides, molecular oxygen, and simple chlorine. . There are no particular limitations on the method of adding copper ions, iron ions, and thallium ions used in the present invention, but examples include carboxylic acid, sulfonic acid, sulfuric acid, nitric acid, phosphoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, etc. It is preferable to add it as a salt with an acid or as a complex of those salts. Under the mild reaction conditions employed in the present invention, the reaction of the present invention proceeds smoothly due to the concerted action of the combination of the above iodine species and the above metal ions; Almost no reaction occurs in the presence of the above metal ions or in the presence of only the above metal ions. Further, the reaction of the present invention is a stoichiometric reaction when no oxidizing agent is added, but a catalytic reaction becomes possible by adding an oxidizing agent such as nitrogen oxide or molecular oxygen. As the oxidizing agent used in the present invention, inexpensive molecular oxygen is advantageous. Although the mechanism of action of copper ions, iron ions, and thallium ions in the present invention is not clear, these metal ions are significant additions in both stoichiometric reactions and catalytic reactions in the presence of an oxidizing agent. Show effectiveness. In the case of a catalytic reaction in the presence of an oxidizing agent, these metal ions are thought to act as a reoxidation catalyst for the iodine ions generated by the reduction of simple iodine, but the stoichiometric amount in the absence of an oxidizing agent It is a surprising fact that it shows a remarkable addition effect even in theoretical reactions, which could not be expected from conventional knowledge. There are no particularly strict restrictions on the pH of the reaction solution of the present invention, and although the reaction proceeds smoothly even near neutrality, an acidic region is preferable, and a particularly preferable pH is
=0.5-7 is preferable. In the reaction of the present invention, the addition of catalyst components other than those listed in the claims is not necessarily necessary, but the addition of bromide ions, chloride ions, and nitrogen oxides improves the activity and catalyst life. These activators can be used as appropriate depending on the type of catalyst. Bromine ion sources used in the present invention include, for example, metal bromides such as hydrobromic acid, potassium bromide, sodium bromide, and copper bromide, which easily generate bromine ions by a solvate displacement reaction under the present reaction conditions. Examples include allyl bromide produced, organic bromides such as bromine adducts of conjugated dienes, ammonium salts of hydrobromic acid, and simple bromine that dissolves in water and generates bromine ions. Examples of chlorine ion sources include metal chlorides such as hydrochloric acid, potassium chloride, sodium chloride, and copper chloride, ammonium salts of hydrochloric acid, and simple chlorine that dissolves in water to generate chlorine ions. . Examples of nitrogen oxides used in the present invention include nitric acid, nitrates such as lithium nitrate, potassium nitrate, and copper nitrate;
Examples include nitrites such as sodium nitrite. The reaction of the present invention is usually carried out in the liquid phase. Although a solvent other than water is not necessarily required for this reaction, a substantially inert solvent can also be used for this reaction. In particular, the use of organic solvents that are compatible with water, such as acetonitrile, acetone, pyridine, ethylene glycol, and butenediol, is an effective method for increasing the solubility of conjugated dienes. The present invention can be carried out under normal pressure or elevated pressure, and in the case of elevated pressure, it is preferably carried out at a pressure of 150 Kg/cm 2 or less. Although it is not always necessary to use a diluent gas during this reaction, gases such as nitrogen and carbon dioxide that do not adversely affect this reaction can also be used as the diluent gas. The reaction of the present invention is characterized in that it proceeds easily even at low reaction temperatures. Furthermore, since the unsaturated glycols obtained by the reaction of the present invention are thermally unstable, reaction at high temperatures is not appropriate. Therefore, the reaction temperature is usually preferably 30 to 200°C.
The temperature is particularly preferably 50 to 150°C. When carrying out the present invention, the amount of catalyst can be selected arbitrarily, but normally the amount of simple iodine is preferably 10 to 200 g per reaction solution 1, and the amount of compounds containing copper ions, iron ions, or thallium ions is determined depending on the molecular weight. Although it varies depending on the weight, 10 to 500 g is preferable. The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to the following Examples unless it exceeds the gist thereof. Example 1 In a 200 ml four-necked flask equipped with a stirrer, thermometer, reflux condenser and gas inlet tube, 6.35 g (50 milligram atoms) of iodine and cupric chloride (CuCl 2 2H 2 O) were added. 8.52 g (50 mmol), 50 ml of acetonitrile and 50 ml of water were heated to 70°C, and then 40 ml/each of 1,3-butadiene and oxygen were added.
It was supplied at a flow rate of min. After 4 hours of reaction, the reaction solution was analyzed by gas chromatography, and it was found that 1
-Butene-3,4-diol 10.88g and 2-
0.96 g of butene-1,4-diol was produced. Comparative Example 1 The same operation as in Example 1 was carried out, but cupric chloride was not used. As a result, 1-butene-3.
Almost no 4-diol or 2-butene-1,4-diol was produced. Example 2 The same operation as in Example 1 was carried out, except that 4.95 g (50 mmol) of cuprous chloride (CuCl) was used instead of cupric chloride, and the reaction was carried out for 1 hour. The results are shown in Table 1. Example 3 The same operation as in Example 1 is carried out, but thallium chloride (TlCl 3 4H 2 O) is used instead of cupric chloride.
Using 19.14 g (50 mmol), the reaction was carried out for 2 hours. The results are shown in Table 1. Example 4 The same operation as in Example 1 was carried out, but ferric nitrate (Fe(NO 3 ) 3.9H 2 O) was used instead of cupric chloride.
20.20 g (50 mmol) was used and the reaction was carried out for 2 hours. The results are shown in Table 1. Example 5 The same operation as in Example 1 was carried out, but without supplying oxygen, 11.17 g (50 mmol) of cupric bromide (CuBr 2 ) was used instead of cupric chloride, and the reaction was continued for 1 hour. I did it. The results are shown in Table 1. Example 6 The same operation as in Example 5 was carried out, except that 7.17 g (50 mmol) of cuprous bromide (CuBr) was used instead of cupric bromide, and the reaction was carried out for 2 hours. The results are shown in Table 1. Example 7 The same operation as in Example 5 is carried out, but cupric nitrate (Cu(NO 3 ) 2.3H 2 O) is used instead of cupric bromide.
Using 12.08 g (50 mmol), the reaction was carried out for 2 hours. The results are shown in Table 1. Example 8 The same operation as in Example 5 was carried out, except that 8.30 g (50 mmol) of potassium iodide was used instead of iodine, and the reaction was carried out for 2 hours. The results are shown in Table 1. Example 9 The same operation as in Example 1 was carried out, except that 6.40 g (50 mmol) of hydrogen iodide was used instead of iodine, and the reaction was carried out for 2 hours. The results are shown in Table 1. Example 10 The same procedure as in Example 9 was carried out, except that 4.96 g (50 mmol) of cuprous chloride (CuCl) was used instead of cupric chloride. The results are shown in Table 1. Example 11 Example 1 was carried out using a solution of 8.30 g (50 mmol) of potassium iodide and 12.08 g (50 mmol) of cupric nitrate (Cu(NO 3 ) 2.3H 2 O) dissolved in 100 ml of water.
The reaction was carried out for 1 hour in the same manner as above. As a result, 0.12 g of 1-butene-3,4-diol and a small amount of 2-butene-1,4-diol were produced. Example 12 5.95 g (50 mmol) of potassium bromide and 3.45 g (50 mmol) of lithium nitrate were further added to the system of Example 11, and a reaction was carried out in the same manner as in Example 11 for 1 hour. As a result, 1-butene-3,4-diol
0.32 g and 0.12 g of 2-butene-1,4-diol were produced. Example 13 The same operation as in Example 12 was carried out, but instead of 100 ml of water, a mixed solvent of 50 ml of water and 50 ml of acetonitrile was used to conduct the reaction for 1 hour. As a result, 1-
Butene-3,4-diol 1.83g and 2-butene-
0.75 g of 1,4-diol was produced. Example 14 The same procedure as in Example 13 was carried out, except that 6.35 g (50 milligram atoms) of iodine was used instead of potassium iodide and the reaction was carried out for 1 hour. the result,
1.63 g of 1-butene-3,4-diol and 0.52 g of 2-butene-1,4-diol were produced. Example 15 Perform the same operation as Example 12, but use ferric nitrate (Fe(NO 3 ) 3 9H 2 O) instead of cupric nitrate.
The reaction was carried out using 20.20 g (50 mmol) for 1 hour. As a result, 0.81 g of 1-butene-3,4-diol and a small amount of 2-butene-1,4-diol were produced. Comparative Example 2 The same operation as in Example 13 was carried out, but without using cupric nitrate. As a result, 1-butene-3.
Almost no 4-diol or 2-butene-1,4-diol was produced. Comparative Example 3 The same operation as in Example 11 was carried out, but 5.95 g (50 mmol) of potassium bromide was used instead of potassium iodide. As a result, only trace amounts of 1-butene-3,4-diol were produced. Comparative Example 4 The same operation as in Example 11 was carried out, except that 2.00 g (25 mmol) of simple bromine was used instead of potassium iodide. As a result, trace amounts of 1-butene-3.
Only 4-diol was produced. Comparative Example 5 The same operation as in Comparative Example 1 was carried out, but the reaction was carried out by adding 5 mmol of nitric acid. As a result, 1-butene-3,4-diol and 2-butene-1,
Almost no 4-diol was produced in either case.

【表】【table】

Claims (1)

【特許請求の範囲】 1 共役ジエン類を水存在下で酸化して、不飽和
グリコール類を製造するにあたり、(A)ヨウ素単
体、反応系中でヨウ素単体を生成するヨウ素含有
物質あるいは組成物の少なくとも一種と、(B)銅イ
オン、鉄イオンおよびタリウムイオンから選ばれ
る少なくとも一種の成分の存在下で該反応を行な
うことを特徴とする不飽和グリコール類の製造方
法。 2 分子状酸素の存在下で反応を実施する特許請
求の範囲第1項記載の方法。
[Claims] 1. In producing unsaturated glycols by oxidizing conjugated dienes in the presence of water, (A) simple iodine, an iodine-containing substance or composition that produces simple iodine in the reaction system; 1. A method for producing unsaturated glycols, characterized in that the reaction is carried out in the presence of at least one component and (B) at least one component selected from copper ions, iron ions, and thallium ions. 2. The method according to claim 1, wherein the reaction is carried out in the presence of molecular oxygen.
JP13078A 1978-01-06 1978-01-06 Preparation of unsaturated glycols Granted JPS5495501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13078A JPS5495501A (en) 1978-01-06 1978-01-06 Preparation of unsaturated glycols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13078A JPS5495501A (en) 1978-01-06 1978-01-06 Preparation of unsaturated glycols

Publications (2)

Publication Number Publication Date
JPS5495501A JPS5495501A (en) 1979-07-28
JPS6141329B2 true JPS6141329B2 (en) 1986-09-13

Family

ID=11465440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13078A Granted JPS5495501A (en) 1978-01-06 1978-01-06 Preparation of unsaturated glycols

Country Status (1)

Country Link
JP (1) JPS5495501A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984831A (en) * 1982-11-05 1984-05-16 Mitsui Toatsu Chem Inc Preparation of 1,4-dihydroxybutene-2
DE19828426C2 (en) * 1998-06-25 2003-04-03 Wacker Werke Kg Driving piston with low wall thickness for an air spring hammer mechanism

Also Published As

Publication number Publication date
JPS5495501A (en) 1979-07-28

Similar Documents

Publication Publication Date Title
Medebielle et al. Electrochemically induced nucleophilic substitution of perfluoroalkyl halides. An example of a dissociative electron-transfer-induced chemical reaction
JP2648336B2 (en) Process for producing CF lower 3 I and intermediate products thereof
US2486842A (en) Catalytic oxidation of hydrocarbons
Kevill et al. Acylation mechanisms in aprotic solvents. I. Methanolysis of p-nitrobenzoyl chloride in acetonitrile
JPS6141329B2 (en)
US3668257A (en) Oxidation of olefins
EP0070638B1 (en) Copper or silver complexes with fluorinated diketonates and unsaturated hydrocarbons
US3370073A (en) Oxidation of olefinically unsaturated hydrocarbons to carbonyl compounds
JPS6147836B2 (en)
EP0471755B1 (en) N-fluoropyridinium pyridine heptafluorodiborate
JPS5984840A (en) Manufacture of carboxylic acid
GB1575541A (en) Process for the production of carboxylic acid esters by catalytic oxidation of alcohols
JP3854442B2 (en) Catalyst for highly selective oxidation reaction
GB902368A (en) Oxidation of alcohols
JP2021161106A (en) Method for Producing 5-Bromo-4-alkoxy-2-alkylbenzoic Acid
JPS63115836A (en) Improved manufacture of mixture of cyclohexanol and cyclohexane
JPS5976030A (en) Hydroxylation of olefin using osmium carbonyl catalyst
US3641113A (en) Process for the manufacture of vinyl acetate
JP4292347B2 (en) Nitropyridazinone compound and process for producing the same
US3491104A (en) Production of tetrahydrobipyridyls
US2465974A (en) Process for the preparation of an organic dinitrohydrocarbon
JPH026445A (en) Catalytic production of n-acylamino acid
Hallgren et al. A tripod hexaketone as a ligand for manganese
KR790000998B1 (en) Process for producing alkylene glycol esters
US5162587A (en) Method for fluorinating by using n-fluoropyridinium pyridine heptafluorodiborate