JPS6141221B2 - - Google Patents

Info

Publication number
JPS6141221B2
JPS6141221B2 JP4934982A JP4934982A JPS6141221B2 JP S6141221 B2 JPS6141221 B2 JP S6141221B2 JP 4934982 A JP4934982 A JP 4934982A JP 4934982 A JP4934982 A JP 4934982A JP S6141221 B2 JPS6141221 B2 JP S6141221B2
Authority
JP
Japan
Prior art keywords
quartz glass
density
heating
expansion
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4934982A
Other languages
Japanese (ja)
Other versions
JPS58167503A (en
Inventor
Yutaka Moriwaki
Takayasu Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57049349A priority Critical patent/JPS58167503A/en
Publication of JPS58167503A publication Critical patent/JPS58167503A/en
Publication of JPS6141221B2 publication Critical patent/JPS6141221B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Dental Preparations (AREA)
  • Dental Prosthetics (AREA)
  • Mold Materials And Core Materials (AREA)

Description

【発明の詳細な説明】 この発明は歯料鋳造用埋没材に関する。[Detailed description of the invention] This invention relates to an investment material for tooth casting.

金属冠やインレーなどの歯料用金属成型品は、
印象採取した石膏模型にワツクス材を注入してワ
ツクス型を成型し、このワツクス型を、石膏、り
ん酸塩、エチルシリケートなどの結合材と、無水
けい酸粉末、クリストバライトなどの耐火材とか
らなる埋没材中に埋没し、次いで上記埋没材を加
熱して上記ワツクス型を溶出させて上記埋没材中
に空所を形成し、この空所に、歯料鋳造用合金を
溶融した湯を注入し、しかるのち冷却固化して鋳
造成型されている。上記の鋳造成型の過程におい
て、埋没されているワツクス型を溶融するために
埋没材を加熱すると、埋没材が膨張するに伴つて
ワツクス型によつて形成される空所も膨張し、こ
の膨張した空所に注入された溶融合金の湯は冷却
固化されると収縮して所望の形状の金属成型品が
得られる。しかるに従来使用されている埋没材
は、耐火材として無水けい酸、クリストバライト
などの比較的密度が小さく、かつ熱膨張性が小さ
いものが使用されているために、埋没材が硬化す
る際に埋没材に吸水膨張、硬化膨張などの手段を
もつて更に膨張させ、鋳造用合金の収縮を補正し
ていたのである。ところが埋没材の硬化時に大き
な吸水膨張、硬化膨張を与えると、埋没材はこれ
が充填されている円筒状の鋳造用リングの開口部
方向に向かつて膨張するために縦、横方向の膨張
量が異なり、従つて上記空所が変形されて所望形
状の金属成型品が得られにくいという間題があつ
た。
Metal molded products for teeth such as metal crowns and inlays are
A wax material is injected into the impression-taken plaster model to form a wax mold, and this wax mold is made of a binder such as gypsum, phosphate, or ethyl silicate, and a refractory material such as silicic acid anhydride powder or cristobalite. The tooth is buried in the investment material, and then the investment material is heated to dissolve the wax mold to form a cavity in the investment material, and hot water containing a molten tooth casting alloy is poured into the cavity. Then, it is cooled and solidified and then cast. In the process of casting and molding described above, when the investment material is heated to melt the embedded wax mold, as the investment material expands, the cavity formed by the wax mold also expands, and this expanded When the molten alloy injected into the cavity is cooled and solidified, it contracts and a metal molded product of a desired shape is obtained. However, conventionally used investment materials use fireproof materials such as silicic acid anhydride and cristobalite, which have a relatively low density and low thermal expansion. Then, the shrinkage of the casting alloy was corrected by further expanding it by means of water absorption expansion, hardening expansion, etc. However, when the investment material is subjected to large water absorption expansion and hardening expansion during hardening, the investment material expands toward the opening of the cylindrical casting ring in which it is filled, so the amount of expansion in the vertical and horizontal directions is different. Therefore, there was a problem in that the void space was deformed and it was difficult to obtain a metal molded product with a desired shape.

上記の間題に鑑み、加熱時に大きな膨張量を有
し硬化時に膨張量が小さい埋没材が要望されてい
たのである。
In view of the above problems, there has been a need for investment materials that expand a large amount when heated and have a small amount of expansion when hardened.

本発明者は上記の要望に応えるべく鋭意研究し
た結果、高圧下における熱処理によつて高密度化
された石英ガラスなどのセラミツクは、加熱によ
つてもとの石英ガラスに戻るときに大きく膨張
し、しかも加熱後の冷却過程における収縮量が小
さいことを見いだし、この性能は歯料鋳造用埋没
材として好適であることを知つたものである。
As a result of intensive research in response to the above-mentioned needs, the inventors of the present invention have found that ceramics such as quartz glass, which have been made highly dense by heat treatment under high pressure, expand significantly when heated to return to the original quartz glass. Moreover, they found that the amount of shrinkage during the cooling process after heating was small, and that this performance was suitable as an investment material for tooth casting.

すなわちこの発明は、高圧下の熱処理によつて
高密度化され加熱により大きく膨張するが、加熱
後の冷却過程における収縮量が小さい高密度石英
ガラス、または該高密度石英ガラスと無水けい酸
との混合物に、結合材を混合したことを特徴とす
る歯料鋳造用埋没材である。
In other words, the present invention provides high-density quartz glass that is made highly dense through heat treatment under high pressure and expands greatly upon heating, but has a small amount of shrinkage in the cooling process after heating, or a combination of the high-density quartz glass and silicic anhydride. This is an investment material for tooth casting characterized in that a bonding material is mixed into the mixture.

この発明に使用される高密度化石英ガラスは、
セラミツクスの単結晶の育成の手段の一つとして
公知である高圧法によつて製造される。例えば石
英ガラスを、圧力10GPa以下、温度700℃以下、
加熱時間10分間以下の条件で圧熱処理し、次いで
室温までに冷却したのち、常圧に下げることによ
つて得られる。高密度化石英ガラスの密度は上記
圧力によつて左右されるものであり、圧力と密度
との関係を第1図のグラフに示す。第1図に示す
ように密度2.2g/cm3の通常の石英ガラスは、圧
力3GPaにおいて高密度化し始め、圧力が大きく
なると密度が大きくなり、圧力8GPaでは高密度
2.6gcm3のものが得られ、また加圧時の温度が高
い方が比較的に低い圧力で高密度化される。従つ
て高密度化石英ガラスの密度は、加圧時の圧力、
温度を適宜に選択して組合せることによつて所望
のものが得られる。
The high-density quartz glass used in this invention is
It is manufactured by a high-pressure method that is known as one of the means for growing ceramic single crystals. For example, when quartz glass is used at a pressure of 10GPa or less and a temperature of 700℃ or less,
It can be obtained by performing pressure heat treatment for a heating time of 10 minutes or less, then cooling to room temperature, and then lowering the pressure to normal pressure. The density of high-density quartz glass depends on the above pressure, and the relationship between pressure and density is shown in the graph of FIG. 1. As shown in Figure 1, normal quartz glass with a density of 2.2 g/cm 3 begins to become denser at a pressure of 3 GPa, and as the pressure increases, the density increases, and at a pressure of 8 GPa, it becomes denser.
A product of 2.6 gcm 3 was obtained, and the higher the temperature during pressurization, the higher the density at a relatively lower pressure. Therefore, the density of high-density quartz glass is determined by the pressure at the time of pressurization,
A desired result can be obtained by appropriately selecting and combining temperatures.

高密度化石英ガラスは、加熱による熱膨張量が
大きく、しかも加熱後の冷却過程における収縮量
が小さいものであり、以下に加熱時の熱膨張性に
ついて具体例を説明する。
High-density quartz glass has a large amount of thermal expansion upon heating, and a small amount of contraction during the cooling process after heating.A specific example of the thermal expansion during heating will be described below.

圧力媒体として八面体のパイロフイライトを使
用し、この圧力媒体中に、直径10mm、長さ12mmの
円棒状の石英ガラス、グラフアイトヒータ、およ
び白金/ロジウム=87/13の合金からなる熱電対
を組込み、これをMA―8高圧発生装置に取付
け、1万トンプレスで、適宜の圧力、温度で加圧
し、10分間保持したのち自然冷却させ、減圧し
て、密度の異なる高密度化石英ガラスを製造し
た。
Octahedral pyrofluorite is used as a pressure medium, and in this pressure medium, a cylindrical quartz glass with a diameter of 10 mm and a length of 12 mm, a graphite heater, and a thermocouple made of an alloy of platinum/rhodium = 87/13 are installed. This was installed in an MA-8 high pressure generator, pressurized with a 10,000 ton press at the appropriate pressure and temperature, held for 10 minutes, allowed to cool naturally, depressurized, and produced high-density quartz glass with different densities. was manufactured.

次いで高密度化石英ガラスを長さ10mmの円柱形
試料に削り、この試料を熱膨張計(理学電機社
製)を使用して線膨張率(%)を測定算出した。
Next, the high-density quartz glass was cut into a cylindrical sample with a length of 10 mm, and the coefficient of linear expansion (%) of this sample was measured and calculated using a thermal dilatometer (manufactured by Rigaku Denki Co., Ltd.).

第2図は密度の異なる石英ガラスの線膨張率の
変化を示したグラフである。この第2図のグラフ
でみられるように、密度の大きいものほど線膨張
率の増加割合が大きく、かつ線膨張率が大きくな
る。そして密度2.557g/cm3の石英ガラスは加熱
開始2時間後に線膨張率は約4%に達し、また
1000℃に保持した後も加熱時間の延長によつて膨
張を続けることがわかる。
FIG. 2 is a graph showing changes in linear expansion coefficients of silica glass having different densities. As seen in the graph of FIG. 2, the higher the density, the greater the rate of increase in the coefficient of linear expansion, and the higher the coefficient of linear expansion. The coefficient of linear expansion of quartz glass with a density of 2.557 g/ cm3 reaches approximately 4% two hours after the start of heating.
It can be seen that even after being held at 1000°C, expansion continues as the heating time increases.

第3図は、密度2.557g/cm3の石英ガラスの加
熱昇温速度が異なる場合の温度と線膨張率との関
係を示すグラフであり、昇温速度が小さい程、各
温度における線膨張率が大きくなることを明らか
にしている。
Figure 3 is a graph showing the relationship between temperature and coefficient of linear expansion when the heating rate of quartz glass with a density of 2.557 g/cm 3 is different. has been shown to increase.

第4図は、加熱昇温を段階的に行なつた場合の
加熱時間と線膨張率との関係を示すグラフであ
り、任意の温度に保持したとき、その温度に上昇
後の保持時間と線膨張率には大差がないことがわ
かる。
Figure 4 is a graph showing the relationship between heating time and coefficient of linear expansion when heating temperature is raised in stages. It can be seen that there is no significant difference in the expansion rate.

上記第2図ないし第4図のグラフで理解される
ように高密度化石英ガラスを加熱したときの膨張
量は、高密度化程度、加熱温度、加熱時間などの
変更によつて任意に制御することができる。
As can be understood from the graphs in Figures 2 to 4 above, the amount of expansion when high-density quartz glass is heated can be controlled arbitrarily by changing the degree of densification, heating temperature, heating time, etc. be able to.

上記の高密度化石英ガラスを鋳造用埋没材料に
使用する場合、高密度化石英ガラスは、加熱した
ときにもとの石英ガラスに戻るため、加熱後の冷
却過程における収縮量は極めて小さい。しかし、
高密度化石英ガラスに石膏、りん酸塩などの結合
材を混合するか、更に無水けい酸を混合すること
によつて冷却過程時の収縮量の大きさを調節する
ことができる。
When using the above-mentioned high-density quartz glass as an investment material for casting, the high-density quartz glass returns to the original quartz glass when heated, so the amount of shrinkage in the cooling process after heating is extremely small. but,
The amount of shrinkage during the cooling process can be adjusted by mixing a binder such as gypsum or phosphate with high-density quartz glass, or by further mixing silicic anhydride.

第5図は、密度2.557g/cm3の高密度化石英ガ
ラスのみ(Aグラフ)、上記高密度化石英ガラス
75重量部と石膏(a−CaSO4・1/2H2O)25重量部 との混合物(Bグラフ)、および高密度化石英ガ
ラス37.5重量部と無水けい酸37.5重量部と石膏25
重量部との三者混合物(Cグラフ)を680℃に加
熱保持したのち加熱開始から2.5時間後に冷却を
始めたときの線膨張率を示したグラフである。第
5図のグラフに見られるように、高密度化石英ガ
ラスのみのAは加熱2.5時間後の冷却過程におけ
る線膨張率は下がらず、冷却収縮はほとんどない
が、石膏、または石膏および高密度化石英ガラス
と同量のけい酸を混合したB,Cは、冷却過程時
に若干の線膨張率の低下がみられ僅かに冷却収縮
をする。また、石膏、または石膏とけい酸とを混
合した場合でも、加熱開始から2.5時間後にその
線膨張率は1.7%に達し、さらに加熱時間を延長
すると膨張する傾向を有している。
Figure 5 shows only high-density quartz glass with a density of 2.557 g/cm 3 (graph A), and the above-mentioned high-density quartz glass.
A mixture of 75 parts by weight and 25 parts by weight of gypsum (a-CaSO 4 1/2 H 2 O) (graph B), and a mixture of 37.5 parts by weight of high-density quartz glass, 37.5 parts by weight of silicic anhydride, and 25 parts by weight of gypsum.
This is a graph showing the coefficient of linear expansion when a three-way mixture (graph C) with parts by weight was heated and maintained at 680°C and then cooling was started 2.5 hours after the start of heating. As can be seen in the graph in Figure 5, the coefficient of linear expansion of A, which is made only of high-density quartz glass, does not decrease during the cooling process after 2.5 hours of heating, and there is almost no cooling contraction. B and C, in which silica glass and the same amount of silicic acid are mixed, show a slight decrease in linear expansion coefficient during the cooling process and undergo slight cooling shrinkage. Furthermore, even in the case of gypsum or a mixture of gypsum and silicic acid, the coefficient of linear expansion reaches 1.7% 2.5 hours after the start of heating, and it tends to expand if the heating time is further extended.

なお上記第5図の線膨張率は、高密度化石英ガ
ラスをメノウ乳鉢で粉砕し、この粉末に30重量%
の水および石膏、けい酸を添加して混練したの
ち、長さ10mmの円柱用乾燥試料を作成し、前記と
同様に測定算出した値である。
The coefficient of linear expansion in Figure 5 above is calculated by crushing high-density quartz glass in an agate mortar and adding 30% by weight to this powder.
After adding and kneading water, gypsum, and silicic acid, a dry sample for a cylinder with a length of 10 mm was prepared, and the values were measured and calculated in the same manner as above.

以上に説明したように、この発明は鋳造用埋没
材として高度化石英ガラスを使用するものである
から、加熱時の熱膨張量が従来のものに比べて大
きいので吸水膨張、硬化膨張などの手段を必要と
しない。また高密度石英ガラスの膨張量は、石英
ガラスの高密度化程度、加熱温度、加熱時間、加
熱速度、結合材、無水けい酸などの混合の有無な
どの条件を適宜に組合せることによつて調節でき
るので、合金材料の鋳造収縮量に応じて任意に変
化させることができる。また高密度石石英ガラス
は加熱後の冷却過程における収縮性が小さいの
で、所望の形状の金属成型品が得られ、その収縮
性は結合材、無水けい酸などを混合することによ
つて大きくすることができる。従つてこの発明の
歯科鋳造用埋没材は吸水膨張、硬化膨張させる必
要がないので所望形状の金属成型品が得られる。
As explained above, since this invention uses advanced fossil quartz glass as an investment material for casting, the amount of thermal expansion during heating is larger than that of conventional glass, so it is necessary to use measures such as water absorption expansion and hardening expansion. does not require. In addition, the amount of expansion of high-density quartz glass can be determined by appropriately combining conditions such as the degree of densification of quartz glass, heating temperature, heating time, heating rate, binding material, and whether or not silicic anhydride is mixed. Since it is adjustable, it can be changed arbitrarily depending on the amount of casting shrinkage of the alloy material. In addition, high-density quartz glass has low shrinkage during the cooling process after heating, so metal molded products of desired shapes can be obtained, and the shrinkage can be increased by mixing binders, silicic anhydride, etc. be able to. Therefore, since the dental casting investment material of the present invention does not need to be expanded by water absorption or hardened and expanded, a metal molded product of a desired shape can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高密度石英ガラス製造時の圧力と密度
との関係を示すグラフ、第2図は密度の異なる高
密度石英ガラスの加熱時間と線膨張率との関係を
示すグラフ、第3図は異なる昇温速度による第2
図同様の関係を示すグラフ、第4図は段階的昇温
による第2図同様の関係を示すグラフ、第5図は
高密度石英ガラスのみA、高密度石英ガラスと石
膏との混合物B、高密度石英ガラスと石膏とけい
酸との混合物Cの加熱および冷却過程の線膨張率
と時間との関係を示すグラフである。
Figure 1 is a graph showing the relationship between pressure and density during the production of high-density quartz glass, Figure 2 is a graph showing the relationship between heating time and coefficient of linear expansion of high-density quartz glass with different densities, and Figure 3 is a graph showing the relationship between heating time and coefficient of linear expansion for high-density quartz glass with different densities. The second one with different heating rates
Figure 4 is a graph showing the same relationship as Figure 2 due to stepwise temperature increase. Figure 5 is a graph showing the same relationship as Figure 2 due to gradual temperature increase. It is a graph showing the relationship between the coefficient of linear expansion and time during the heating and cooling process of a mixture C of density quartz glass, gypsum, and silicic acid.

Claims (1)

【特許請求の範囲】[Claims] 1 高圧下の熱処理によつて高密度化され、加熱
により大きく膨張するが、加熱後の冷却過程にお
いて収縮量が小さい高密度石英ガラス、または該
高密度石英ガラスと無水けい酸との混合物に、結
合剤を混合したことを特徴とする歯料鋳造用埋没
材。
1 High-density quartz glass that has been made high-density by heat treatment under high pressure and expands greatly when heated, but has a small amount of shrinkage in the cooling process after heating, or a mixture of the high-density quartz glass and silicic anhydride, An investment material for tooth casting characterized by containing a bonding agent.
JP57049349A 1982-03-26 1982-03-26 Investment material for dental casting Granted JPS58167503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57049349A JPS58167503A (en) 1982-03-26 1982-03-26 Investment material for dental casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57049349A JPS58167503A (en) 1982-03-26 1982-03-26 Investment material for dental casting

Publications (2)

Publication Number Publication Date
JPS58167503A JPS58167503A (en) 1983-10-03
JPS6141221B2 true JPS6141221B2 (en) 1986-09-13

Family

ID=12828534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57049349A Granted JPS58167503A (en) 1982-03-26 1982-03-26 Investment material for dental casting

Country Status (1)

Country Link
JP (1) JPS58167503A (en)

Also Published As

Publication number Publication date
JPS58167503A (en) 1983-10-03

Similar Documents

Publication Publication Date Title
EP0030850B1 (en) Dental appliance and method of manufacture
KR100864717B1 (en) Plastery Investment used for Investment casting
JP3389212B2 (en) Method for manufacturing dental investment material and dental mold
US4548256A (en) Casting of metal articles
US5373891A (en) Investment material and mold for dental use and burnout thereof
JPS59182239A (en) Mold burying material for molding glass ceramic
JPS6141221B2 (en)
JPH1034280A (en) Mold for precision molding of single crystal
JPS63281744A (en) Mold for precision casting and production thereof
CN111704442A (en) Preparation method of tooth bracket for orthodontic treatment and tooth bracket prepared by preparation method
JPS61193741A (en) Investment casting material for dental purpose
JPS62865B2 (en)
JPS60253505A (en) Manufacture of ceramics product
JPH04330006A (en) Dental investment and mold for dental investment
JP2747834B2 (en) High-temperature investment for dental casting
JPS6045974B2 (en) Casting method for titanium products
JPS6317017B2 (en)
US3247293A (en) Methods of making dental restorations
DE3260787D1 (en) Process for the production of refractory bricks
JP3677760B2 (en) Manufacturing method of ceramic crown
JPS6363547A (en) Composition for mold of block molding method
JP2021146355A (en) Investment material for investing resin pattern and manufacturing cast material
JPH02217361A (en) Preparation of reaction-sintered silicon nitride ceramic, silicone nitride ceramic made thereby,and use thereof
JPH0469121B2 (en)
SU533488A1 (en) A method of manufacturing aerated concrete products