JPS58167503A - Investment material for dental casting - Google Patents

Investment material for dental casting

Info

Publication number
JPS58167503A
JPS58167503A JP57049349A JP4934982A JPS58167503A JP S58167503 A JPS58167503 A JP S58167503A JP 57049349 A JP57049349 A JP 57049349A JP 4934982 A JP4934982 A JP 4934982A JP S58167503 A JPS58167503 A JP S58167503A
Authority
JP
Japan
Prior art keywords
quartz glass
density
investment material
glass
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57049349A
Other languages
Japanese (ja)
Other versions
JPS6141221B2 (en
Inventor
Yutaka Moriwaki
森脇 豊
Takayasu Goto
後藤 隆泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57049349A priority Critical patent/JPS58167503A/en
Publication of JPS58167503A publication Critical patent/JPS58167503A/en
Publication of JPS6141221B2 publication Critical patent/JPS6141221B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Dental Preparations (AREA)
  • Dental Prosthetics (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

PURPOSE:An investment material for dental casting, containing a ceramic, e.g. quartz glass, having increased density by heat-treating under high pressure as an investment material having a large amount of swelling in heating and a small amount of swelling in curing and a binder. CONSTITUTION:An investment material for dental casting,consisting of a high- density ceramic, e.g. quartz glass, and a binder, and obtained by hot-pressing the quartz glass at 10 GPa or below and 700 deg.C or below for 10min or less, cooling the resultant hot-pressed quartz glass to room temperature, and reducing the pressure to the ordinary pressure. Silicic acid may be further added to the resultant investment material, and therefore the shrinkage is reduced. Silicate glass consisting essentially of SiO2 glass and germanate glass consisting essentially of GeO2 or coesite, etc. may be used in addition to the quartz glass. EFFECT:Metallic molded articles of desired shape are obtained without requiring a means, e.g. absorbing or hardening swelling, etc.

Description

【発明の詳細な説明】 この発明は歯科鋳造用埋没材に関する。[Detailed description of the invention] This invention relates to investment materials for dental castings.

金属冠やインレーなどの歯科用金属成型品は、印象採取
した石膏模型にワックス材を注入してワックス型を成型
し、このワックス型をけい酸粉末などからなる埋没材中
に埋没し、次いで上記埋没材を加熱1−で上記ワックス
型を溶出させて上記埋没材中に空所を形成し、この空所
に、歯科鋳造用合金を溶融した湯を注入し、しかるのち
冷却固化して鋳造成型されている。上記の鋳造成型の過
程において、埋没されているワックス型を溶融するため
に埋没材を加熱すると、埋没材が膨張するに伴ってワッ
クス型によって形成される空所も膨張し、この膨張した
空所に注入された溶融合金の湯は冷却固化されると収縮
して所望の形状の金属成型品が得られる。しかるに従来
使用されている埋没材は、けい酸、クリストバライトな
どの比較的密度が小さく、かつ熱膨張性が小さいものが
使用されているために、埋没材が硬化する際に埋没材に
吸水膨張、硬化膨張などの手段をもって更に膨張させ、
鋳造用合金の収縮を補正していたのである。ところが埋
没材の硬化時に大きな吸水膨張、硬化膨張を与えると、
埋没材はこれが充填されている円筒状の鋳造用リングの
開口部方向に向かって膨張するために縦、横方向の膨張
量が異なり、従って上記空所が変形されて所望形状の金
属成型品が得られにくいという問題があった。
Dental metal molded products such as metal crowns and inlays are made by injecting a wax material into a plaster model from which an impression has been taken to form a wax mold, which is then buried in an investment material made of silicic acid powder, etc. The wax mold is eluted by heating the investment material 1- to form a cavity in the investment material, and into this cavity, hot water containing a molten dental casting alloy is poured, and then it is cooled and solidified to be cast. has been done. In the above casting process, when the investment material is heated to melt the wax mold in which it is embedded, the cavity formed by the wax mold also expands as the investment material expands, and this expanded cavity When the molten alloy is injected into the mold, it is cooled and solidified, shrinking and forming a metal molded product in the desired shape. However, conventionally used investment materials have relatively low density and low thermal expansion, such as silicic acid or cristobalite, so when the investment material hardens, it absorbs water and expands. Expand it further by means such as hardening expansion,
This compensated for the shrinkage of the casting alloy. However, if large water absorption expansion and hardening expansion are applied to the investment material when it hardens,
The investment material expands toward the opening of the cylindrical casting ring in which it is filled, so the amount of expansion in the vertical and horizontal directions is different, and the void space is deformed to form a metal molded product in the desired shape. The problem was that it was difficult to obtain.

上記の問題に鑑み、加熱時に大きな膨張量を有し硬化時
に膨張量が小さい埋没材が要望されていたのである。
In view of the above problems, there has been a need for investment materials that expand a large amount when heated and have a small amount of expansion when hardened.

本発明者は上記の要望に応えるべく鋭意研究した結果、
高圧下における熱処理によって高密度化された石英ガラ
スなどのセラミックスは、加熱によってもとの石矢ガラ
スに戻るときに大きく膨張し、I7かも加熱後の冷却過
程における収縮量が小さいことを見いだし、この性能は
歯科鋳造用埋没材とI−で好適であることを知ったので
ある。
As a result of intensive research in order to meet the above-mentioned demands, the present inventor found that
Ceramics such as quartz glass, which has been made denser by heat treatment under high pressure, expand significantly when heated to return to the original Ishiya glass, and I7 also found that the amount of shrinkage during the cooling process after heating is small. It was learned that the performance is suitable for dental casting investment material and I-.

すなわちこの発明は、高圧下の熱処理によって^密度化
された高密度セラミックスと結合材とからなることを特
徴とする歯科鋳造用埋没材である。
That is, the present invention is a dental casting investment material characterized by being made of high-density ceramics densified by heat treatment under high pressure and a bonding material.

この発明に使用される高密度化セラミックスは、セラミ
ックスの単結晶の育成の手段の一つとして公知である高
圧法によって製造される。例えば石かガラスを、圧力1
0GPa以下、温度700℃以下、加熱時間10分間以
下の条件で圧熱処理し、次いで室温1でに冷却したのち
、常圧に下げることによって11ら力、る。高密度化石
英ガラスの密度は上記圧力によって左右されるものであ
り、圧力と密度との関係を第1図のグラフに示す。第1
図に示すように密度2.21Mの通常の石英ガラスは、
圧力30Paにおいて高密度化し始め、圧力が大きくな
ると密度が大きくなり、圧力8GPaでは高密度2.6
17cIIのものが得られ、また加圧時の温度が高い方
が比較的に低い圧力で高密度化される。従って高密度化
石英ガラスの密度は、加圧時の圧力、温度を適宜に選択
して組合せることによって所望のものが得られる。
The densified ceramic used in this invention is manufactured by a high-pressure method, which is known as one of the means for growing single crystals of ceramics. For example, stone or glass, pressure 1
Pressure heat treatment is carried out under the conditions of 0 GPa or less, temperature of 700° C. or less, and heating time of 10 minutes or less, then cooled to room temperature 1, and then lowered to normal pressure. The density of high-density quartz glass is influenced by the above-mentioned pressure, and the relationship between pressure and density is shown in the graph of FIG. 1. 1st
As shown in the figure, normal quartz glass with a density of 2.21M is
The density starts to increase at a pressure of 30 Pa, and as the pressure increases, the density increases, and at a pressure of 8 GPa, the density increases to 2.6
17cII is obtained, and the higher the temperature during pressurization, the higher the density is achieved at a relatively lower pressure. Therefore, the desired density of high-density quartz glass can be obtained by appropriately selecting and combining the pressure and temperature during pressurization.

高密度化石英ガラスは、加熱による熱膨張量が大きく、
しかも加熱後の冷却過程における収縮量が小さいもので
あり、以下に加熱時の熱膨張性について具体例を説明す
る。
High-density quartz glass has a large amount of thermal expansion due to heating.
Furthermore, the amount of shrinkage during the cooling process after heating is small, and a specific example of thermal expansion during heating will be described below.

圧力媒体として八面体のパイロフィライトを使用し、こ
の圧力媒体中に、直径10WM、長さ12闘の円棒状の
石英ガラス、ゲラファイトヒータ、および白金/ロジウ
ム−87/18の合金からなる熱電対を組込み、これを
MA−8高圧発生装置に取付け、1万トンプレスで、適
宜の圧力、温度で加圧L、10分間保持したのち自然冷
却させ、減圧して、密度の異なる高密度化石英ガラスを
製造した。
Octahedral pyrophyllite is used as a pressure medium, and in this pressure medium, a cylindrical quartz glass with a diameter of 10 WM and a length of 12 mm, a gelaphite heater, and a thermoelectric element made of an alloy of platinum/rhodium-87/18 are installed. This is assembled into a pair, attached to the MA-8 high pressure generator, and held in a 10,000 ton press at the appropriate pressure and temperature for 10 minutes at L, then allowed to cool naturally, and then reduced pressure to create high densities with different densities. Manufactured quartz glass.

次いで高密度化石英ガラスを長さ10闘の円柱形試料に
削り、この試料を熱膨張計(理学電機社中!I)を使用
して線膨張率(%)を測定算出した。
Next, the high-density quartz glass was cut into a cylindrical sample with a length of 10 cm, and the coefficient of linear expansion (%) of this sample was measured and calculated using a thermal dilatometer (manufactured by Rigaku Denki Co., Ltd.!).

第2図は密度の異なる石英ガラスの線膨張率の変化を示
したグラフである。この第2図のグラフでみられるよう
に、密度の大きいものほど線膨張率の増加割合が大きく
、かつ線膨張率が大きくなる。そして密度2.5571
Mの石英ガラスは加熱開始2時間後に線膨張率に約4%
に達し、また10001〕に保持した後も加熱時間の延
長によって膨張を続けることがわかる。
FIG. 2 is a graph showing changes in linear expansion coefficients of silica glass having different densities. As seen in the graph of FIG. 2, the higher the density, the greater the rate of increase in the coefficient of linear expansion, and the higher the coefficient of linear expansion. and density 2.5571
M quartz glass has a linear expansion coefficient of approximately 4% after 2 hours from the start of heating.
It can be seen that even after reaching 10001], the expansion continues as the heating time is extended.

第3図は、密度2.5 g 79Mの石英ガラスの加熱
昇温速度が異なる場合の温度と線膨張率との関係を示す
グラフであり、昇温速度が小さい程、各温度における線
膨張率が大きくなることを明らかにしている。
Figure 3 is a graph showing the relationship between temperature and coefficient of linear expansion when the heating rate of quartz glass with a density of 2.5 g and 79M is different. has been shown to increase.

第4図は、加熱昇温を段階的に行なった場合の加熱時間
と線膨張率との関係を示すグラフであり。
FIG. 4 is a graph showing the relationship between heating time and coefficient of linear expansion when the heating temperature is increased in stages.

任意の温度に保持したとき、その温度に上昇後の評持時
間と線膨張率には大差がないことがわかる。
It can be seen that when the temperature is maintained at a given temperature, there is no significant difference in the evaluation time after the temperature is raised and the coefficient of linear expansion.

上記第2図ないし第4図のグラフで理解されるように高
密度化石英ガラスを加熱したときの膨張量は、高密度化
程度、加熱温度、加熱時間などの変更によって任意に制
御することができる。
As can be understood from the graphs in Figures 2 to 4 above, the amount of expansion when high-density quartz glass is heated can be controlled arbitrarily by changing the degree of densification, heating temperature, heating time, etc. can.

上記の高密度化石英ガラスを鋳造用埋没材料に使用する
場合、高密度化石英ガラスは、加熱したときにもとの石
英ガラスに戻るため、加熱後の冷却過程における熱収縮
は極めて小さい。しかし、高密度化石英ガラスに石膏、
りん酸などの結合材を混合するか、更にけい酸を混合す
ることによって冷却過程時の熱収縮の大きさを調節する
ことができる。
When using the above-mentioned high-density quartz glass as an investment material for casting, the high-density quartz glass returns to the original quartz glass when heated, so thermal contraction in the cooling process after heating is extremely small. However, gypsum on high-density quartz glass,
The magnitude of thermal shrinkage during the cooling process can be adjusted by mixing a binder such as phosphoric acid or by further mixing silicic acid.

第5図は、密度2.5571Mの高密度化石英ガラスの
み(Aグラフ)、上記高密度化石英ガラス75重量部と
石膏(α−casOa・7H−0) 25重量部との混
合物(Bグラフ)、および高密度化石英ガラス37.5
重量部とけい酸37.5重量部と石膏25重量部との王
者混合物(Cグラフ)を680シに加熱保持1.7だの
ち加熱開始から2時間後に冷却を始めたと衣の線膨張率
を示したグラフである。第5図のグラフに姑られるよう
に、高密度化石英ガラスのみの場合は冷却過程における
熱収縮はほとんどないが、石膏、または石膏および高密
度化石英ガラスと同量のけい酸を混合したものは、冷却
過程時に若干の熱収縮をする。また、石膏、または石膏
とけい酸とを混合した場合でも、加熱開始から25時間
後にその線膨張率は1.7%に達し、さらに膨張する傾
向を有している。
Figure 5 shows only high-density fused silica glass with a density of 2.5571M (graph A), and a mixture of 75 parts by weight of the high-density fused silica glass and 25 parts by weight of gypsum (α-casOa・7H-0) (graph B). ), and high-density quartz glass 37.5
A mixture of 37.5 parts by weight of silicic acid and 25 parts by weight of gypsum (graph C) was heated to 680 degrees and held at 1.7 degrees, and then cooling was started 2 hours after the start of heating. This is a graph. As shown in the graph in Figure 5, when using only high-density quartz glass, there is almost no thermal contraction during the cooling process, but when using gypsum or a mixture of gypsum and high-density quartz glass with the same amount of silicic acid, undergoes some thermal contraction during the cooling process. Furthermore, even when gypsum or gypsum and silicic acid are mixed, the coefficient of linear expansion reaches 1.7% 25 hours after the start of heating, and there is a tendency for further expansion.

なお上記第5図の線膨張率は、高密度化石英ガラスをメ
ノウ乳鉢で粉砕し、この粉末に30重量%の本丸−よび
石膏、けい酸を添加して混練したのち、r2さ10MM
の円柱用乾燥試料を作成し、前記と同様に測定算出1−
だ値である。
The coefficient of linear expansion shown in Fig. 5 above is obtained by pulverizing high-density quartz glass in an agate mortar, adding 30% by weight of Honmaru, gypsum, and silicic acid to the powder, and kneading it.
Create a dry sample for the cylinder, and perform measurement calculation 1- in the same manner as above.
It is a value.

以−ヒは高密度化石英ガラスについて説明したが、この
発明はこれに限定されるものではない。Si、O*ガ°
2スを主成分とするけい酸塩系ガラス、Gem、をit
 141j分とするゲルマン酸塩系ガラス、アルミノけ
い酸塩系ガラヌ、コーサイト、MgβeQ4のスピネル
相は、上記と同様に高密度化されることが知られており
、同様な加熱膨張特性を示すものであるから、この発明
の高密度化セラミックスに含1れるものである。
Although high-density quartz glass has been described below, the present invention is not limited thereto. Si, O*ga°
It is a silicate-based glass whose main component is Gem.
The spinel phase of germanate-based glass, aluminosilicate-based galanium, coesite, and MgβeQ4, which is 141j, is known to be highly densified in the same way as above, and exhibit similar thermal expansion characteristics. Therefore, it is included in the densified ceramics of the present invention.

以−ヒに説明したように、この発明は鋳造用埋没材とし
て高密度化セラミックスを使用するものであるから、加
熱時の熱膨張量が従来のものに比べて大きいので吸水膨
張、硬化膨張などの手段を必要としない。また高密度セ
ラミックスの膨張量は、セラミックスの高密度化程度、
加熱温度、加熱時間、加熱速度、結合材、けい酸などの
混合の有無などの条件を適宜に組合せることによって調
節できるので、合金材料の鋳造収縮量に応じて任意に変
化させることができる。また高密度セラミックスは加熱
後の冷却過程における収縮性が小さいので、所望の形状
の金属成型品が得られ、その収縮性は結合材、けい酸な
どを混合することによって減少することができる。
As explained below, since this invention uses high-density ceramics as an investment material for casting, the amount of thermal expansion during heating is greater than that of conventional ceramics, so water absorption expansion, hardening expansion, etc. does not require any means. In addition, the amount of expansion of high-density ceramics depends on the degree of densification of the ceramics,
Since it can be adjusted by appropriately combining conditions such as heating temperature, heating time, heating rate, presence or absence of mixing of a binder, silicic acid, etc., it can be arbitrarily changed depending on the amount of casting shrinkage of the alloy material. Furthermore, since high-density ceramics have low shrinkage during the cooling process after heating, a metal molded product of a desired shape can be obtained, and the shrinkage can be reduced by mixing a binder, silicic acid, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

′jS1図は高密度石英ガラス製造、時、の圧力と密度
との関係を示すグラフ、第2図は密度の異なる高密度石
英ガラスの加熱時間と線膨張率との関係を示すグラフ、
第3図は異なる昇温速度による第2図同様の関係を示す
グラフ、第4図は段階的昇温による第2図同様の関係を
示すグラフ、第5図は高密度石英ガラスのみ(A)、高
密度石英ガラスと石・■との混合物の)、高密度石英ガ
ラスと石膏とけい酸との混合物(C)の加熱および冷却
過程の線膨張率と時間との関係を示すグラフである。 特許出願人  森 脇   豊 々       後  藤  隆  泰代理人 弁理士
 坂 野 威 夫
Figure 1 is a graph showing the relationship between pressure and density during the production of high-density quartz glass, and Figure 2 is a graph showing the relationship between heating time and coefficient of linear expansion for high-density quartz glass with different densities.
Figure 3 is a graph showing the same relationship as Figure 2 with different heating rates; Figure 4 is a graph showing the same relationship as Figure 2 with stepwise temperature increases; Figure 5 is for high-density silica glass only (A) , a mixture of high-density quartz glass and stone (1), and a mixture (C) of high-density quartz glass, gypsum, and silicic acid, the graph shows the relationship between linear expansion coefficient and time during the heating and cooling process. Patent applicant Toyoyo Moriwaki Takashi Goto Agent Patent attorney Takeo Sakano

Claims (1)

【特許請求の範囲】 〔1〕高圧丁の熱処理によって高密度化された高密度セ
ラミックスと結合材とからなることを特徴とする歯科鋳
造用埋没材。 〔2〕高密度セラミックスが高密度石英ガラスである特
許請求の範囲第1項記載の歯科鋳造用埋没材。 〔3〕高密度石英ガラスと結合材とにけい酸を混合した
ものである特許請求の範囲第1項記載の歯科りi進用埋
没材。
[Scope of Claims] [1] An investment material for dental casting, characterized by comprising high-density ceramics made densified by heat treatment of high-pressure knives and a binding material. [2] The dental casting investment material according to claim 1, wherein the high-density ceramic is high-density quartz glass. [3] The dental implant material according to claim 1, which is a mixture of high-density quartz glass, a binding material, and silicic acid.
JP57049349A 1982-03-26 1982-03-26 Investment material for dental casting Granted JPS58167503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57049349A JPS58167503A (en) 1982-03-26 1982-03-26 Investment material for dental casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57049349A JPS58167503A (en) 1982-03-26 1982-03-26 Investment material for dental casting

Publications (2)

Publication Number Publication Date
JPS58167503A true JPS58167503A (en) 1983-10-03
JPS6141221B2 JPS6141221B2 (en) 1986-09-13

Family

ID=12828534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57049349A Granted JPS58167503A (en) 1982-03-26 1982-03-26 Investment material for dental casting

Country Status (1)

Country Link
JP (1) JPS58167503A (en)

Also Published As

Publication number Publication date
JPS6141221B2 (en) 1986-09-13

Similar Documents

Publication Publication Date Title
US4548256A (en) Casting of metal articles
US4106945A (en) Investment material
SU651688A3 (en) Method of manufacturing ceramic composition material
EP0511546B1 (en) Investment material and mold for dental use and burnout thereof
JPH042549B2 (en)
JPS58167503A (en) Investment material for dental casting
CN111704442A (en) Preparation method of tooth bracket for orthodontic treatment and tooth bracket prepared by preparation method
US2195452A (en) Method of making articles of porcelain
US1932202A (en) Investment
JPS61193741A (en) Investment casting material for dental purpose
DE3260787D1 (en) Process for the production of refractory bricks
US2247588A (en) Investment composition
SU478804A1 (en) The method of manufacture of products from non-autoclaved gas-ash concrete
US1682249A (en) A cobpobation op
US1702076A (en) Light-weight ceramic material and process of making the same
US3247293A (en) Methods of making dental restorations
JPS6363547A (en) Composition for mold of block molding method
US2247395A (en) Investment
JPS62865B2 (en)
JPS6317017B2 (en)
JPH0347648A (en) Exothermic heat insulating method for casting mold
JPS6086081A (en) Lightweight heat-insulating water-impermeable ceramic material and manufacture
JPH06134815A (en) Method for accurately casting simplified injection mold
JPS57158346A (en) Manufacture of composite material
JPH04338503A (en) Casting mold for ceramic molding