JPS6141036Y2 - - Google Patents
Info
- Publication number
- JPS6141036Y2 JPS6141036Y2 JP18461583U JP18461583U JPS6141036Y2 JP S6141036 Y2 JPS6141036 Y2 JP S6141036Y2 JP 18461583 U JP18461583 U JP 18461583U JP 18461583 U JP18461583 U JP 18461583U JP S6141036 Y2 JPS6141036 Y2 JP S6141036Y2
- Authority
- JP
- Japan
- Prior art keywords
- intervening
- ring body
- ring
- diameter
- covered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000009975 flexible effect Effects 0.000 claims description 18
- 238000009751 slip forming Methods 0.000 claims 1
- 239000000463 material Substances 0.000 description 38
- 230000008602 contraction Effects 0.000 description 10
- 239000012779 reinforcing material Substances 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 208000034693 Laceration Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001595 contractor effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Landscapes
- Joints Allowing Movement (AREA)
Description
【考案の詳細な説明】
本考案は可撓伸縮管接手の考案に係り、固形物
の通過を円滑ならしめ、又金属片、硝子片又は砕
石等の剛性乃至鋭利な物体の通過によつても損傷
せしめられることのない伸縮管接手において、充
分な可撓性、可曲性を有すると共に伸縮作用を確
保し、しかも比較的僅少な資材により、簡易且つ
コンパクトに製作することのできる可撓性接手を
提供しようとするものである。[Detailed description of the invention] The present invention relates to the invention of a flexible expandable pipe joint, which allows the passage of solid objects smoothly, and also allows the passage of rigid or sharp objects such as pieces of metal, glass pieces, or crushed stones. A flexible pipe joint that does not get damaged, has sufficient flexibility and bendability, ensures the expansion and contraction action, and can be easily and compactly manufactured using a relatively small amount of materials. This is what we are trying to provide.
管路を構成するに当つて接手は不可欠のもので
あり、又斯かる接手において可撓性を具備させる
ことは剛体製の管材によつて屈曲した管路を構成
せしめ、或いは連結された管路の方向を適宜に変
更させる上において重要であり、同時に斯かる管
路において伸縮をも許容することは設計の自在性
を得しめ更には温度変化や地盤変動などによる管
路の伸縮を可能ならしめる上において枢要な要件
をなすものであり、管路の破損などはこのような
伸縮性を適切に得られないことに原因することが
多い。従つてこのような可撓管接手として従来か
ら種々のものが提案されているが、これら従来一
般のものは成程その資材としてゴム材やそれに準
じた合成樹脂材(以下に単にゴム材という)を主
体として利用するとしても、それによつて充分な
可撓性や可曲性と共に適切な伸縮性が得られない
不利を有する。蓋しこのような可撓伸縮管接手に
おいてはそれが鋼管その他の強固な管路中に組込
まれることよりして主材たるゴム材に対しそれな
りの金属材や織布のような補強材を併用して補強
することが不可欠のものであるところ、上記した
ような従来の可撓伸縮管接手においてはその主材
(ゴム材)と補強材とを一体化することが好まし
い補強作用を得しめる所以と観念され、即ちゴム
材と補強材とを接着することによつてその一体化
を図るようにしたものであるから、それによつて
所期する如き一体化補強を図り得たとしても、斯
様な構成のものではその可撓作用に当つて補強材
に接着された部分におけるゴム材の部分的伸縮が
完全に拘束され、可撓時における円周方向の部分
的伸縮や管路伸縮時における管体全周域における
部分的伸縮は何れにしてもゴム材の補強材と接着
されない部分においてのみ集中的に求められるこ
ととなり、殊に配装補強材間の分断された狭小な
各ゴム材部分においてだけしか可撓作用が得られ
ないこととなるので、具体的な可撓時においてゴ
ム材に与えられる無理が大きいものとならざるを
得ず、折角それなりの長さ範囲に亘つたゴム材等
による可撓伸縮管接手を採用したとしても充分な
可撓作用を期待することができない。又斯かる従
来のものでは上記のように補強材と接着されてい
ない狭小なゴム材各部分での部分的な伸縮によつ
て所期する可撓性を確保しようとするものである
からその肉厚を相当に大とすることが必要であ
り、このように肉厚を大とされた可撓伸縮管接手
は当然に必要資材量を大とし、且つそれに配装さ
れた補強材との接着を完全とするための工数の煩
雑さとも相俟つてその製作は甚だ困難で多くの工
数を要するものとならざるを得ない。加うるに斯
様な従来一般のものではその主材たるゴム材が内
面に露出して位置せしめられることが不可避であ
り、斯うして内面に露出したゴム材は摩擦抵抗が
大であつて、通過物体の円滑な流通を求め難く、
殊にこの可撓伸縮管接手が管路の屈曲部に位置す
るものであることよりして例えば風力や流水を利
用したような輸送管路においてその通常物体に対
し著しい抵抗作用を示し、閉塞停滞の発生する部
分は専らこの可撓管接手部分に集中することにな
る。しかもこのような通過物体において金属片や
硝子片或いは砕石のような剛体、特に鋭利な剛体
物質が混入しているような場合において、そのよ
うな通過物体により損傷、裂傷を発生せしめられ
ることが著しく、この点よりしても充分な耐用性
を求め得ないこととなつて、例えば上記のような
物質を混入する可能性の高い廃棄物輸送管路の如
きにおいて交換頻度の極めて高いものとならざる
を得ない。更に従来のものにおいては一般的に可
撓性と共に伸縮性をも円滑に得ることは容易でな
い。 Joints are indispensable in configuring pipes, and providing flexibility in such joints allows for the construction of bent pipes with rigid pipe materials, or the construction of connected pipes. It is important to change the direction of the pipe as appropriate, and at the same time, allowing expansion and contraction in such a pipe gives flexibility in design and also allows the pipe to expand and contract due to temperature changes, ground movements, etc. This is an important requirement in the above, and damage to pipes is often caused by not being able to properly obtain such elasticity. Therefore, various types of flexible pipe joints have been proposed in the past, but most of these conventional flexible pipe joints are made of rubber or similar synthetic resin materials (hereinafter simply referred to as rubber materials). Even if it is mainly used, it has the disadvantage that sufficient flexibility and bendability as well as appropriate stretchability cannot be obtained. Since this type of flexible expansion pipe joint is built into a steel pipe or other strong conduit, it is necessary to use a reinforcement material such as a metal material or woven fabric for the main material, rubber. However, in the conventional flexible telescopic pipe joints as described above, it is desirable to integrate the main material (rubber material) and the reinforcing material to achieve a preferable reinforcing effect. In other words, since the rubber material and the reinforcing material are integrated by adhering them, even if it were possible to achieve the desired integration and reinforcement, such With such a structure, the partial expansion and contraction of the rubber material in the part bonded to the reinforcing material is completely restrained during its flexible action, and the partial expansion and contraction of the rubber material in the circumferential direction during flexibility and the pipe expansion and contraction when the pipe is expanded and contracted are completely restricted. In any case, partial expansion and contraction in the entire circumference of the body is required only in the parts of the rubber material that are not bonded to the reinforcing material, and especially in the narrow rubber material parts separated between the reinforcement materials. Since the flexibility effect can only be obtained only when the rubber material is flexed, the force exerted on the rubber material during specific flexing must be large. Even if a flexible telescopic pipe joint is used, sufficient flexibility cannot be expected. In addition, in such conventional products, as mentioned above, the desired flexibility is achieved by partially expanding and contracting the narrow parts of the rubber material that are not bonded to the reinforcing material. It is necessary to increase the thickness considerably, and a flexible expansion pipe joint with a large wall thickness naturally requires a large amount of materials, and it is difficult to bond it with the reinforcing material arranged on it. Coupled with the complexity of the man-hours required to make it perfect, its production is extremely difficult and requires a large number of man-hours. In addition, in such conventional products, it is inevitable that the main material, the rubber material, is exposed on the inner surface, and the rubber material exposed on the inner surface has a large frictional resistance. It is difficult to ensure smooth flow of passing objects,
In particular, since this flexible telescoping pipe joint is located at a bend in the pipe, it exhibits a significant resistance against objects in transport pipes that utilize wind power or running water, and can cause blockages and stagnation. The portion where this occurs is concentrated exclusively in this flexible pipe joint portion. Moreover, when such passing objects contain rigid objects such as metal pieces, glass pieces, or crushed stones, especially sharp rigid substances, it is extremely likely that such passing objects will cause damage or lacerations. From this point of view, sufficient durability cannot be expected, and replacement must be extremely frequent, such as in waste transportation pipelines where there is a high possibility of contamination with the above substances. I don't get it. Furthermore, in conventional products, it is generally not easy to smoothly obtain both flexibility and elasticity.
本考案は上記したような従来の可撓管接手にお
ける不利欠点を解消するように研究を重ねて考案
されたものである。即ちこの本考案によるものの
基本的な実施態様の1つは第1図に示される如き
ものであり、鋼管のような管路部体に連結される
べき端部環体10,10間に少なくとも1個、好
ましくは図示のように複数個の介装環体1が組込
まれるものであり、これら一連の環体10,1…
…10の外側にはゴム材(又は合成樹脂材)によ
る可撓性の被覆伸縮筒2が施される。然して上記
したような介装環体1及び端部環体10は何れも
鋼材の如き剛性体で形成されたものであるが、こ
のような介装環体1の各一側端部及び一方の端部
環体10に夫々一定長さの通常径部4bを形成
し、該通常径部4bに対し前記介装環体1又は端
部環体10の厚みに相当した程度の拡径を得るよ
うに30゜以下(10゜程度)の傾斜部4aを形成
し、該傾斜部4aを介して前記通常径部4bに対
し同軸状(直管状)でしかもその内径が該通常径
部4bの外径より若干大きい拡径部4が一体に形
成され、この拡径部4においてそれに連接された
他方の端部環体10の内側端又は介装環体1の他
側端部における通常径部4bを夫々スライド可能
で且つ若干の間隙を有すると共に一定の余裕を残
して挿入嵌合させるように成つている。又上記し
た被覆伸縮筒2の両端部は夫々端部環体10の外
周面に対して接着3されたものであるが、このよ
うな接着3を安定化するため、この部分において
は適宜に織布その他の補強材5を介装せしめてあ
り、しかも斯様な被覆伸縮筒2と上記したような
各介装環体1との接合面においては何等の接着関
係を構成することなく、即ち遊離接合面6とされ
ている。なお上記したような端部環体10に対す
る被覆伸縮筒2の接着固定を安定化するため場合
によつては端部環体10の外周に係止リング7の
如きを固着する。 The present invention was devised after repeated research to eliminate the disadvantages of the conventional flexible pipe joints as described above. That is, one of the basic embodiments of the present invention is as shown in FIG. 1, preferably a plurality of intervening ring bodies 1 as shown in the figure, and a series of these ring bodies 10, 1...
...10 is provided with a flexible covering telescopic tube 2 made of rubber material (or synthetic resin material). However, both the intervening ring body 1 and the end ring body 10 as described above are made of a rigid body such as steel, but each of the one end and one end of the intervening ring body 1 is made of a rigid material such as steel. A normal diameter portion 4b of a constant length is formed in each end ring 10, and the diameter of the normal diameter portion 4b is expanded to a degree corresponding to the thickness of the intervening ring 1 or the end ring 10. An inclined portion 4a of 30° or less (approximately 10°) is formed in the inclined portion 4a, and the inner diameter thereof is coaxial (straight tubular shape) with respect to the normal diameter portion 4b through the inclined portion 4a, and the inner diameter thereof is the outer diameter of the normal diameter portion 4b. A slightly larger enlarged diameter portion 4 is integrally formed, and the normal diameter portion 4b at the inner end of the other end ring 10 or the other end of the intervening ring 1 connected to the enlarged diameter portion 4 is They are slidable, have a slight gap, and are inserted and fitted with a certain margin left. Furthermore, both ends of the covered telescopic tube 2 are each bonded 3 to the outer circumferential surface of the end ring 10, but in order to stabilize the bond 3, these portions are appropriately woven. Cloth or other reinforcing material 5 is interposed, and there is no adhesive relationship between the covered telescopic tube 2 and each intervening ring body 1 as described above, that is, there is no free bonding This is the joint surface 6. In order to stabilize the adhesion and fixation of the covering telescopic tube 2 to the end ring 10 as described above, a locking ring 7 or the like is fixed to the outer periphery of the end ring 10 as the case may be.
第2図には上記のような本考案のものが相当の
内圧を有する管路において採用されるに適した形
態が示されている。即ち端部環体10、介装環体
1及び被覆伸縮筒2の組付け関係については上記
した第1図の場合と略同様のものであるが、この
第2図の場合においては後述するような手法によ
つて被覆伸縮筒2の外面が略平坦面として仕上げ
られ、しかもその両端側及び中央部にボス状突部
8が一体として形成され、これら突部8,8間に
夫々剛体製の外側環体9が設けられ、このような
外側環体9部分に前記介装環体1における拡径部
4が位置せしめられている。この外側環体9,9
は好ましくは軸方向にそつた線でその一部が縦割
り状に切断された2つ割り又はそれ以上の多分割
のものであり、斯かる分割環体を該切断部に配装
された緊締手段によつて緊締連結して一体化する
と共に緊密に被覆伸縮筒2の外周面に接合させて
設定するように成つている。然しこの外側環体9
の内周面と被覆伸縮筒2の外周面との間は前記し
た接合面6におけると同じに遊離接合11である
ことは固よりである。 FIG. 2 shows a form suitable for employing the present invention as described above in a conduit having a considerable internal pressure. That is, the assembly relationship of the end ring body 10, the intervening ring body 1, and the cover telescopic tube 2 is approximately the same as in the case of Fig. 1 described above, but in the case of this Fig. 2, as will be described later. The outer surface of the covered telescoping tube 2 is finished as a substantially flat surface by a method that is suitable for use as a flat surface, and boss-shaped protrusions 8 are integrally formed on both ends and in the center. An outer annular body 9 is provided, and the enlarged diameter portion 4 of the interposed annular body 1 is located in a portion of the outer annular body 9. This outer ring body 9,9
Preferably, the ring body is divided into two parts or more, with a part cut vertically along a line along the axial direction, and the split ring body is connected to a tightening member disposed at the cut part. They are tightly connected and integrated by a means, and are tightly joined to the outer circumferential surface of the covering telescopic tube 2. However, this outer ring 9
It is certain that there is a free joint 11 between the inner circumferential surface of the cover and the outer circumferential surface of the covered telescopic cylinder 2, as in the above-mentioned joint surface 6.
即ちこの第2図のものにおいては相当の内圧が
管内に作用した場合において、各介装環体1の通
常径部4bと拡径部4との間の各隙間からその内
圧が被覆伸縮筒2の内面に作用しても殊更に補強
材を有しない該被覆伸縮筒2の膨化することを外
側環体9により略的確に防止できる。 That is, in the case shown in FIG. 2, when a considerable amount of internal pressure acts on the inside of the pipe, the internal pressure is transferred from each gap between the normal diameter part 4b and the enlarged diameter part 4 of each intervening ring body 1 to the covering telescopic tube 2. The outer annular body 9 can almost accurately prevent expansion of the covered telescopic tube 2, which does not have any reinforcing material, even if the outer ring 9 acts on the inner surface of the outer ring.
第3図には上記した介装環体1と被覆伸縮筒2
の関係が一部拡大して示され、同時にこの被覆伸
縮筒2の外周面を平坦に仕上げる手法が開示され
ている。即ち遊離接合面6を有せしめてこのよう
な組付け関係を構成する手法としては端部環体1
0部分に関してのみ接着剤を用いた状態で第2図
のように組付けられた環体群10,1……10の
外周面に未加硫ゴム材を巻いてから加硫すればよ
いわけであり、このようにすれば環体群10,1
……10が被覆伸縮筒2を成形するための型部材
として利用され、前記したような本考案による製
品を何れにしても簡便且つ的確に得ることができ
る。然して上記したような未加硫ゴム材を巻くに
は該未加硫ゴム材が一般的に一定の厚み及び幅を
有するベルト状体として準備され、これを巻くわ
けであるが、この場合において単にこのベルト状
未加流ゴム材を巻いただけでは第1図に示すよう
に被覆伸縮筒2の外面が介装環体1の拡径部4等
に倣つて形成され凹凸のあるものとして仕上げら
れる。即ちこの第1図に示すように凹凸のある外
周面ではその体裁が必ずしも好ましいものとなら
ず、特に第2図のように外側環体9を定着させる
に当り安定した取付け関係を得難い。従つてこの
ような場合には上記未加硫ゴム材を、第3図の中
央部分に示すように介装環体1の拡径されない部
分に相当した断面形状のものとして先ず準備し、
このような未加硫ゴム材12を夫々の各環体境界
部分に施した後所定幅及び厚みの未加硫ゴム材を
全般に巻いて仕上げるものであり、それによつて
加硫後略平坦な外周面を的確に得ることができ
る。 FIG. 3 shows the above-mentioned interposed ring body 1 and covering telescopic tube 2.
The relationship is shown in a partially enlarged manner, and at the same time, a method for flattening the outer circumferential surface of the covered telescopic cylinder 2 is disclosed. That is, as a method of configuring such an assembly relationship by providing a free joint surface 6, the end ring body 1
It is sufficient to wrap an unvulcanized rubber material around the outer circumferential surface of the ring group 10, 1...10 assembled as shown in Fig. 2 using adhesive only for the 0 part, and then vulcanize it. Yes, in this way, the ring group 10,1
. . . 10 is used as a mold member for molding the covered telescopic cylinder 2, and the product according to the present invention as described above can be easily and precisely obtained. However, in order to wind the unvulcanized rubber material as described above, the unvulcanized rubber material is generally prepared as a belt-like body having a certain thickness and width, and this is wound. If this belt-like uncured rubber material is simply wound, the outer surface of the covering telescopic tube 2 will be formed to follow the enlarged diameter portion 4 of the interposed ring body 1, and will be finished with unevenness, as shown in FIG. That is, as shown in FIG. 1, an uneven outer circumferential surface does not necessarily provide a desirable appearance, and in particular, it is difficult to obtain a stable attachment relationship when fixing the outer ring 9 as shown in FIG. Therefore, in such a case, first prepare the unvulcanized rubber material with a cross-sectional shape corresponding to the portion of the interposed ring body 1 whose diameter is not expanded, as shown in the center portion of FIG.
After applying such an unvulcanized rubber material 12 to the boundary portion of each ring body, the unvulcanized rubber material of a predetermined width and thickness is wrapped around the entire area, thereby creating a substantially flat outer periphery after vulcanization. You can accurately obtain the surface.
第4図には上記したような未加硫ゴム材12部
分等に関して更に変更されたもう1つの実施態様
が示されている。即ちこの第4図に示すものにお
いては上記した介装環体1の拡径部4における端
部に金属又はそれに相当したような硬質部材より
成る環体13を衝合介装させたものであり、その
残部に関して上記したような未加硫ゴム材12を
施す。なおこの環体13は角形断面のものでよい
が、好ましくは図示のように断面円形のものとす
る。即ちこのように介装された環体13は未加硫
ゴム材12を傾斜部4aの外面に施して仕上げる
に当つて該未加硫ゴム材が拡径部4bと通常径部
4bとの間の間隙14に進入することを阻止し、
間隙14を的確に確保するから本考案による接手
の伸縮および屈曲に当つて各介装環体1間でのス
ライド作用を容易ならしめる作用をなすものであ
る。 FIG. 4 shows another embodiment in which the unvulcanized rubber material 12 described above is further modified. That is, in the one shown in FIG. 4, an annular body 13 made of metal or a hard material equivalent to metal is interposed at the end of the enlarged diameter portion 4 of the intervening ring body 1. , the unvulcanized rubber material 12 as described above is applied to the remainder. The ring body 13 may have a rectangular cross section, but preferably has a circular cross section as shown. That is, when the ring body 13 interposed in this way is finished by applying the unvulcanized rubber material 12 to the outer surface of the inclined portion 4a, the unvulcanized rubber material is placed between the enlarged diameter portion 4b and the normal diameter portion 4b. prevent entry into the gap 14 of the
Since the gap 14 is accurately secured, it facilitates the sliding action between the intervening ring bodies 1 when the joint according to the present invention expands, contracts, and bends.
以上説明したような本考案によるときは内側に
鋼材製の如きである介装還体1及び端部環体10
が一連に重合連続した状態を以て位置せしめられ
るものであるからその拡径部4を上流側として設
定することによりゴム材等を主体としたものであ
りながら少なくとも単なる鋼管等におけると同程
度の摩擦抵抗しか示さないことになり、又被覆伸
縮筒2は介装環体1等によつて有効に被覆され且
つ流通方向に関し殊更に段部などを形成しないの
で硝子砕片、金属片、砕石などの通過物体が急速
に通過しても損傷を受けることがないものである
が、その可撓性に関しては傾斜部を介して同軸状
の拡径部4を形成した介装環体1相互間でその通
常径部4bの外径より拡径部4の内径が若干大き
くなつているので有効な管軸方向のスライド作用
と被覆伸縮筒2の伸縮作用が得られ、殊にこれら
の介装環体1と被覆伸縮筒2との間に上記のよう
な遊離接合面6が存在し、又各介装環体1とこの
被覆伸縮筒2との実質的接合がストレート状とさ
れた拡径部4であつて傾斜部における拡径も環体
1又は10の厚み程度の僅少なものであるから上
記スライド作用及び伸縮作用は何れも実質的に殆
んど拘束を受けることなく、又被覆伸縮筒の伸縮
はその軸方向長さの全体を一体として充分に得ら
れることとなり、斯うした充分な伸縮と拡径部4
と通常径部4bとの間の間隙14により円滑にし
て充分な可撓作用が得られる特徴がある。しかも
斯かる可撓伸縮によつても前記した同軸状の拡径
部4は介装環体1の他側基端部に対して略接合し
て略密実な組織状態を維持し異物の侵入を阻止す
る。又このように伸縮作用を被覆伸縮筒2の軸方
向全長をフルに活用して一体的に得しめる結果と
して可撓管に過大な厚層化が要求されないことと
なり、必要資材を縮減すると共にそれによつて前
記した可撓性、伸縮性を有効に得しめる。結局上
記したような従来のものの不利欠点を見事に解決
し簡便且つ有利に卓越した可撓性と耐用性を有
し、利用上好ましい可撓管接手を得しめたもので
あるから実用上その効果の大きい考案である。 According to the present invention as explained above, the intervening return body 1 and the end ring body 10 are made of steel on the inside.
are positioned in a continuous state of polymerization, so by setting the enlarged diameter part 4 as the upstream side, the frictional resistance is at least the same as that of a simple steel pipe, etc., even though it is mainly made of rubber material etc. In addition, since the covered telescopic tube 2 is effectively covered by the intervening ring 1 and does not form any steps in the flow direction, objects such as glass fragments, metal fragments, and crushed stones cannot pass through. However, regarding its flexibility, its normal diameter can be maintained between the intervening ring bodies 1 which form a coaxial enlarged diameter part 4 through the inclined part. Since the inner diameter of the enlarged diameter portion 4 is slightly larger than the outer diameter of the portion 4b, an effective sliding action in the tube axis direction and an expansion/contraction action of the covering telescopic cylinder 2 can be obtained, especially when the intervening ring body 1 and the covering are The above-mentioned free joint surface 6 exists between the telescopic tube 2, and the substantial connection between each intervening ring body 1 and the covering telescopic tube 2 is the enlarged diameter portion 4 having a straight shape. Since the diameter expansion at the inclined portion is as small as the thickness of the ring body 1 or 10, both the sliding action and the expansion/contraction action described above are virtually unrestricted, and the expansion/contraction of the covered telescopic cylinder is The entire length in the axial direction can be sufficiently obtained as a single unit, and the expanded diameter portion 4 can be sufficiently expanded and contracted.
The gap 14 between the normal diameter portion 4b and the normal diameter portion 4b provides a smooth and sufficient flexibility. Moreover, even with such flexible expansion and contraction, the coaxial enlarged diameter portion 4 is substantially joined to the other proximal end portion of the intervening ring body 1, maintaining a substantially dense tissue state and preventing the intrusion of foreign matter. to prevent Furthermore, as a result of the expansion and contraction effect being achieved integrally by making full use of the entire axial length of the covering telescoping tube 2, the flexible tube is not required to have excessively thick layers, reducing the required materials and Therefore, the flexibility and stretchability described above can be effectively obtained. In the end, we have successfully solved the disadvantages of the conventional ones as described above, and obtained a flexible pipe joint that is simple and advantageous, has excellent flexibility and durability, and is preferable for use, so it is effective in practical use. This is a great idea.
図面は本考案の実施態様を示すものであつて、
第1図は本考案の1つの実施形態を示す若干の屈
曲状態の断面図、第2図はその別の実施形態を示
す部分切欠側面図、第3図はその1部についての
拡大断面図、第4図はその変形例を示した第3図
と同様な断面図である。
然してこれら図面において、1は介装環体、2
は被覆伸縮筒、3は接着部、4は拡径部、4aは
傾斜部、4bは通常径部、6は遊離接合面、8は
突部、9は外側環体、11は端部環体、14は間
隙を示すものである。
The drawings show embodiments of the invention,
Fig. 1 is a sectional view showing one embodiment of the present invention in a slightly bent state, Fig. 2 is a partially cutaway side view showing another embodiment thereof, and Fig. 3 is an enlarged sectional view of a part thereof. FIG. 4 is a sectional view similar to FIG. 3 showing a modification thereof. However, in these drawings, 1 is an intervening ring, and 2 is an intervening ring.
1 is a covered telescopic cylinder, 3 is an adhesive part, 4 is an enlarged diameter part, 4a is an inclined part, 4b is a normal diameter part, 6 is a free joint surface, 8 is a protrusion, 9 is an outer ring body, 11 is an end ring body , 14 indicate a gap.
Claims (1)
れら端部環体10の間に配設される少なくとも
1つの同じく剛体製である介装環体1およびこ
れら端部環体10と介装環体1の外側に設けら
れた可撓性の被覆伸縮筒2より成るものにおい
て、前記介装環体1および一方の端部環体10
に夫々一定長さの通常径部4bを形成し、該通
常径部4bに対し前記介装環体1又は端部環体
10の厚みに相当した程度の拡径を得るように
30゜以下の傾斜部4aを連続形成し、該傾斜部
4aを介して前記通常径部4bに同軸状でしか
もその内径が該通常径部4bの外径より若干大
きい拡径部4を形成し、各介装環体1および他
方の端部環体10の通常径部4bをこれらの同
径状拡径部4内にスライド可能で且つ若干の間
隙を有すると共に一定の余裕を残して挿入嵌合
せしめ、前記被覆伸縮筒2と各端部環体10,
10とを接着3せしめると共に前記した各介装
環体1と被覆伸縮筒2とを遊離接合6せしめた
ことを特徴とする可撓伸縮管接手。 (2) 被覆伸縮筒2の外周における両端側及びその
中間部に夫々突部8を形成し、これら突部8の
間に剛体製の外側環体9を遊離接合状態で設
け、該外側環体9の内部に前記介装環体におけ
る拡径部4を夫々位置せしめて成る実用新案登
録請求の範囲第1項に記載の可撓伸縮管接手。[Claims for Utility Model Registration] (1) End ring bodies 10 made of rigid bodies located on both end sides and at least one intervening ring body disposed between these end ring bodies 10 that is also made of a rigid body. 1 and these end rings 10 and a flexible covering telescopic tube 2 provided outside the intervening ring 1, the intervening ring 1 and one end ring 10
A normal diameter portion 4b of a certain length is formed in each of the normal diameter portions 4b, and the diameter of the normal diameter portion 4b is expanded to a degree corresponding to the thickness of the intervening ring body 1 or the end ring body 10.
An inclined part 4a of 30 degrees or less is continuously formed, and an enlarged diameter part 4 is formed coaxially with the normal diameter part 4b and whose inner diameter is slightly larger than the outer diameter of the normal diameter part 4b via the inclined part 4a. , the normal diameter portions 4b of each intervening ring body 1 and the other end ring body 10 can be slid into these enlarged diameter portions 4 of the same diameter, and are inserted and fitted with a slight gap and a certain margin. The covered telescopic cylinder 2 and each end ring body 10 are brought together.
10 are bonded together (3), and each of the above-mentioned intervening rings (1) and the covered telescopic tube (2) are freely joined (6). (2) Protrusions 8 are formed at both ends and in the middle of the outer periphery of the covered extensible cylinder 2, and an outer ring body 9 made of a rigid body is provided in a loosely joined state between these protrusions 8, and the outer ring body 9. The flexible telescoping pipe joint according to claim 1, wherein the enlarged diameter portions 4 of the intervening ring bodies are located inside each of the intervening rings.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18461583U JPS59158789U (en) | 1983-12-01 | 1983-12-01 | Flexible telescopic pipe joint |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18461583U JPS59158789U (en) | 1983-12-01 | 1983-12-01 | Flexible telescopic pipe joint |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59158789U JPS59158789U (en) | 1984-10-24 |
JPS6141036Y2 true JPS6141036Y2 (en) | 1986-11-21 |
Family
ID=30399249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18461583U Granted JPS59158789U (en) | 1983-12-01 | 1983-12-01 | Flexible telescopic pipe joint |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59158789U (en) |
-
1983
- 1983-12-01 JP JP18461583U patent/JPS59158789U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59158789U (en) | 1984-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4205927A (en) | Flanged joint structure for composite materials | |
US2430081A (en) | Method of making flexible tubes | |
US4800928A (en) | Flexible pipe | |
US3050087A (en) | Flexible hose | |
US4079755A (en) | Inflatable pipe plug | |
CA2352663A1 (en) | Collapse-resistant hose construction | |
US4229028A (en) | Pipe coupler | |
KR920703311A (en) | Soluble hose structure and its manufacturing method | |
US3467412A (en) | Hose splice | |
US4366842A (en) | Flanged hose and method of making | |
US2830622A (en) | Hose and method of making same | |
JPS6141036Y2 (en) | ||
JP2858691B2 (en) | Spiral reinforced hose and method of manufacturing the same | |
US3362434A (en) | Flexible axially compressible hose | |
US2364332A (en) | Hose pipe | |
US2733734A (en) | Flexible and extensible hose | |
US4240653A (en) | Flexible expansion joint | |
WO2010052858A1 (en) | Pipe joint and method of manufacturing same | |
JP4357831B2 (en) | Synthetic resin pressure-resistant pipe body for flexible pipe joints | |
JP2005001335A (en) | Method for manufacturing flexible pipe with externally corrugated shape | |
US2897839A (en) | Hose | |
JP3521943B2 (en) | Flexible hose | |
JPH08193682A (en) | Floating-arch type expansion joint using fep liner reinforced by plurality of cloth ply covered with elastomer outer layer stuck on glass fiber cloth layer | |
JPH0158797B2 (en) | ||
US1739472A (en) | Conduit coupling |