JPS6140758B2 - - Google Patents

Info

Publication number
JPS6140758B2
JPS6140758B2 JP53152779A JP15277978A JPS6140758B2 JP S6140758 B2 JPS6140758 B2 JP S6140758B2 JP 53152779 A JP53152779 A JP 53152779A JP 15277978 A JP15277978 A JP 15277978A JP S6140758 B2 JPS6140758 B2 JP S6140758B2
Authority
JP
Japan
Prior art keywords
corrosion
amine
condensate
water
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53152779A
Other languages
Japanese (ja)
Other versions
JPS5492535A (en
Inventor
Eru Toreisu Uiriamu
Eru Uookaa Jerii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Calgon Corp
Original Assignee
Calgon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calgon Corp filed Critical Calgon Corp
Publication of JPS5492535A publication Critical patent/JPS5492535A/en
Publication of JPS6140758B2 publication Critical patent/JPS6140758B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は蒸気凝縮物系及び鉱物質含有量が比較
的低い他の水性系における腐食抑制に関するもの
である。 更に詳しくは、本発明は蒸気凝縮物系または他
の低固体水性系における腐食を抑制するためにヒ
ドラジンと組合せたメトキシプロピルアミンを使
用することに関するものである。 凝縮物腐食保護は、漸次、装置操作の重要な点
となつている。これらのエネルギー自覚時代にお
いて、凝縮物の量及び質の増加は、全ボイラー系
に対して水及び熱の節約を与える。 歴史的に、酸素及び二酸化炭素のような溶解し
たガスの作用は、凝縮物腐食を招く2つの主フア
クターである。腐食における酸素及び二酸化炭素
の役割を理解するためには、腐食の電気化学的性
質を理解しなければならない。純粋な水は純粋な
鉄に対して非常に少ない影響を与えるが、このよ
うな状態は全く遭遇しない。大ていの条件下にお
いて、鉄が水に溶解する傾向がある。そして2つ
の電子が溶解するそれぞれの原子に対して放出す
る。これらの電子は水中に存在する水素イオンに
移動しそしてイオンは元素状のガス状水素に還元
される。若し水素が金属の表面上に残留する場合
は、すべての作用はこの点において止む。何故か
というと、電子の通過を妨害する保護被膜が形成
されるからである。しかしながら、水中に存在す
る水素イオンの数を増加するまたは保護膜の除去
を起す物質は、腐食速度を増大するように働く。 二酸化炭素が溶解する場合は、それが水と反応
して炭酸を形成するそして炭酸は更に系にさらし
て活性水素を供給する。鉄は、この酸から水素を
排出する。また、酸素が水中に存在する場合は、
二重の反応が起る。或る酸素の分子は排出された
水素と結合してそしてかくして金属を新しい攻撃
にさらす。他の酸素分子は鉄イオンと結合して不
溶性のさび化合物を形成する。 鉄の単なる溶解傾向より大なる腐食影響は、隣
接基金属とカツプルを形成する傾向のある表面欠
陥の存在による商業的鉄及びスチールにおける不
均質表面の存在である。電子は隣接陰極表面にお
いてこれらのカツプルの陽極から水素イオンに放
出され、かくして、腐食面積を増大しそして腐食
速度をはやめる。 腐食のはじめの生成物は、酸化第二鉄に変換さ
れる。これは、酸素接近に対して面積をブロツキ
ング・オフすることによる単にゆるく接着した悪
化腐食である。これらの面積は陽極となりそして
酸化鉄カツプルが得られる。酸化物沈着下の鉄は
溶解しそしてあなが展開する。二酸化炭素攻撃は
金属の薄化またはみぞ形成を生ずる。 これらの系に対して、フイルム形成アミンは、
酸素及び二酸化炭素に対して凝縮物腐食保護を与
える。しかしながら、多くの工業的系はフイルム
形成アミンを許容することができないそして中和
アミンを使用しなければならない。 理想的中和アミンは、次の特性を有していなけ
ればならない。 1 分配比は、ボイラーに供給された中和アミン
のかなりな量が最終的には凝縮物中に存在する
ようになるほど充分に高くなければならない。
これは、排出(blowdown)による中和アミン
の損失を減少する。 2 分配比は、通気及び排気による損失を最小に
保持するために余り高くないものでなければな
らない。分配比は、液相中のアミンの量に対す
る気相中のアミンの量の比である。 3 塩基性値は、アミンが遭遇するすべての二酸
化炭素を有効に中和するように適度に高いまた
は非常に高いものでなければならない。 4 中和アミンは、それがボイラー中でまたは過
加熱または飽和蒸気中でアンモニア及び他の化
合物に分解しないほど充分な加水分解的−熱的
安定性を有していなければならない。 5 中和アミンは、供給するのに便利なために、
水溶性の液体でなければならない。 シクロヘキシルアミン及びモルフオリンのよう
な中和アミンが使用されたが、これらの中和アミ
ンは幾つかの不利点を有している。例えば、シク
ロヘキシルアミンは、高い分配比を有しておりそ
して従つて、実質的な量のシクロヘキシルアミン
が排気によつて系から逃出する。他方、モルフオ
リンは低い塩基性値を有する。これは、凝縮物系
における高いPHを達成するのに多量のモルフオリ
ンが必要であることを意味する。また、モルフオ
リンは非常に低い分配比を有している。これは、
実質的な量が排出によつて失われることを意味す
る。 本発明の中和アミンは、シクロヘキシルアミン
及びモルフオリンの前述した不利点を克服する。
メトキシプロピルアミンは非常に望ましい分配比
及びかなり高い塩基性値を有している。 メトキシプロピルアミンは、単独でまたはヒド
ラジンのような酸素腐食阻止剤と組合せて使用す
ることができる。使用にあたつては、0.1〜1000
mg/好適には1〜100mg/の濃度を蒸気凝縮物
系中で維持しなければならない。ヒドラジンまた
は他の酸素腐食阻止剤と組合せて使用する場合
は、組成物は活性成分を基にしてメトキシプロピ
ルアミン約1〜99%及び酸素腐食阻止剤約0.1〜
50%好適には約1〜15%含有しなければならな
い。本発明の組成物は、普通の液体供給装置によ
つて、処理される蒸気凝縮物系に供給し得るまた
はボイラー供給水にまたは直接蒸気供給管に供給
することができる。 以下の例は、本発明の教示に従つて、蒸気凝縮
物腐食阻止剤として、メトキシプロピルアミンを
単独でまたはヒドラジンと組合せて使用すること
を説明するものである。 例 1 多数の中和アミンの分配比は、それぞれ100mg/
の濃度を有するアミンの溶液を製造しそしてこ
の溶液500mlを塩水びんに加えることによつて計
算する。これを40分毎に溜出物100mlが得られる
ように徐々にそして一様に加熱する。更に、塩水
びん溶液を500mlマークに維持するために5〜10
分毎に溶液を手で塩水びんに導入する。溜出物の
一部100mlづつを集めそして3つの連続した部分
に対して一定のPHが得られるまでPHを測定する。
これを、平衡条件の確立を示すものとしてとる。
平衡時において、塩水及び最終の100mlをガスク
ロマトグラフイーによつて分析してそれぞれにお
けるアミンの量を測定しそして分配比(D.R.)
を次式によつて計算する。 D.R.=最終の100ml中のアミンの濃度/塩水中のアミ
ンの濃度 同様に、塩基性値(Kb)即ち二酸化炭素と反
応するアミン能力の値を次式によつて計算する。 Kb=〔BH〕〔OH〕/〔B〕 式中、〔BH+〕、〔OH-〕及び〔B0〕は次の通り定
義される。 〔BH+〕=解離したアミンの濃度 〔OH-〕=ヒドロキシド濃度 〔B0〕=遊離の解離しないアミンの濃度 これらの試験及び計算の結果は、第表に示す
通りである。
This invention relates to corrosion control in steam condensate systems and other aqueous systems with relatively low mineral content. More particularly, the present invention relates to the use of methoxypropylamine in combination with hydrazine to inhibit corrosion in steam condensate systems or other low solids aqueous systems. Condensate corrosion protection is increasingly becoming an important aspect of equipment operation. In these energy-aware times, increases in condensate quantity and quality provide water and heat savings for the entire boiler system. Historically, the action of dissolved gases such as oxygen and carbon dioxide are the two main factors leading to condensate corrosion. To understand the role of oxygen and carbon dioxide in corrosion, one must understand the electrochemical nature of corrosion. Pure water has very little effect on pure iron, but such conditions are never encountered. Under most conditions iron tends to dissolve in water. Two electrons are then released for each atom that dissolves. These electrons are transferred to hydrogen ions present in the water and the ions are reduced to elemental gaseous hydrogen. If hydrogen remains on the surface of the metal, all effects cease at this point. This is because a protective film is formed that blocks the passage of electrons. However, substances that increase the number of hydrogen ions present in the water or cause removal of the protective film act to increase the corrosion rate. If carbon dioxide is dissolved, it reacts with water to form carbonic acid, which is then further exposed to the system to provide active hydrogen. Iron excretes hydrogen from this acid. Also, if oxygen is present in the water,
A double reaction occurs. Some oxygen molecules combine with the expelled hydrogen and thus expose the metal to new attacks. Other oxygen molecules combine with iron ions to form insoluble rust compounds. A corrosion effect greater than the mere dissolution tendency of iron is the presence of inhomogeneous surfaces in commercial irons and steels due to the presence of surface defects that tend to form couples with adjacent base metals. Electrons are released from the anodes of these couples to hydrogen ions at the adjacent cathode surfaces, thus increasing the corrosion area and slowing the corrosion rate. The initial products of corrosion are converted to ferric oxide. This is simply loosely bonded aggravated corrosion due to blocking off the area to oxygen access. These areas become anodes and iron oxide couples are obtained. The iron under the oxide deposit dissolves and the hole develops. Carbon dioxide attack results in metal thinning or groove formation. For these systems, the film-forming amine is
Provides condensate corrosion protection against oxygen and carbon dioxide. However, many industrial systems cannot tolerate film-forming amines and must use neutralized amines. An ideal neutralizing amine should have the following properties: 1 The distribution ratio must be high enough that a significant amount of the neutralized amine fed to the boiler ends up in the condensate.
This reduces loss of neutralized amine due to blowdown. 2 The distribution ratio shall not be too high in order to keep losses due to ventilation and exhaust to a minimum. The distribution ratio is the ratio of the amount of amine in the gas phase to the amount of amine in the liquid phase. 3 The basicity value must be moderately high or very high so that the amine effectively neutralizes any carbon dioxide it encounters. 4. The neutralized amine must have sufficient hydrolytic-thermal stability that it does not decompose to ammonia and other compounds in the boiler or in superheated or saturated steam. 5. Neutralized amines are convenient to supply because of their
Must be a water-soluble liquid. Neutralized amines such as cyclohexylamine and morpholine have been used, but these neutralized amines have several disadvantages. For example, cyclohexylamine has a high distribution ratio and therefore a substantial amount of cyclohexylamine escapes from the system via exhaust. Morpholine, on the other hand, has a low basicity value. This means that large amounts of morpholin are required to achieve high pH in condensate systems. Morpholine also has a very low distribution ratio. this is,
This means that a substantial amount is lost to emissions. The neutralized amines of the present invention overcome the aforementioned disadvantages of cyclohexylamine and morpholin.
Methoxypropylamine has a very desirable distribution ratio and fairly high basicity values. Methoxypropylamine can be used alone or in combination with oxygen corrosion inhibitors such as hydrazine. When using, 0.1 to 1000
mg/preferably a concentration of 1 to 100 mg/ has to be maintained in the steam condensate system. When used in combination with hydrazine or other oxygen corrosion inhibitors, the composition may contain from about 1 to 99% methoxypropylamine and from about 0.1 to 99% oxygen corrosion inhibitor, based on the active ingredients.
It should contain 50% preferably about 1-15%. The compositions of the invention can be fed by conventional liquid feed equipment to the steam condensate system to be treated or to the boiler feed water or directly to the steam feed line. The following examples illustrate the use of methoxypropylamine alone or in combination with hydrazine as a steam condensate corrosion inhibitor in accordance with the teachings of the present invention. Example 1 The distribution ratio of a number of neutralized amines is 100mg/each.
Calculated by preparing a solution of the amine with a concentration of and adding 500 ml of this solution to a saline bottle. This is heated gradually and uniformly so that 100 ml of distillate is obtained every 40 minutes. Furthermore, to keep the saline bottle solution at the 500ml mark,
The solution is manually introduced into the saline bottle every minute. Collect 100 ml aliquots of the distillate and measure the PH on three consecutive portions until a constant PH is obtained.
Take this as an indication of the establishment of equilibrium conditions.
At equilibrium, the brine and the final 100 ml were analyzed by gas chromatography to determine the amount of amine in each and the distribution ratio (DR).
is calculated by the following formula. DR=concentration of amine in final 100 ml/concentration of amine in brine Similarly, the basicity value (Kb), ie, the value of the amine's ability to react with carbon dioxide, is calculated by the following formula. K b = [BH + ] [OH - ]/[B 0 ] In the formula, [BH + ], [OH - ] and [B 0 ] are defined as follows. [BH + ] = Concentration of dissociated amine [OH - ] = Hydroxide concentration [B 0 ] = Concentration of free, undissociated amine The results of these tests and calculations are shown in the table.

【表】 例 2 種々な中和アミンの加水分解的−熱的安定度
を、試験によつて測定する。この試験において
は、1000mg/の濃度の中和アミンを600psiで24
時間(489〓)オートクレーブで処理するそして
アンモニアの最終濃度を測定する。この試験の結
果は次表に示す通りである。 第表 アミン NH3mg/ メトキシプロピルアミン <1.0 モルフオリン 1.6 シクロヘキシルアミン 3.3 ジエチルアミノエタノール* 2.4 アミノメチルプロパノール 124.0 *ジエチルアミノエタノールはかなり分解して
ジエチルアミンとなる。 例 3 凝縮物試験系を使用して中和アミンを評価す
る。この系は、200psiの圧力下で蒸気45Kg/時間
を生産できるボイラー、ボイラーに対する調合水
の組成物を調節するポンプ及び計量装置及び蒸気
を凝縮する温度調節装置を有する冷却コイルから
なる。凝縮物は、試験ループ(loop)を通して再
循環する。金属クーポン及び腐食計は腐食速度を
評価する。試験水は、SO4<1mg/、Cl<1mg/
、SiO2<1mg/及びCO210mg/を含有する蒸
溜水である。第表は、腐食試験の結果を示す。
Table: Example 2 The hydrolytic-thermal stability of various neutralized amines is determined by tests. In this test, a concentration of 1000 mg/ml of neutralized amine was applied at 600 psi at 24
Autoclave for an hour (489〓) and measure the final concentration of ammonia. The results of this test are shown in the table below. Table Amine NH 3 mg/ Methoxypropylamine <1.0 Morpholine 1.6 Cyclohexylamine 3.3 Diethylaminoethanol * 2.4 Aminomethylpropanol 124.0 *Diethylaminoethanol decomposes considerably to form diethylamine. Example 3 A condensate test system is used to evaluate neutralized amines. The system consists of a boiler capable of producing 45 Kg/hour of steam under a pressure of 200 psi, a cooling coil with a pump and metering device to regulate the composition of the blended water to the boiler, and a temperature control device to condense the steam. The condensate is recirculated through the test loop. Metal coupons and corrosion meters assess corrosion rates. The test water contains SO 4 <1 mg/, Cl <1 mg/
, SiO 2 <1 mg/ and CO 2 10 mg/. Table 1 shows the results of the corrosion tests.

【表】 例 4 例3の凝縮物試験系を使用して、腐食の阻止に
おけるメトキシプロピルアミンに対するヒドラジ
ンの添加の効果を説明する。
EXAMPLE 4 The condensate test system of Example 3 is used to illustrate the effect of the addition of hydrazine to methoxypropylamine in inhibiting corrosion.

【表】【table】

Claims (1)

【特許請求の範囲】 1 実質的にメトキシプロピルアミン及びヒドラ
ジンからなる蒸気凝縮物腐食阻止組成物。 2 ヒドラジン1〜15重量%を含有する特許請求
の範囲第1項記載の蒸気凝縮物腐食阻止組成物。
Claims: 1. A steam condensate corrosion inhibition composition consisting essentially of methoxypropylamine and hydrazine. 2. A vapor condensate corrosion inhibiting composition according to claim 1 containing 1 to 15% by weight of hydrazine.
JP15277978A 1977-12-12 1978-12-12 Composition for preventing corrosion by vapor condense of methoxypropylamine and hydraztne Granted JPS5492535A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US85934277A 1977-12-12 1977-12-12
US90833478A 1978-05-22 1978-05-22

Publications (2)

Publication Number Publication Date
JPS5492535A JPS5492535A (en) 1979-07-21
JPS6140758B2 true JPS6140758B2 (en) 1986-09-10

Family

ID=27127515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15277978A Granted JPS5492535A (en) 1977-12-12 1978-12-12 Composition for preventing corrosion by vapor condense of methoxypropylamine and hydraztne

Country Status (8)

Country Link
EP (1) EP0002634B1 (en)
JP (1) JPS5492535A (en)
AU (1) AU521299B2 (en)
CA (1) CA1105695A (en)
DE (1) DE2860673D1 (en)
DK (1) DK152766C (en)
IE (1) IE47613B1 (en)
IT (1) IT1107785B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11510351B2 (en) 2019-01-04 2022-11-22 Engent, Inc. Systems and methods for precision placement of components

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350606A (en) * 1980-10-03 1982-09-21 Dearborn Chemical Company Composition and method for inhibiting corrosion
US4557835A (en) * 1983-09-19 1985-12-10 Westinghouse Electric Corp. Process for removal of dissolved oxygen from steam generation systems
US5641396A (en) * 1995-09-18 1997-06-24 Nalco/Exxon Energy Chemicals L. P. Use of 2-amino-1-methoxypropane as a neutralizing amine in refinery processes
JP5034483B2 (en) * 2006-12-19 2012-09-26 栗田工業株式会社 Anticorrosive for reducing erosion and corrosion
JP5691134B2 (en) * 2009-03-31 2015-04-01 栗田工業株式会社 How to treat boilers that are not operating
JP6215511B2 (en) * 2010-07-16 2017-10-18 栗田工業株式会社 Anticorrosive for boiler

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2793944A (en) * 1951-08-30 1957-05-28 Universal Oil Prod Co Stabilization of organic compounds
LU36675A1 (en) * 1957-12-19
US3728281A (en) * 1970-04-02 1973-04-17 Fisons Ltd Corrosion inhibiting composition containing hydrazine and a pyrazolidone or an aminophenol
US3983048A (en) * 1972-12-26 1976-09-28 Olin Corporation Composition for accelerating oxygen removal comprised of a mixture of aqueous hydrazine and an aryl amine compound
US4062764A (en) * 1976-07-28 1977-12-13 Nalco Chemical Company Method for neutralizing acidic components in petroleum refining units using an alkoxyalkylamine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11510351B2 (en) 2019-01-04 2022-11-22 Engent, Inc. Systems and methods for precision placement of components

Also Published As

Publication number Publication date
JPS5492535A (en) 1979-07-21
EP0002634B1 (en) 1981-04-29
DK556378A (en) 1979-06-13
DK152766B (en) 1988-05-09
EP0002634A1 (en) 1979-06-27
AU4220378A (en) 1979-06-21
CA1105695A (en) 1981-07-28
DE2860673D1 (en) 1981-08-06
AU521299B2 (en) 1982-03-25
DK152766C (en) 1988-10-03
IT1107785B (en) 1985-11-25
IT7852260A0 (en) 1978-12-12
IE782443L (en) 1979-06-12
IE47613B1 (en) 1984-05-02

Similar Documents

Publication Publication Date Title
EP0161822B1 (en) Composition and method for deoxygenation of aqueous systems
KR100342269B1 (en) Oxygen scavenger and boiler water treatment chemical
US4192844A (en) Methoxypropylamine and hydrazine steam condensate corrosion inhibitor compositions and methods
US4350606A (en) Composition and method for inhibiting corrosion
JPH0125632B2 (en)
EP0216586B2 (en) Stabilized sodium erythorbate and its use as a corrosion inhibitor
KR20010015860A (en) Method of forming corrosion inhibiting films with hydrogenated benzotriazole derivatives
US5368775A (en) Corrosion control composition and method for boiler/condensate steam system
JPS62116788A (en) Nover boiler corrosion inhibiting composition and method
JPS6140758B2 (en)
CN111233178A (en) Phosphorus-free composite cylinder cleaning agent for low-pressure boiler and preparation method thereof
CN109868477B (en) Vapor phase corrosion inhibitor and preparation method thereof
WO2010016434A1 (en) Boiler water treatment agent and water treatment process
JPH02209493A (en) Anticorrosive for steam or condensate system
KR100315496B1 (en) Method for Inhibiting Corrosion of Boiler Condensation System Using Corrosion Inhibiting Composition
JP2848672B2 (en) High-temperature water-based corrosion inhibitor
CA1339761C (en) Corrosion control composition and method for boiler/condensate stem system
JP2003159597A (en) Water treating agent
JP3309757B2 (en) Chemicals for boiler water treatment
JP3552460B2 (en) Oxygen scavenger
JP3963040B2 (en) Oxygen scavenger
JPS5827350B2 (en) Kinzokufushiyokuboushizai
US5419837A (en) Hindered amines for treating industrial water systems
CA1131435A (en) Hydroquinone and mu-amine compositions as oxygen scavengers for use in aqueous mediums
GB2117369A (en) Sulfite-erythorbic acid corrosion inhibitors