DK152766B - CORROSION INHIBITOR FOR WATER Vapor condensate systems, AND PROCEDURES FOR INHIBITING CORROSION SEED SYSTEMS - Google Patents

CORROSION INHIBITOR FOR WATER Vapor condensate systems, AND PROCEDURES FOR INHIBITING CORROSION SEED SYSTEMS Download PDF

Info

Publication number
DK152766B
DK152766B DK556378AA DK556378A DK152766B DK 152766 B DK152766 B DK 152766B DK 556378A A DK556378A A DK 556378AA DK 556378 A DK556378 A DK 556378A DK 152766 B DK152766 B DK 152766B
Authority
DK
Denmark
Prior art keywords
corrosion
systems
water vapor
corrosion inhibitor
vapor condensate
Prior art date
Application number
DK556378AA
Other languages
Danish (da)
Other versions
DK152766C (en
DK556378A (en
Inventor
William Lloyd Trace
Jerry Lee Walker
Original Assignee
Calgon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calgon Corp filed Critical Calgon Corp
Publication of DK556378A publication Critical patent/DK556378A/en
Publication of DK152766B publication Critical patent/DK152766B/en
Application granted granted Critical
Publication of DK152766C publication Critical patent/DK152766C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids

Description

Opfindelsen angår en korrosionsinhibitor for vand-damp-kondensatsystemer og en fremgangsmåde til korrosionskontrol i vanddampkondensatsystemer og andre vandige systemer, hvori mineralindholdet er relativt lavt, ved hjælp af denne inhibitor.The invention relates to a corrosion inhibitor for water-vapor condensate systems and a method for corrosion control in water vapor condensate systems and other aqueous systems in which the mineral content is relatively low, by means of this inhibitor.

Især angår opfindelsen en fremgangsmåde til forhindring af korrosion i vanddampkondensatsystemer i form af anvendelsen af methoxypropylamin i kombination med hydrazin for at kontrollere vanddampkondensatsystemer eller andre vandige systemer med lavt tørstofindhold.In particular, the invention relates to a method of preventing corrosion in water vapor condensate systems in the form of the use of methoxypropylamine in combination with hydrazine to control water vapor condensate systems or other low solids aqueous systems.

Kondensatkorrosionsbeskyttelse er et stadigt voksende fænomen ved drift af vandførende anlæg. I disse energibevidste tider vil en forøgelse af mængden og kvaliteten af kondensat resultere i besparelser af vand og varme i . det totale kedelsystem.Condensate corrosion protection is an ever-growing phenomenon in the operation of aquifers. In these energy-conscious times, increasing the amount and quality of condensate will result in water and heat savings. the total boiler system.

i historisk henseende har virkningen af opløste gasser, såsom oxygen og carbondioxid, været to af de hovedfaktorer, der fører til kondensatkorrosion. For at forstå den rolle, som oxygen og carbondioxid spiller i korrosionen, må man forstå korrosionens elektrokemiske natur. Rent vand har meget lille virkning på rent jern, men denne situation forekommer sjældent. Under de fleste omstændigheder foreligger der en tendens til, at jern vil opløses i vand, og der frigøres to elektroner for hvert atom, som opløses. Disse elektroner overføres til hydrogenioner, der er tilstede i vand, og ionerne reduceres til elementært, gasformigt hydrogen. Al virkning hører op på dette stadium, hvis hydrognet forbliver på overfladen af metallet, fordi der dannes et beskyttende overtræk, der interfererer med passagen af elektroner. Imidlertid tjener ethvert middel, der forøger antallet af hydrogenioner, der er tilstede i vandet, eller som vil fjerne den beskyttende film, til at forøge korrosionshastigheden.in historical terms, the effect of dissolved gases, such as oxygen and carbon dioxide, have been two of the main factors leading to condensate corrosion. To understand the role of oxygen and carbon dioxide in corrosion, one must understand the electrochemical nature of corrosion. Pure water has very little effect on pure iron, but this situation rarely occurs. In most circumstances, there is a tendency for iron to dissolve in water and two electrons are released for each atom that dissolves. These electrons are transferred to hydrogen ions present in water and the ions are reduced to elemental gaseous hydrogen. Any effect ceases at this stage if the hydrogen remains on the surface of the metal because a protective coating is formed which interferes with the passage of electrons. However, any agent which increases the number of hydrogen ions present in the water or which will remove the protective film serves to increase the rate of corrosion.

Når carbondioxid opløses, reagerer det med vand til dannelse af carbonsyre, som leverer yderligere aktivt hydrogen til systemet. Jern fortrænger hydrogenet fra denne syre. Når der også foreligger oxygen i vandet, finder der en tofoldig reaktion sted. Nogle molekyler af oxygen kombineres med det fortrængte hydrogen og udsætter således metallet for et frisk angreb. Andre oxygenmolekyler kombineres med jernioner til dannelse af uopløselige rustforbindelser.When carbon dioxide dissolves, it reacts with water to form carbonic acid, which supplies additional active hydrogen to the system. Iron displaces the hydrogen from this acid. When oxygen is also present in the water, a two-fold reaction takes place. Some molecules of oxygen are combined with the displaced hydrogen, thus exposing the metal to a fresh attack. Other oxygen molecules are combined with iron ions to form insoluble rust compounds.

En større korroderende indflydelse end den blotte opløsende tendens af jern er eksistensen af en heterogen overflade i kommercielt jern og stål på grund af forekomsten af overfladiske mangler, der har tendens til at danne galvanisk element med det tilstødende basismetal. Elektroner bliver frigjort fra anoderne af disse galvaniske elementer til hydrogenionerne ved den tilstødende katiodiske overflade, hvorved det korroderende areal forøges og korrosionshastigheden accelereres.A greater corrosive influence than the mere dissolving tendency of iron is the existence of a heterogeneous surface in commercial iron and steel due to the presence of superficial defects which tend to form galvanic element with the adjacent base metal. Electrons are released from the anodes of these galvanic elements to the hydrogen ions at the adjacent cathodic surface, thereby increasing the corrosive area and accelerating the corrosion rate.

Det første korrosionsprodukt kan konverteres til ferri-oxid, der kun udviser en løs adhæsion, og som gør korrosionen endnu mere udpræget ved at afblokere arealer, så oxygen kan få adgang. Disse arealer bliver anodiske, og der frembringes galvaniske jernoxid-elementer. Jernet under oxidudfældningen opløses derpå, og der udvikles kraterdannelse. Som resultat fremkommer der et angreb af carbondioxid, hvorved metaltykkelsen forringes, og hvorved der dannes riller i metallet.The first corrosion product can be converted to ferric oxide which exhibits only a loose adhesion and which makes the corrosion even more pronounced by blocking areas so that oxygen can be accessed. These areas become anodic and galvanic iron oxide elements are produced. The iron during the oxide precipitation is then dissolved and crater formation is developed. As a result, there is an attack of carbon dioxide, thereby reducing the metal thickness and thereby forming grooves in the metal.

For de systemer, som tillader det, vil filmdannende aminer frembringe beskyttelse mod kondensatkorrosion mod både oxygen og carbondioxid. Imidlertid kan mange industrielle systemer ikke tåle filmdannende aminer og må gøre brug af neutraliserende aminer.For the systems that allow, film-forming amines will provide condensate corrosion protection against both oxygen and carbon dioxide. However, many industrial systems cannot withstand film-forming amines and must make use of neutralizing amines.

Den ideelle neutraliserende amin bør udvise følgende egenskaber: 1. Fordelingsforholdet bør være så højt, at en betydelig mængde af den neutraliserende amin, der er tilført kedlen, vil genfindes i kondensatet. Dette vil reducere tabet af neutraliserende amin via udblæsning.The ideal neutralizing amine should exhibit the following characteristics: 1. The distribution ratio should be so high that a significant amount of the neutralizing amine supplied to the boiler will be found in the condensate. This will reduce the loss of neutralizing amine via blowout.

2. Fordelingsforholdet bør ikke være for højt for at holde tab hidrørende fra luftning og udluftning på et minimum. Fordelingsforholdet er forholdet mellem mængden af amin i dampfasen og mængden af amin i væskefasen .2. The distribution ratio should not be too high to minimize losses from aeration and venting. The distribution ratio is the ratio of the amount of amine in the vapor phase to the amount of amine in the liquid phase.

3. Værdien af basiciteten bør være moderat høj eller meget høj, således at aminen på effektiv måde vil neutralisere hele den mængde af carbondioxid, der findes .3. The value of the basicity should be moderately high or very high so that the amine will effectively neutralize the entire amount of carbon dioxide present.

4. Den neutraliserende amin bør have en tilstrækkelig hydrolytisk og termisk stabilitet til, at den ikke vil nedbrydes til ammoniak og andre forbindelser i kedlen eller til overophedet eller mættet damp.4. The neutralizing amine should have sufficient hydrolytic and thermal stability that it will not degrade to ammonia and other compounds in the boiler or to superheated or saturated steam.

5. Den neutraliserende amin bør være en vandopløselig væske med henblik på den lette dosering.5. The neutralizing amine should be a water-soluble liquid for ease of dosing.

Man har anvendt sådanne neutraliserende aminer som cyclohexylamin og morpholin, men de udviser adskillige ulemper. P.eks. har cyclohexylamin et højt fordelingsforhold, og som følge deraf undslipper der væsentlige mængder cyclohexylamin fra systemet gennem udluftningsventilen. Morpholin har på den anden side en lav værdi af basiciteten, hvilket betyder, at der kræves mere morpholin til at opnå høje værdier af pH i kondensatsystemet, og det har også et meget lavt fordelingsforhold, hvilket betyder, at væsentlige mængder deraf tabes via udblæsning.Such neutralizing amines as cyclohexylamine and morpholine have been used, but they exhibit several disadvantages. P.eks. For example, cyclohexylamine has a high distribution ratio and, as a result, significant amounts of cyclohexylamine escape from the system through the vent valve. Morpholine, on the other hand, has a low value of the basicity, which means that more morpholine is required to obtain high values of pH in the condensate system, and it also has a very low distribution ratio, which means that significant amounts thereof are lost via blowout.

Korrosionsinhibitoren ifølge opfindelsen eliminerer de ovenfor angivne ulemper af cyclohexylamin og morpholin, idet den indeholder methoxypropylamin, som har et meget ønskværdigt fordelingsforhold og en ret høj basicitets-værdi, og i det hydrazinet fungerer som et opfangnings-middel for oxygen.The corrosion inhibitor of the invention eliminates the above-mentioned disadvantages of cyclohexylamine and morpholine in that it contains methoxypropylamine, which has a very desirable distribution ratio and a rather high basicity value, and in which the hydrazine acts as an oxygen scavenger.

Under drift bør man opretholde korrosionsinhibitorkoncentrationer på 22 til 1000 mg/1, fortrinsvis 85 til 100 mg/1, i vanddampkondensatsystemet. Korrosionsinhibitoren bør indeholde fra ca. 85% til ca. 99% methoxypropylamin og fra ca. 1% til ca. 15% af oxygenkorrosionsinhibitoren. Korrosionsinhibitoren ifølge opfindelsen kan tilføres til vanddampkondensatsystemet, som behandles ved konventionelle væsketilførselsorganer, eller den kan tilføres til fødevandet til kedlen eller direkte til vanddamptilførselsledningerne.During operation, corrosion inhibitor concentrations of 22 to 1000 mg / l, preferably 85 to 100 mg / l, should be maintained in the water vapor condensate system. The corrosion inhibitor should contain from approx. 85% to approx. 99% methoxypropylamine and from approx. 1% to approx. 15% of the oxygen corrosion inhibitor. The corrosion inhibitor of the invention can be supplied to the water vapor condensate system treated by conventional liquid supply means or it can be supplied to the boiler feed water or directly to the water vapor supply lines.

De følgende eksempler skal illustrere anvendelsen af methoxypropylamin i kombination med hydrazin som korrosionsinhibitor for vanddampkondensat, i henhold til den tekniske lære ifølge opfindelsen.The following examples are intended to illustrate the use of methoxypropylamine in combination with hydrazine as a water vapor condensate corrosion inhibitor, according to the technical teachings of the invention.

EKSEMPEL 1EXAMPLE 1

Fordelingsforhold af et antal neutraliserende aminer blev beregnet ved at fremstille opløsninger af hver amin, der har en koncentration på 100 mg/1, og ved at tilsætte 500 ml af denne opløsning til en saltvands-beholder, der langsomt og ensartet bliver opvarmet, således at der produceres 100 ml destillat hver 40' minut. Yderligere opløsning indføres manuelt til saltvands-beholderen hvert 5' til hvert 10' minut for at bibeholde opløsningen i saltvands-beholderen på 500 ml mærket.Distribution ratios of a number of neutralizing amines were calculated by preparing solutions of each amine having a concentration of 100 mg / l and adding 500 ml of this solution to a brine vessel which is slowly and uniformly heated so that 100 ml distillate is produced every 40 'minutes. Additional solution is manually added to the saline container every 5 'to every 10' minutes to maintain the solution in the 500 ml labeled saline container.

Hver 100 ml aliquot af destillat opsamles, og pH bestemmes, indtil der opnås et konstant pH for tre på hinanden følgende aliquote mængder. Dette tages som tegn på, at etableringen af ligevægtsbetingelser foreligger. Ved ligevægt bliver saltvandet og de sluttelige 100 ml analyseret ved gaskromatografi for at bestemme mængden af amin i hver og fordelingsforholdet (DR), beregnet i henhold til følgende formel:Each 100 ml aliquot of distillate is collected and the pH is determined until a constant pH is obtained for three consecutive aliquots. This is taken as evidence that equilibrium conditions are being established. At equilibrium, the brine and the final 100 ml are analyzed by gas chromatography to determine the amount of amine in each and every partition ratio (DR) calculated according to the following formula:

Figure DK152766BD00061

På lignende måde beregnes basicitetsværdien (Kfc>) eller målet for aminens evne til at reagere med carbondioxid i henhold til formlen:Similarly, the basicity value (Kfc>) or the measure of the amine's ability to react with carbon dioxide is calculated according to the formula:

Figure DK152766BD00062

hvor [BH+], [OH-] og [B°] er defineret som: [BH+] = koncentration af dissocieret amin [0H“] = hydroxidkoncentration [B°] = koncentration af fri, udissocieret aminwhere [BH +], [OH-] and [B °] are defined as: [BH +] = concentration of dissociated amine [OH]] = hydroxide concentration [B °] = concentration of free, undissociated amine

Resultaterne af disse forsøg og beregninger er vist i tabel 1.The results of these experiments and calculations are shown in Table 1.

TABEL 1 ÅminegenskaberTABLE 1 River properties

Mole- Fordelings- kylvæqt _Kh forholdMole- Distribution cool weight _Kh ratio

Cyclohexylamin 89 153 x 10“® 3,8Cyclohexylamine 89 153 x 10 ”® 3.8

Morpholin 87 2,4 x 10“® 0,4Morpholine 87 2.4 x 10 “0.4

Diethylaminethanol 117 52 x 10“® 2,7 2-amino,2-methyl- propanol 89 40 x 10“® 0,3Diethylamine Ethanol 117 52 x 10 10® 2.7 2-Amino, 2-methylpropanol 89 40 x 10 10® 0.3

Methoxypropylamin 89 130 x 10“® 1,0Methoxypropylamine 89 130 x 10 ”® 1.0

Hydrazin 32 1,7 x 10“® EKSEMPEL 2Hydrazine 32 1.7 x 10 “EXAMPLE 2

Den hydrolytisk-termiske stabilitet af forskellige neutraliserende aminer måles ved en prøve, hvori den neutraliserende koncentration på 1000 mg/1 autoklaveres i 24 timer ved 42,2 kg/cm^ (254 °C) og den sluttelige koncentration af ammoniak måles. Resultaterne af denne prøve er angivet i tabel 2.The hydrolytic-thermal stability of various neutralizing amines is measured by a sample in which the neutralizing concentration of 1000 mg / l is autoclaved for 24 hours at 42.2 kg / cm 2 (254 ° C) and the final concentration of ammonia is measured. The results of this sample are given in Table 2.

TABEL 2TABLE 2

Amin mg/1 NH3Amine mg / l NH3

Methoxypropylamin <1,0Methoxypropylamine <1.0

Morpholin 1,6Morpholine 1.6

Cyclohexylamin 3,3Cyclohexylamine 3.3

Diethylaminoethanol* 2,4Diethylaminoethanol * 2.4

Aminomethylpropanol 124,0 * Diethylaminoethanol nedbrydes i væsentligt omfang til diethylamin.Aminomethylpropanol 124.0 * Diethylaminoethanol is substantially degraded to diethylamine.

EKSEMPEL 3EXAMPLE 3

Et kondensatprøvesystem anvendes til at evaluere neutraliserende aminer. Dette system omfatter en kedel, der er i stand til at producere 45 kg/time af vanddamp under et tryk af 14 kg/cm , pumper og doseringsorganer til at kontrollere sammensætningen af suppleringsvandet til kedlen, og kølespiraler med temperaturkontrolorganer til at kondensere vanddampen. Kondensatet bliver recirkuleret via et prøvekredsløb, hvor korrosionshastigheden evalueres med metalstykker og korrosometerprøver. Prøvevandet er destilleret vand, som indeholder <1 mg/1 SO4, <1 mg/1 Cl, <1 mg/1 SIO2 og 10 mg/1 CO2.A condensate test system is used to evaluate neutralizing amines. This system includes a boiler capable of producing 45 kg / h of steam under a pressure of 14 kg / cm, pumps and metering means to control the composition of the boiler supplementary water, and cooling coils with temperature control means to condense the steam. The condensate is recycled via a test circuit where the corrosion rate is evaluated with metal pieces and corrosometer samples. The test water is distilled water containing <1 mg / 1 SO4, <1 mg / 1 Cl, <1 mg / 1 SIO2 and 10 mg / 1 CO2.

I tabel 3 anføres resultaterne af korrosionsprøver i dette system.Table 3 lists the results of corrosion tests in this system.

TABEL 3TABLE 3

Korrosionshastighed/ % reduk-Koncen- tion i forhold Inhibitor pH tration til blindprøveCorrosion rate /% reduction Concentration in relation to inhibitor pH tration to blank

Blindprøve --- 0 0 %Blind sample --- 0 0%

Cyclohexylamin 8,5 37,5 mg/1 48 %Cyclohexylamine 8.5 37.5 mg / l 48%

Morpholin 8,5 152 mg/1 73 %Morpholine 8.5 152 mg / l 73%

Methoxy- propylamin 8,5 106 mg/1 75 % EKSEMPEL 4Methoxy-propylamine 8.5 106 mg / l 75% EXAMPLE 4

Kondensatprøvesystemet fra eksempel 3 blev anvendt til påvisning af effekten af tilsætningen af hydrazin til methoxypropylamin ved inhiberingen af korrosion.The condensate test system of Example 3 was used to demonstrate the effect of the addition of hydrazine to methoxypropylamine in the inhibition of corrosion.

TABEL 4 Mængde af Inhibering pr.TABLE 4 Amount of Inhibition Per

inhibitor Inhibe- ppm af tilgængeinhibitor pH i systemet ring ligt produktinhibitor Inhibit ppm of the access inhibitor pH in the systemic product

Blindprøve --- ·--- 0 % 0,00 % MPA 8,5 106 ppm 75 % 0,71 % 7% hydrazin/ 93% MPA 8,5 61 ppm 83 % 1,36 % 15% hydrazin/ 85% MPA 8,5 61 ppm 71 % 1,16 %Blind sample --- · --- 0% 0.00% MPA 8.5 106 ppm 75% 0.71% 7% hydrazine / 93% MPA 8.5 61 ppm 83% 1.36% 15% hydrazine / 85% MPA 8.5 61 ppm 71% 1.16%

Hydrazin 8,5 22 ppm 19 % 0,85 % 1% hydrazin/ 99% MPA 8,5 49,5 ppm 55 % 1,11 % * MPA = methoxypropylaminHydrazine 8.5 22 ppm 19% 0.85% 1% hydrazine / 99% MPA 8.5 49.5 ppm 55% 1.11% * MPA = methoxypropylamine

Claims (4)

1. Korrosionsinhibitor for vanddampkondensatsystemer, kendetegnet ved, at den i det væsentlige består af methoxypropylamin og hydrazin.1. Corrosion inhibitor for water vapor condensate systems, characterized in that it consists essentially of methoxypropylamine and hydrazine. 2. Korrosionsinhibitor ifølge krav-1, kendetegnet ved, at den indeholder mellem 1 og 15 vægt-% hydrazin.Corrosion inhibitor according to claim 1, characterized in that it contains between 1 and 15% by weight of hydrazine. 3. Fremgangsmåde til inhibering af korrosion i vanddampkondensatsystemer, kendetegnet ved, at man opretholder en koncentration på mindst 22 mg/1 af korrosionsinhibitoren ifølge krav 1 og 2.A method of inhibiting corrosion in water vapor condensate systems, characterized in that a concentration of at least 22 mg / l of the corrosion inhibitor according to claims 1 and 2 is maintained. 4. Fremgangsmåde ifølge krav 3, kendetegnet ved, at korrosionsinhibitoren indeholder mellem 1 og 15 vægt-% hydrazin.Process according to claim 3, characterized in that the corrosion inhibitor contains between 1 and 15% by weight of hydrazine.
DK556378A 1977-12-12 1978-12-11 CORROSION INHIBITOR FOR WATER Vapor condensate systems, AND PROCEDURES FOR INHIBITING CORROSION SEED SYSTEMS DK152766C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US85934277A 1977-12-12 1977-12-12
US85934277 1977-12-12
US90833478A 1978-05-22 1978-05-22
US90833478 1978-05-22

Publications (3)

Publication Number Publication Date
DK556378A DK556378A (en) 1979-06-13
DK152766B true DK152766B (en) 1988-05-09
DK152766C DK152766C (en) 1988-10-03

Family

ID=27127515

Family Applications (1)

Application Number Title Priority Date Filing Date
DK556378A DK152766C (en) 1977-12-12 1978-12-11 CORROSION INHIBITOR FOR WATER Vapor condensate systems, AND PROCEDURES FOR INHIBITING CORROSION SEED SYSTEMS

Country Status (8)

Country Link
EP (1) EP0002634B1 (en)
JP (1) JPS5492535A (en)
AU (1) AU521299B2 (en)
CA (1) CA1105695A (en)
DE (1) DE2860673D1 (en)
DK (1) DK152766C (en)
IE (1) IE47613B1 (en)
IT (1) IT1107785B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350606A (en) * 1980-10-03 1982-09-21 Dearborn Chemical Company Composition and method for inhibiting corrosion
US4557835A (en) * 1983-09-19 1985-12-10 Westinghouse Electric Corp. Process for removal of dissolved oxygen from steam generation systems
US5641396A (en) * 1995-09-18 1997-06-24 Nalco/Exxon Energy Chemicals L. P. Use of 2-amino-1-methoxypropane as a neutralizing amine in refinery processes
JP5034483B2 (en) * 2006-12-19 2012-09-26 栗田工業株式会社 Anticorrosive for reducing erosion and corrosion
JP5691134B2 (en) * 2009-03-31 2015-04-01 栗田工業株式会社 How to treat boilers that are not operating
JP6215511B2 (en) * 2010-07-16 2017-10-18 栗田工業株式会社 Anticorrosive for boiler
US11510351B2 (en) 2019-01-04 2022-11-22 Engent, Inc. Systems and methods for precision placement of components

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2793944A (en) * 1951-08-30 1957-05-28 Universal Oil Prod Co Stabilization of organic compounds
LU36675A1 (en) * 1957-12-19
US3728281A (en) * 1970-04-02 1973-04-17 Fisons Ltd Corrosion inhibiting composition containing hydrazine and a pyrazolidone or an aminophenol
US3983048A (en) * 1972-12-26 1976-09-28 Olin Corporation Composition for accelerating oxygen removal comprised of a mixture of aqueous hydrazine and an aryl amine compound
US4062764A (en) * 1976-07-28 1977-12-13 Nalco Chemical Company Method for neutralizing acidic components in petroleum refining units using an alkoxyalkylamine

Also Published As

Publication number Publication date
DE2860673D1 (en) 1981-08-06
IE47613B1 (en) 1984-05-02
AU521299B2 (en) 1982-03-25
DK152766C (en) 1988-10-03
CA1105695A (en) 1981-07-28
EP0002634A1 (en) 1979-06-27
EP0002634B1 (en) 1981-04-29
AU4220378A (en) 1979-06-21
JPS6140758B2 (en) 1986-09-10
IT1107785B (en) 1985-11-25
IT7852260A0 (en) 1978-12-12
DK556378A (en) 1979-06-13
IE782443L (en) 1979-06-12
JPS5492535A (en) 1979-07-21

Similar Documents

Publication Publication Date Title
US4192844A (en) Methoxypropylamine and hydrazine steam condensate corrosion inhibitor compositions and methods
JPS5942073B2 (en) Anticorrosion composition
US5989440A (en) Method of using oxygen scavenger and removing oxygen from water
JPS60248287A (en) Deoxidation composition and method
JP2004211195A (en) Metal anticorrosive, corrosion prevention method for metal, and hydrogen chloride generation preventive and hydrogen chloride prevention method in crude oil topping plant
SG187105A1 (en) Anticorrosive for boiler
US4681737A (en) Stabilized sodium erythorbate boiler corrosion inhibitor compositions and methods
DK152766B (en) CORROSION INHIBITOR FOR WATER Vapor condensate systems, AND PROCEDURES FOR INHIBITING CORROSION SEED SYSTEMS
Quraishi et al. Development and testing of all organic volatile corrosion inhibitors
KR101938142B1 (en) Water treatment composition containing carbohydrazide for power plant boiler system
US4282178A (en) Use of hydrazine compounds as corrosion inhibitors in caustic solutions
CN109868477B (en) Vapor phase corrosion inhibitor and preparation method thereof
US2562549A (en) Treatment of steam systems
KR100315496B1 (en) Method for Inhibiting Corrosion of Boiler Condensation System Using Corrosion Inhibiting Composition
KR101654700B1 (en) Water treatment composition containing diethyl hydroxylamine for power plant boiler system
JPS5828349B2 (en) Boiler water treatment chemicals
JPH08299968A (en) Ph adjustor for boiler water system
RU2515871C2 (en) Inhibitor of carbonic acid corrosion for steam-generating installations of low and medium pressure aminat pk-1
JP6806186B2 (en) Initial treatment agent for circulating cooling water and initial treatment method for circulating cooling water system
JPS5827350B2 (en) Kinzokufushiyokuboushizai
KR20190067015A (en) Carbohydrazide containing water treatment coloring composition for power plant boiler system
US5419837A (en) Hindered amines for treating industrial water systems
KR100896518B1 (en) Composition for preventing corrosion anc scale of boiler and treatment method of water for boiler
CA1131435A (en) Hydroquinone and mu-amine compositions as oxygen scavengers for use in aqueous mediums
Umer et al. Inhibitors for eliminating corrosion in steam and condensate lines

Legal Events

Date Code Title Description
PBP Patent lapsed