JPS6140610B2 - - Google Patents
Info
- Publication number
- JPS6140610B2 JPS6140610B2 JP14517082A JP14517082A JPS6140610B2 JP S6140610 B2 JPS6140610 B2 JP S6140610B2 JP 14517082 A JP14517082 A JP 14517082A JP 14517082 A JP14517082 A JP 14517082A JP S6140610 B2 JPS6140610 B2 JP S6140610B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- crystallized glass
- heat
- present
- strengthening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011521 glass Substances 0.000 claims description 60
- 238000002425 crystallisation Methods 0.000 claims description 11
- 230000008025 crystallization Effects 0.000 claims description 11
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 9
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 8
- 239000002344 surface layer Substances 0.000 claims description 8
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 4
- 238000005728 strengthening Methods 0.000 description 21
- 238000010438 heat treatment Methods 0.000 description 19
- 239000003795 chemical substances by application Substances 0.000 description 18
- 238000000034 method Methods 0.000 description 12
- 239000003085 diluting agent Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 238000005452 bending Methods 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 230000035939 shock Effects 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000003513 alkali Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010411 cooking Methods 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000004200 microcrystalline wax Substances 0.000 description 1
- 235000019808 microcrystalline wax Nutrition 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
Landscapes
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
- Surface Treatment Of Glass (AREA)
- Glass Compositions (AREA)
Description
本発明は、低膨張で且つ高い機械的強度を有す
る結晶化ガラスの製造方法に関する。
SiO2―Al2O3―Li2O系結晶化ガラスは、熱膨張
係数が一般的に30×10-7/℃(30〜380℃)以下
と低く、熱衝撃に強いところから調理器等の構成
材料として広く用いられている。近年、加熱源を
直接表面に露出させずにトツププレートを設けた
電気又はガス調理器にも、このトツププレートの
材料としてかかる熱衝撃性に優れた結晶化ガラス
が用いられている。トツププレートとしては、優
れた耐熱衝撃性とともに、この上に時として大き
い衝撃を受けるため、高い機械的強度特に耐衝撃
強度が要求される。例えば米国アンダーライター
ズラボラトリーズ(Underwriters
Laboratories)規格858によれば、トツププレー
トの中央部に535gの鋼球を54.1cmの高さから落
下させても割れないことが要求される。この規格
を満たすには、結晶化ガラスの曲げ強度は少なく
とも2500Kg/cm2以上の値を有する必要があると考
えられる。しかし、通常SiO2―Al2O3―Li2O系低
膨張性結晶化ガラスの曲げ強度はたかだか1000〜
1400Kg/cm2程度にとどまつている。結晶化ガラス
の曲げ強度を増大させるために、いくつかの方法
が提案されている。しかし、例えば特公昭45―
4870のようにガラス組成中に強度を向上させる作
用のあるFを含有させる方法は、Fがガラス溶融
中に熱発するので公害対策上問題があり、又、特
公昭47―492999のように結晶化ガラスをイオン交
換処理し、表面層に圧縮応力を生じさせて強化す
る方法は、結晶化熱処理後溶融塩に被処理物を接
触させる特別な工程を必要とするものであり、実
用上問題がある。
そこで本発明者は、低膨張性結晶化ガラスの機
械的強度を向上させるために種々検討を加えた結
果、SiO2―Al2O3―Li2O系の組成を有する結晶性
ガラス、即ち、結晶化可能なガラスの成形品を熱
処理して結晶化する過程において、該結晶性ガラ
ス成形品の表面にNaおよび/又はSを含有する
化合物を接触させながら熱処理し、表面層の結晶
化を促進させることにより低膨張で且つ高強度の
結晶化ガラスが得られることを見出し、ここに本
発明として提案する。
結晶化ガラスは、よく知られているようにガラ
ス原料を溶融し、成形した後このガラス成形品を
熱処理して結晶化することにより製造される。結
晶化ガラスには熱膨張係数が50〜130×10-7℃の
高膨張性で高強度ののものもあるが、これは熱衝
撃に対して弱い。本発明の製造方法で対象とする
のは、熱衝撃に強い熱膨張係数が30×10-7/℃以
下の低膨張性のSiO2―Al2O3―Li2O系結晶化ガラ
スであり、本発明はこの結晶化ガラスに高い機械
的強度を具備させることを意図している。本発明
の実施に当つては、この系の結晶化ガラスとし
て、重量%でSiO255〜75、Al2O315〜30、Li2O2
〜6、MgO0〜5、ZnO0〜5、P2O50〜5、
ZrO20〜5、TiO21〜15、Na2O0〜5、K2O0〜
5、その他微量のAS2O3、Sb2O3の清澄剤を含む
組成からなり、主結晶相としてβ―スポジユーメ
ン(Li2O・Al2O3・4SiO2)を生成するものが好ま
しく適当である。
本発明は、かかる結晶化ガラスの製造に当つ
て、熱処理前の結晶性ガラスの表面にNaおよ
び/又はSを含有する化合物(以下強化処理剤と
呼ぶ)を被覆しておき、次の熱処理工程中、結晶
性ガラスの表面と強化処理剤が接触状態にあるよ
うにする。
本発明者は、強化処理剤と接触させて熱処理し
た結晶化ガラスの表面層を観察したところ、そう
いう処理を施さないで熱処理した結晶化ガラスの
表面層と比較して、表面部分の結晶化が促進さ
れ、ムライト(3Al2O3・2SiO2)その他の結晶相
が析出していることを認めた。表面層において結
晶化が促進される理由については十分明らかでは
ない。本発明において結晶性ガラスと接触させる
強化処理剤には、Na+、Zn++、Mg++など結晶化
ガラス中の他のイオンとイオン交換する可能性の
あるアルカリイオンが含まれているが、本発明の
結晶化ガラス中の表面層におけるこれらのイオン
の分布をEPMA(Electron probe micro
analyzer)で調べた結果、これらのイオンは結晶
化ガラス中に全く拡散していないことが確かめら
れた。従つて、本発明の強化の機構は、イオン交
換による強化の機構、すなわち、結晶化ガラス中
のアルカリイオンをより大きなアルカリイオンと
交換することによつて表面層に圧縮応力を発生さ
せるものとは異なる。
本発明方法によれば、表面層の結晶化が促進さ
れガラス質が減少する結果、得られる結晶化ガラ
スの表面の光沢は悪くなる傾向がある。しかし、
本発明が特に適用の対象にしている調理器用トツ
ププレートでは、本発明方法は片面のみ実施さ
れ、その片面がトツププレートの裏面として使用
されるので問題はない。
本発明において強化処理剤を結晶性ガラスの表
面に被覆するには次のような方法がある。(1)強化
処理剤を、水、アルコール等に溶かした溶液をス
プレー法により結晶性ガラスに被覆する。(2)強化
処理剤と希釈剤を混合し、水などを加えてスラリ
ー状にしたものを結晶性ガラスにデイツピング、
スクリーン印刷などにより被覆する。希釈剤とし
ては、アルミナ、ムライト、ジルコニアなどの耐
火性物質の粉末が好ましい。スラリーに適当な粘
着性を与えて被覆作業を行いやすくするために、
カルボキシル、メチルセルロースなどのバインダ
ーを添加することが有効である。(3)強化処理剤と
希釈剤を混合したものを乾燥した粉末の状態で結
晶性ガラスにふりかける。2枚重ねた結晶性ガラ
スの板の間に強化処理剤および希釈剤が存在する
状態で熱処理が行なわれる場合には、振り掛ける
量が極く少なく、且つ部分的に振に掛ける量が不
均一であつても板全体が均一に強化されることが
分つた。この理由としては、強化処理剤の分解又
は揮発によつて発生する気体(Naおよび/又は
Sを含むものと考えられる)が、2枚の板の間に
閉じ込められ、この気体が結晶性ガラスと接触す
ることによつて強化処理剤が固体状態で結晶性ガ
ラスと接触する場合に得られるのと同様な強化効
果が得られるものと考えられる。
このようにして、強化処理剤を被覆した結晶性
ガラスを熱処理炉に入れ所定の温度スケジユール
で結晶化処理する。一般に、この結晶化熱処理
は、ガラス中に結晶核を生成する温度に加熱して
一定時間保持し、次いで、更に温度を上げて非晶
質のガラスが十分に結晶化する温度に保持するス
ケジユールが採られる。結晶化が完了した後、熱
処理炉から結晶化ガラスを取り出し、次いで、表
面に付着している強化処理剤をハケ等で取り除い
て清浄な表面を有する製品とする。
次に本発明の実施例について説明する。
実施例 1〜9
The present invention relates to a method for producing crystallized glass having low expansion and high mechanical strength. SiO 2 ―Al 2 O 3 ―Li 2 O-based crystallized glass has a low coefficient of thermal expansion, generally less than 30 × 10 -7 /℃ (30 to 380℃), and is highly resistant to thermal shock, so it is used in cooking utensils, etc. It is widely used as a constituent material. In recent years, crystallized glass, which has excellent thermal shock resistance, has been used as the material for the top plate of electric or gas cooking appliances that are provided with a top plate that does not expose the heating source directly to the surface. The top plate is required not only to have excellent thermal shock resistance but also to have high mechanical strength, particularly impact resistance, since it is sometimes subjected to large impacts. For example, Underwriters Laboratories (U.S.)
According to Standard 858 (Laboratories), it is required that a 535g steel ball not be broken in the center of the top plate even if it is dropped from a height of 54.1cm. In order to meet this standard, it is considered that the bending strength of crystallized glass needs to have a value of at least 2500 Kg/cm 2 or more. However, the bending strength of SiO 2 -Al 2 O 3 -Li 2 O-based low-expansion crystallized glass is usually at most 1000~
It remains at around 1400Kg/cm2. Several methods have been proposed to increase the bending strength of crystallized glass. However, for example,
The method of incorporating F, which has the effect of improving strength, into the glass composition, as in 4870, poses a problem in terms of pollution control, as F generates heat during glass melting, and it also prevents crystallization, as in Japanese Patent Publication No. 47-492999. The method of subjecting glass to ion exchange treatment to create compressive stress on the surface layer to strengthen it requires a special process in which the object to be treated comes into contact with molten salt after crystallization heat treatment, which poses practical problems. . Therefore, as a result of various studies to improve the mechanical strength of low-expansion crystallized glass, the inventors of the present invention have developed a crystalline glass having a SiO 2 -Al 2 O 3 -Li 2 O system composition, that is, In the process of heat-treating and crystallizing a crystallizable glass molded product, the surface of the crystallizable glass molded product is heat-treated while contacting a compound containing Na and/or S to promote crystallization of the surface layer. It has been found that a low-expansion and high-strength crystallized glass can be obtained by this method, and the present invention is proposed here. As is well known, crystallized glass is produced by melting a glass raw material, shaping it, and then heat-treating the glass molded product to crystallize it. Some crystallized glasses have high expansion coefficients of 50 to 130 x 10 -7 °C and high strength, but they are vulnerable to thermal shock. The manufacturing method of the present invention targets low-expansion SiO 2 -Al 2 O 3 -Li 2 O-based crystallized glass that is resistant to thermal shock and has a thermal expansion coefficient of 30 × 10 -7 /°C or less. The present invention intends to provide this crystallized glass with high mechanical strength. In carrying out the present invention, the crystallized glass of this system contains SiO 2 55-75, Al 2 O 3 15-30, Li 2 O2 in weight%.
~6, MgO0~5, ZnO0~5, P 2 O 5 0~5,
ZrO2 0 ~5, TiO2 1 ~15, Na2O0 ~5, K2O0 ~
5. It is preferable that the composition contains trace amounts of clarifiers such as AS 2 O 3 and Sb 2 O 3 and produces β-spodium (Li 2 O・Al 2 O 3・4SiO 2 ) as the main crystal phase. It is. In the production of such crystallized glass, the present invention coats the surface of the crystallized glass with a compound containing Na and/or S (hereinafter referred to as a strengthening agent) before heat treatment, and then performs the next heat treatment step. During the heating process, the surface of the crystalline glass and the strengthening treatment agent should be in contact with each other. The present inventor observed the surface layer of crystallized glass that had been heat-treated by contacting with a strengthening treatment agent, and found that the crystallization of the surface portion was less than that of crystallized glass that had been heat-treated without such treatment. It was observed that mullite (3Al 2 O 3 .2SiO 2 ) and other crystal phases were precipitated. The reason why crystallization is promoted in the surface layer is not fully clear. In the present invention, the strengthening treatment agent brought into contact with the crystallized glass contains alkali ions that may ion-exchange with other ions in the crystallized glass, such as Na + , Zn ++ , Mg ++ , etc. The distribution of these ions in the surface layer of the crystallized glass of the present invention was measured using EPMA (Electron probe micro
It was confirmed that these ions were not diffused into the crystallized glass at all. Therefore, the strengthening mechanism of the present invention is different from the strengthening mechanism by ion exchange, which generates compressive stress in the surface layer by exchanging alkali ions in crystallized glass with larger alkali ions. different. According to the method of the present invention, the crystallization of the surface layer is promoted and the glassiness is reduced, so that the surface gloss of the obtained crystallized glass tends to deteriorate. but,
In the case of a top plate for a cooker, to which the present invention is particularly applicable, there is no problem because the method of the present invention is carried out on only one side, and that one side is used as the back side of the top plate. In the present invention, the following methods can be used to coat the surface of crystalline glass with the strengthening treatment agent. (1) A solution of a strengthening treatment agent dissolved in water, alcohol, etc. is coated on crystalline glass by a spray method. (2) Mix the strengthening treatment agent and diluent, add water etc. to make a slurry, dip into crystalline glass,
Cover by screen printing, etc. As the diluent, powders of refractory substances such as alumina, mullite, and zirconia are preferred. In order to give the slurry appropriate viscosity and make coating work easier,
It is effective to add a binder such as carboxyl or methyl cellulose. (3) Sprinkle a mixture of a strengthening treatment agent and a diluent on crystalline glass in the form of a dry powder. When heat treatment is performed with the strengthening agent and diluent present between two stacked crystalline glass plates, the amount of sprinkling is extremely small and the amount of sprinkling is uneven in some areas. It was found that the entire board was strengthened evenly. The reason for this is that the gas (possibly containing Na and/or S) generated by the decomposition or volatilization of the strengthening agent is trapped between the two plates, and this gas comes into contact with the crystalline glass. In particular, it is thought that a strengthening effect similar to that obtained when the strengthening treatment agent comes into contact with crystalline glass in a solid state can be obtained. In this manner, the crystalline glass coated with the strengthening treatment agent is placed in a heat treatment furnace and subjected to crystallization treatment at a predetermined temperature schedule. Generally, this crystallization heat treatment involves heating to a temperature that generates crystal nuclei in the glass, holding it for a certain period of time, and then raising the temperature further and holding it at a temperature that sufficiently crystallizes the amorphous glass. taken. After crystallization is completed, the crystallized glass is taken out from the heat treatment furnace, and the strengthening treatment agent adhering to the surface is then removed with a brush or the like to obtain a product with a clean surface. Next, examples of the present invention will be described. Examples 1 to 9
【表】【table】
【表】
本発明の最も簡単な実施方法は、Naおよび/
又はSを含む化合物の水溶液を結晶化前の結晶性
ガラスに被覆し、乾燥後熱処理することである。
重量%でSiO266.4、Al2O322.0、Li2O4.2、
MgO0.5、P2O51.4、ZrO22.3、TiO21.9、
Na2O0.5、K2O0.3、AS2O30.5の組成を有する結
晶性ガラスのムク棒(外径5mm、長さ60mm)を作
り、これに上記第1表の実施例1〜9に示す強化
処理剤溶液を塗布した後熱処理した。熱処理は
750℃で2時間加熱後60℃/時間の速さで1140℃
迄昇温し、1140℃で1時間保持することにより行
つた。この熱処理により得られた結晶化ガラスの
熱膨張係数は11×10-7/℃で、結晶相としてβ―
スポジユーメンが生成した。強化処理剤溶液には
乾燥後の附着強度を増すために、マイクロクリス
タリンワツクスを2%添加した。
熱処理の場合(比較例1)結晶化ガラスの曲げ
強度は1300Kg/cm2であるのに対して、本発明方法
の実施例では平均2500Kg/cm2以上の値を示した。
実施例 10〜13[Table] The simplest way to implement the invention is to
Alternatively, an aqueous solution of a compound containing S may be coated on crystalline glass before crystallization, and heat treatment may be performed after drying.
SiO 2 66.4, Al 2 O 3 22.0, Li 2 O 4.2, in weight%
MgO0.5, P 2 O 5 1.4, ZrO 2 2.3, TiO 2 1.9,
A bar of crystalline glass (outer diameter 5 mm, length 60 mm) having a composition of Na 2 O 0.5, K 2 O 0.3, and AS 2 O 3 0.5 was made, and Examples 1 to 1 in Table 1 above were prepared. After applying the strengthening treatment agent solution shown in No. 9, heat treatment was performed. Heat treatment is
After heating at 750℃ for 2 hours, heat to 1140℃ at a rate of 60℃/hour.
This was carried out by raising the temperature to 1140°C and holding it for 1 hour. The thermal expansion coefficient of the crystallized glass obtained by this heat treatment is 11×10 -7 /℃, and the crystalline phase is β-
Generated by Spodiumen. In order to increase the adhesion strength after drying, 2% microcrystalline wax was added to the strengthening treatment agent solution. In the case of heat treatment (Comparative Example 1), the bending strength of crystallized glass was 1300 Kg/cm 2 , whereas the examples of the method of the present invention showed an average value of 2500 Kg/cm 2 or more. Examples 10-13
【表】
前記の実施例1〜9では強度増大は達成できた
が、結晶化ガラスの表面がコーテイング物質と反
応して表面光沢が失なわれたマツト状態になる傾
向がある。この点を改良するためのに強化処理剤
に希釈剤を混合して使用したものが第2表の実施
例10〜13である。
強化処理剤の水溶液と希釈剤(平均粒径40μ)
を第2表に示す割合に混合し、ペースト状にした
ものを結晶性ガラスに塗布し熱処理した。使用し
た結晶性ガラスは、重量%で、SiO268.2、
Al2O318.8、Li2O2.7、MgC2.6、ZnO1.2、
TiO24.9、Na2O0.5、K2O0.1、AS2O31.0なる組成
を有するムク棒(外径5mm、長さ60mm)である。
熱処理は、740℃で2時間加熱後60℃/時間の速
さで1050℃迄加熱し、この温度に5時間保持する
ことにより行つた。かくして得られた試料は2600
Kg/cm2以上平均曲げ強度を有し、表面の光沢もほ
とんど失われていなかつた。なお、希釈剤(α―
アルミナ)のみを塗布して熱処理した試料(比較
例2)の曲げ強度は1400Kg/cm2の低い値であつ
た。
実施例 14
本発明によつて板状の結晶化ガラスを強化する
場合には、強化処理剤と希釈剤の混合物を粉末状
態で結晶性ガラスの板の表面に振り掛け、もう一
枚の結晶性ガラスをその上に重ねた状態で熱処理
することによつて強度増大の効果が得られる。実
施例1〜9に使用したものと同じ組成を有する結
晶性ガラスの板(大きさ300×400×4mm)を用意
した。振り掛け用粉末は実施例10Na2SO410%水
溶液とαアルミナを混合したペーストを乾燥させ
粉末状態にしたものである。この場合Na2SO4を
水溶液の形で希釈剤と混合するのは必須ではない
が、水溶液の状態で希釈剤と混合する方が均一な
混合状態を得る上で効果がある。結晶性ガラスの
板の上に上記粉末を薄く振り掛けた後、もう一枚
の結晶性ガラスをその上に被せ、740℃に2時間
加熱後、60℃/時間で1050迄昇温し、この温度に
2時間保持した。
板の耐衝撃強度を調べるために535gの鋼球を
板の中央部分に落下させた。この場合振り掛けを
行つた面が裏面になるように衝撃試験を行つた。
振り掛けを行つた板は平均140cmで割れた。一
方、振り掛け処理を行わなかつた板は平均50cmで
割れた。[Table] Although an increase in strength was achieved in Examples 1 to 9, the surface of the crystallized glass reacted with the coating substance and tended to become matte with a loss of surface gloss. In order to improve this point, Examples 10 to 13 in Table 2 use a diluent mixed with the strengthening treatment agent. Aqueous solution and diluent of strengthening treatment agent (average particle size 40μ)
were mixed in the proportions shown in Table 2 and made into a paste, which was applied to crystalline glass and heat-treated. The crystalline glass used had SiO 2 68.2% by weight,
Al 2 O 3 18.8, Li 2 O2.7, MgC2.6, ZnO1.2,
It is a solid rod (outer diameter 5 mm, length 60 mm) having a composition of TiO 2 4.9, Na 2 O 0.5, K 2 O 0.1, and AS 2 O 3 1.0.
The heat treatment was carried out by heating at 740°C for 2 hours, then heating at a rate of 60°C/hour to 1050°C, and maintaining this temperature for 5 hours. The number of samples thus obtained was 2600.
It had an average bending strength of more than Kg/cm 2 and had almost no loss of surface gloss. In addition, diluent (α-
The bending strength of the sample (Comparative Example 2) coated only with alumina and heat treated was a low value of 1400 Kg/cm 2 . Example 14 When a plate-shaped crystallized glass is strengthened according to the present invention, a mixture of a strengthening treatment agent and a diluent is sprinkled in powder form on the surface of a crystallized glass plate, and then another crystallized glass plate is strengthened. The effect of increasing the strength can be obtained by heat-treating the layer while stacking it on top of it. A crystalline glass plate (size: 300 x 400 x 4 mm) having the same composition as that used in Examples 1 to 9 was prepared. The powder for sprinkling was prepared by drying a paste prepared by mixing a 10% Na 2 SO 4 aqueous solution and α-alumina in Example 10 into a powder state. In this case, it is not essential to mix Na 2 SO 4 with the diluent in the form of an aqueous solution, but mixing it with the diluent in the form of an aqueous solution is more effective in obtaining a uniform mixed state. After sprinkling the above powder thinly on a plate of crystalline glass, another sheet of crystalline glass was placed on top of it, heated to 740℃ for 2 hours, and then raised to 1050℃ at a rate of 60℃/hour. It was held for 2 hours. In order to examine the impact strength of the plate, a 535g steel ball was dropped onto the center of the plate. In this case, the impact test was conducted so that the side on which the sprinkling was applied was the back side.
The boards that were sprinkled were broken at an average length of 140 cm. On the other hand, the boards that were not subjected to the sprinkling process cracked at an average length of 50 cm.
Claims (1)
熱処理して、熱膨張係数が30×10-7/℃以下の結
晶化ガラスを製造する方法において、該結晶性ガ
ラス成形品の表面にNaおよび/又はSを含有す
る化合物を接触させながら熱処理し、表面層の結
晶化を促進させたことを特徴とする低膨張性高度
結晶化ガラスを製造する方法。1. In a method for producing crystallized glass having a coefficient of thermal expansion of 30×10 -7 /°C or less by heat-treating a SiO 2 -Al 2 O 3 -Li 2 O-based crystalline glass molded product, the crystalline glass molded product is 1. A method for producing low-expansion highly crystallized glass, characterized in that the surface of the product is heat-treated while being brought into contact with a compound containing Na and/or S to promote crystallization of the surface layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14517082A JPS5935032A (en) | 1982-08-20 | 1982-08-20 | Preparation of crystallized glass having low expansibility and high strength |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14517082A JPS5935032A (en) | 1982-08-20 | 1982-08-20 | Preparation of crystallized glass having low expansibility and high strength |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5935032A JPS5935032A (en) | 1984-02-25 |
JPS6140610B2 true JPS6140610B2 (en) | 1986-09-10 |
Family
ID=15379047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14517082A Granted JPS5935032A (en) | 1982-08-20 | 1982-08-20 | Preparation of crystallized glass having low expansibility and high strength |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5935032A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2551294B2 (en) * | 1992-02-19 | 1996-11-06 | 鳴海製陶株式会社 | Crystallized glass molded article and method for producing the same |
FR2863607B1 (en) | 2003-12-11 | 2006-09-29 | Snc Eurokera | VITROCERAMICS WITH MODIFIED SURFACE AND THEIR PREPARATION |
-
1982
- 1982-08-20 JP JP14517082A patent/JPS5935032A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5935032A (en) | 1984-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101182119B (en) | Low-temperature leadless porcelain enamel composition and preparation method thereof | |
US4196004A (en) | Corrosion resistant glasses that contain chemical additives for application over metal substrates | |
US3775154A (en) | Decorating glass-ceramic materials | |
JPH08253343A (en) | Self-semitranslucent enamel frit for enamel coating of aluminum or aluminum alloy | |
JPS6159257B2 (en) | ||
US5705273A (en) | Method for strengthening dental restorative materials | |
JPS6049145B2 (en) | Method for manufacturing crystallized glass | |
JP3244201B2 (en) | Glass frit composition | |
US5198393A (en) | Rare earth-containing frits having a high glass transition temperature and their use for the production of enamels having improved heat resistance | |
US2866713A (en) | Vitreous phosphate enamels and their use | |
JPS6140610B2 (en) | ||
CN106746740A (en) | A kind of method that induction glass surface crystallization is exchanged by High temperature ion | |
Jacquin et al. | Crystallization of lithium metasilicate from lithium disilicate glass | |
US4582760A (en) | Glazes for glass-ceramic articles | |
JPH0157056B2 (en) | ||
US5264287A (en) | Rare earth-containing frits having a high glass transition temperature and their use for the production of enamels having improved heat resistance | |
JPS58151476A (en) | Manufacture of enameled product | |
JPH0859290A (en) | Frit for acid-resistant enamel and glaze using the same | |
JP5028679B2 (en) | Lead-free crystal ice manufacturing method and decorative plate glass manufacturing method using the same | |
JPS59205479A (en) | Method for applying tensile stress to steel plate | |
JPH0218562B2 (en) | ||
JPH0859291A (en) | Antimicrobial frit and glaze using the same | |
JPS623778B2 (en) | ||
SU1248973A1 (en) | Frit for enamel coating of aluminium and its alloys | |
JPS6119577B2 (en) |