JPH0157056B2 - - Google Patents
Info
- Publication number
- JPH0157056B2 JPH0157056B2 JP57067832A JP6783282A JPH0157056B2 JP H0157056 B2 JPH0157056 B2 JP H0157056B2 JP 57067832 A JP57067832 A JP 57067832A JP 6783282 A JP6783282 A JP 6783282A JP H0157056 B2 JPH0157056 B2 JP H0157056B2
- Authority
- JP
- Japan
- Prior art keywords
- crystallized glass
- glass
- expansion
- strength
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011521 glass Substances 0.000 claims description 69
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 26
- 238000000576 coating method Methods 0.000 claims description 15
- 239000011248 coating agent Substances 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 13
- 238000002425 crystallisation Methods 0.000 claims description 12
- 230000008025 crystallization Effects 0.000 claims description 12
- 239000000843 powder Substances 0.000 claims description 11
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 10
- 239000004094 surface-active agent Substances 0.000 claims description 10
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 9
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 239000002344 surface layer Substances 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910018071 Li 2 O 2 Inorganic materials 0.000 claims description 2
- 125000000129 anionic group Chemical group 0.000 claims description 2
- 239000012190 activator Substances 0.000 claims 1
- CNLWCVNCHLKFHK-UHFFFAOYSA-N aluminum;lithium;dioxido(oxo)silane Chemical compound [Li+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O CNLWCVNCHLKFHK-UHFFFAOYSA-N 0.000 claims 1
- 230000001737 promoting effect Effects 0.000 claims 1
- 229910052644 β-spodumene Inorganic materials 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 description 17
- 238000000034 method Methods 0.000 description 10
- 238000005452 bending Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- -1 alkyl sulfate ester soda salt Chemical class 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000035939 shock Effects 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000006025 fining agent Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002982 water resistant material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/22—Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
- C03C17/23—Oxides
- C03C17/25—Oxides by deposition from the liquid phase
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0018—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
- C03C10/0027—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0036—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
- C03C10/0045—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Ceramic Engineering (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
- Surface Treatment Of Glass (AREA)
- Glass Compositions (AREA)
Description
【発明の詳細な説明】
本発明は、低膨張で且つ大きい機械的強度を有
する結晶化ガラスの製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing crystallized glass having low expansion and high mechanical strength.
SiO2―Al2O3―Li2O系結晶化ガラスは、熱膨張
係数が一般的に30×10-7/℃(30〜380℃)以下
で低く、ために熱衝撃に強いところから調理器等
の構成材料として広く用いられている。近年、加
熱源を直接表面に露出させずにトツププレートを
設けた電気又はガス調理器にも、このトツププレ
ートの材料としてかかる熱衝撃性に優れた結晶化
ガラスが用いられている。トツププレートとして
は、優れた耐熱衝撃性と共に、この上に時として
鋭い衝撃を受けるため、機械的強度特に衝撃強度
の大きい特性が要求される。例えば米国アンダー
ライターズラボラトリーズ(Underwriters
Laboratories)規格858によれば、トツププレー
トの中央部に535gの鋼球を54.1cmの高さから落
下させても割れないことが要求される。この規格
を満たすには、結晶化ガラスの曲げ強度は少なく
とも2500Kg/cm2以上の値を有する必要があると考
えられる。しかし、通常SiO2―Al2O3―Li2O系低
膨張性結晶化ガラスの曲げ強度は、たかだか1000
〜1400Kg/cm2程度にとどまつている。結晶化ガラ
スの曲げ強度を増大させるために、いくつかの方
法が提案されている。しかし、例えば特公昭45―
4870のようにガラス組成中に強度を向上させる作
用のあるFを有させる方法は、Fガラス溶融中に
蒸発するので公害対策上問題があり、また、特公
昭47―49299のように結晶相を有する結晶化ガラ
スをイオン交換処理し、表面層に圧縮応力を生じ
させて強化する方法は、結晶化熱処理後溶融塩液
に被処理物を接触させる特別な工程を必要とする
ものであり、実用上問題がある。 SiO 2 ―Al 2 O 3 ―Li 2 O-based crystallized glass has a low coefficient of thermal expansion, generally less than 30 × 10 -7 /℃ (30 to 380℃), so it is difficult to cook because it is resistant to thermal shock. It is widely used as a constituent material for vessels, etc. In recent years, crystallized glass, which has excellent thermal shock resistance, has been used as the material for the top plate of electric or gas cooking appliances that are provided with a top plate that does not expose the heating source directly to the surface. The top plate is required not only to have excellent thermal shock resistance, but also to have high mechanical strength, particularly high impact strength, since it is sometimes subjected to sharp impacts. For example, Underwriters Laboratories (U.S.)
According to Standard 858 (Laboratories), it is required that a 535g steel ball not be broken in the center of the top plate even if it is dropped from a height of 54.1cm. In order to meet this standard, it is considered that the bending strength of crystallized glass needs to have a value of at least 2500 Kg/cm 2 or more. However, the bending strength of SiO 2 -Al 2 O 3 -Li 2 O-based low-expansion crystallized glass is usually only 1000
It remains at around 1400Kg/cm2. Several methods have been proposed to increase the bending strength of crystallized glass. However, for example,
The method of incorporating F, which has the effect of improving strength, in the glass composition, as in 4870, poses a problem in terms of pollution control, as F evaporates during glass melting. The method of strengthening crystallized glass by ion exchange treatment and creating compressive stress in the surface layer requires a special process of bringing the object to be treated into contact with a molten salt solution after the crystallization heat treatment, and is not practical. There is a problem above.
そこで、本発明者は、低膨張性結晶化ガラスの
機械的強度を向上させるために種々検討を加えた
結果、SiO2―Al2O3―Li2O系の組成を有する結晶
性ガラスいわゆる結晶可能なガラスの成形品を熱
処理して結晶化ガラスを製造する方法において、
該結晶性ガラス成形品の表面にγ―アルミナおよ
び表面活性剤を含有する被覆材を被覆して熱処理
し、表面層の結晶化を促進させることにより低膨
張で且つ高強度の結晶化ガラスが得られることを
見出し、ここに本発明として提案する。 Therefore, as a result of various studies in order to improve the mechanical strength of low-expansion crystallized glass, the inventors of the present invention have developed a crystalline glass having a SiO 2 -Al 2 O 3 -Li 2 O system composition. In a method for producing crystallized glass by heat treating a possible glass molded product,
A low-expansion, high-strength crystallized glass can be obtained by coating the surface of the crystalline glass molded article with a coating material containing γ-alumina and a surfactant and heat-treating it to promote crystallization of the surface layer. The present invention is proposed as the present invention.
結晶化ガラスは、よく知られているように結晶
可能の成分を含むガラス原料を溶融し成形した後
このガラス成形品を熱処理して結晶化することに
より製造される。結晶化ガラスには、熱膨張係数
が50〜130×10-7/℃の高膨張性で高強度のもの
もあるが、これは熱衝撃に対して弱い。本発明の
製造方法で対象とするのは、熱衝撃に強い熱膨張
係数が30×10-7/℃以下の低膨張性のSiO2―
Al2O3―Li2O系結晶化ガラスであり、本発明はこ
の結晶化ガラスに高い機械的強度を具備させるこ
とを意図している。本発明の実施に当つては、こ
の系の結晶化ガラスとして、重量%で、SiO255
〜75、Al2O315〜30、Li2O2〜6、MgO0〜5、
P2O50〜5、ZrO20〜5、TiO21〜15、Na2O0〜
5、K2O0〜5、その他微量のAS2O3、Sb2O3の
清澄剤を含む組成からなり、主結晶相としてβ―
スポジユーメン(Li2O・Al2O3・4SiO2)を生成
するものが好ましく適当である。本発明はかかる
結晶化ガラスの製造に当つて、熱処理前の結晶性
ガラスの表面にγ―アルミナ粉末および表面活性
剤を含有する被覆材を被覆しておき、次の熱処理
期間中、結晶性ガラスの表面とγ―アルミナとが
接触状態にあるようにする。ところで、γ―アル
ミナとは、ボーキサイト、水和酸化アルミニウム
などを約500〜700℃で加熱脱水して得られる酸化
生成物であり、格子欠陥のあるスピネル型構造を
有するものである。本発明者はγ―アルミナ以外
に各種の試薬、シリカ、ジルコニア、ムライト、
コージユライトなどの耐水材料を結晶性ガラスの
表面に塗布し、結晶化熱処理して強度増大効果を
調べたがほとんど効果は認められなかつた。γ―
アルミナは、やや強度を増大する効果があつた
が、γ―アルミナに比べて劣り、実用上採用する
のは好ましくない。 As is well known, crystallized glass is produced by melting and shaping glass raw materials containing crystallizable components, and then heat-treating and crystallizing the glass molded product. Some crystallized glasses have high expansion coefficients of 50 to 130 x 10 -7 /°C and high strength, but they are vulnerable to thermal shock. The production method of the present invention targets low-expansion SiO 2 - which is resistant to thermal shock and has a coefficient of thermal expansion of 30×10 -7 /°C or less.
It is an Al 2 O 3 -Li 2 O based crystallized glass, and the present invention intends to provide this crystallized glass with high mechanical strength. In carrying out the present invention, as the crystallized glass of this system, SiO 2 55
~75, Al 2 O 3 15 ~ 30, Li 2 O 2 ~ 6, MgO 0 ~ 5,
P2O5 0 ~5, ZrO2 0 ~5, TiO2 1~15, Na2O0 ~
5, K 2 O 0 to 5, and other trace amounts of AS 2 O 3 and Sb 2 O 3 as fining agents, with β- as the main crystal phase.
Those that generate spodium (Li 2 O.Al 2 O 3.4SiO 2 ) are preferred and suitable. In the production of such crystallized glass, the present invention covers the surface of the crystalline glass before heat treatment with a coating material containing γ-alumina powder and a surfactant, and during the next heat treatment period, the crystalline glass The surface of the γ-alumina should be in contact with the γ-alumina. By the way, γ-alumina is an oxidation product obtained by heating and dehydrating bauxite, hydrated aluminum oxide, etc. at about 500 to 700°C, and has a spinel-type structure with lattice defects. In addition to γ-alumina, the present inventor has discovered various reagents such as silica, zirconia, mullite,
Water-resistant materials such as cordierite were applied to the surface of crystalline glass and subjected to crystallization heat treatment to investigate the effect of increasing strength, but almost no effect was observed. γ-
Although alumina had the effect of slightly increasing strength, it is inferior to γ-alumina and is not preferred for practical use.
本発明者は、γ―アルミナ粉末を被覆して熱処
理した結晶化ガラスの表面層を観察したところ、
γ―アルミナを被覆しない場合の結晶化ガラスの
表面層と比較して結晶化が促進され、ムライト
(3Al2O3・2SiO2)その他の結晶相が析出してい
ることを認めた。表面層において結晶化が促進さ
れる理由については十分明らかではないが、この
成分のもつ特殊な化学的性質、すなわち、構造的
欠陥があるため活性が高いことに起因するものと
思われる。本発明方法によれば、表面層の結晶化
が促進されガラス質が減少するか若しくは消失し
て、得られる結晶化ガラスの表面の光沢は悪くな
る。しかし、本発明が特に適用の対象としている
調理器用トツププレートでは、本発明方法は片面
のみ実施され、その片面がトツププレートの裏面
として使用されるので問題はない。本発明方法で
用いる被覆材は、γ―アルミナ粉末および表面活
性剤を含有している。γ―アルミナ粉末の粒度
は、5μ以下のように非常にこまかい場合には熱
処理後に結晶化ガラスの表面に付着してマツト状
になる傾向があり好ましくなく、また、あまり粒
度が大きいとガラス表面に密に接触しないので十
分な強度が得られない場合があり、従つて10〜
70μ位の粒度のものが好ましい。表面活性剤につ
いてはその種類に特に制限はないが、陰イオンの
高級アルコール系活性剤、例えばアルキル硫酸エ
ステルソーダ塩、硫酸化ヒマシ油ソーダ塩、ポリ
オキシエチレンオクチルフエニルエーテル硫酸エ
ステルソーダ塩が好ましく、それの15〜70%程度
の濃度の水溶液をγ―アルミナ粉末に対して1〜
30重量%の割合で混合するのが適当である。この
表面活性剤の含有によつてγ―アルミナ粉末の分
散が良くなり、ガラス表面への均質接着が出来、
ためにγ―アルミナ粉末だけの場合に比べて安定
した高い強度を有するものが得られる。 The present inventor observed the surface layer of crystallized glass coated with γ-alumina powder and heat-treated, and found that
Compared to the surface layer of crystallized glass without coating with γ-alumina, crystallization was promoted and it was observed that mullite (3Al 2 O 3 .2SiO 2 ) and other crystal phases were precipitated. The reason why crystallization is promoted in the surface layer is not fully clear, but it is thought to be due to the special chemical properties of this component, ie, the high activity due to the presence of structural defects. According to the method of the present invention, the crystallization of the surface layer is promoted, the glassiness is reduced or disappears, and the surface gloss of the obtained crystallized glass becomes poor. However, in the case of a top plate for a cooker to which the present invention is particularly applicable, there is no problem because the method of the present invention is carried out on only one side, and that one side is used as the back side of the top plate. The coating material used in the method of the present invention contains γ-alumina powder and a surfactant. If the particle size of the γ-alumina powder is very fine, such as 5 μ or less, it tends to adhere to the surface of the crystallized glass after heat treatment and become matte, which is undesirable. Since there is no close contact, sufficient strength may not be obtained, and therefore 10~
A particle size of about 70μ is preferable. The type of surfactant is not particularly limited, but anionic higher alcohol surfactants such as alkyl sulfate ester soda salt, sulfated castor oil ester soda salt, and polyoxyethylene octyl phenyl ether sulfate ester soda salt are preferred. , an aqueous solution with a concentration of about 15 to 70% of that is mixed with γ-alumina powder.
It is appropriate to mix at a ratio of 30% by weight. The inclusion of this surfactant improves the dispersion of the γ-alumina powder and enables homogeneous adhesion to the glass surface.
Therefore, it is possible to obtain a product with stable and high strength compared to the case of using only γ-alumina powder.
かかるγ―アルミナおよび表面活性剤を含む被
覆材を熱処理前の結晶性ガラスの表面に被覆す
る。この被覆の場合、該被覆材を乾燥して粉末状
としたものを直接ふりかける方法もあるが、水
や、ポリビニルアルコールを使用してペーストを
調整し、これをスプレー法、スクリーン印刷法、
浸漬法、ヘラ塗り法などによる被覆したほうが、
ガラス表面によく接着するので好ましい。さら
に、ペーストに適当な粘着性を与えて被覆作業を
行いやすくするために、カルボキシル・メチルセ
ルローズなどのバインダーを添加することが有効
である。 A coating material containing such γ-alumina and a surfactant is coated on the surface of crystalline glass before heat treatment. In the case of this coating, there is a method of directly sprinkling the coating material in powder form, but it is also possible to prepare a paste using water or polyvinyl alcohol and apply it by spraying, screen printing, etc.
It is better to coat by dipping method, spatula coating method, etc.
It is preferable because it adheres well to the glass surface. Furthermore, it is effective to add a binder such as carboxyl methyl cellulose to impart appropriate tackiness to the paste and facilitate coating operations.
このようにして、被覆材を被覆した結晶性ガラ
スを熱処理炉に入れ所定の温度スケジユールで結
晶化処理する。一般にこの結晶化熱処理は、ガラ
ス中に結晶核を生成する温度に加熱して一定時間
保持し、次いで更に温度を上げて非晶質のガラス
が十分に結晶化する温度に保持するスケジユール
が採られる。結晶化が完了した後、熱処理炉から
結晶化ガラスを取り出し、次いで表面に付着して
いるγ―アルミナ粉末をハケ等で取り除いて清浄
な表面を有する製品とする。 The crystalline glass coated with the coating material in this manner is placed in a heat treatment furnace and subjected to crystallization treatment at a predetermined temperature schedule. Generally, this heat treatment for crystallization involves heating to a temperature that generates crystal nuclei in the glass, holding it for a certain period of time, and then increasing the temperature further and holding it at a temperature that sufficiently crystallizes the amorphous glass. . After crystallization is completed, the crystallized glass is taken out from the heat treatment furnace, and the γ-alumina powder adhering to the surface is removed with a brush or the like to obtain a product with a clean surface.
次に本発明の実施例について説明する。 Next, examples of the present invention will be described.
実施例 1
重量%で、SiO266.4、Al2O322.0、Li2O4.2、
MgO0.5、P2O51.4、ZrO22.3、TiO21.9、
Na2O0.5、K2O0.3、As2O30.5の組成を有する結
晶性ガラスのムク棒(外径5mm、長さ60mm)およ
び板(300×400×4mm)の試料を作つた。この結
晶性ガラス等に対する標準的熱処理スケジユール
は、750℃で2時間加熱して結晶核を生成させ、
次いで、60℃/時間の昇温速度で1140℃まで加熱
して、その温度に1時間保持して結晶化を完了す
るものである。得られる結晶化ガラスは、熱膨張
係数11×10-7/℃であり、結晶相としてβ―スポ
ジユーメンを生成する。Example 1 In weight %, SiO 2 66.4, Al 2 O 3 22.0, Li 2 O 4.2,
MgO0.5, P 2 O 5 1.4, ZrO 2 2.3, TiO 2 1.9,
Samples of crystalline glass rods (outer diameter 5 mm, length 60 mm) and plates (300 x 400 x 4 mm) were made with the compositions of Na 2 O 0.5, K 2 O 0.3, and As 2 O 3 0.5. . The standard heat treatment schedule for this crystalline glass is to heat it at 750°C for 2 hours to generate crystal nuclei.
Next, it is heated to 1140°C at a heating rate of 60°C/hour and held at that temperature for 1 hour to complete crystallization. The obtained crystallized glass has a thermal expansion coefficient of 11×10 −7 /° C. and produces β-spodium as a crystalline phase.
重量比でγ―アルミナ(平均粒径40μ)50:12
%ポリビニールアルコールを含む水溶液45:40%
濃度のアルキル硫酸エステルソーダ塩5からなる
ペーストを調製し、これを上記の結晶性ガラスの
ムク棒の表面に塗布して厚さ1mm被覆層を作つ
た。これを上記のスケジユールで熱処理し結晶化
ガラスとした。曲げ強度を測定するため、この結
晶化ガラスのムク棒を50mmの間隔で平行に置かれ
た2個の支持刃で支持し、このムク棒の中央に上
方より荷重を加える方法により測定した結果、
3300Kg/cm2を示した。一方γ―アルミナを塗布し
ない上記組成の結晶性ガラスのムク棒試料を上記
と同じ条件で結晶化熱処理し、曲げ強度を測定し
たところ1100Kg/cm2であつた。 Weight ratio of γ-alumina (average particle size 40μ) 50:12
Aqueous solution containing % polyvinyl alcohol 45:40%
A paste consisting of an alkyl sulfate ester sodium salt having a concentration of 5 was prepared and applied to the surface of the crystalline glass bar to form a coating layer with a thickness of 1 mm. This was heat-treated according to the above schedule to obtain crystallized glass. In order to measure the bending strength, this bar of crystallized glass was supported by two support blades placed in parallel at a 50 mm interval, and a load was applied from above to the center of the bar.
It showed 3300Kg/ cm2 . On the other hand, a bar sample of crystalline glass having the above composition without coating with γ-alumina was heat-treated for crystallization under the same conditions as above, and its bending strength was measured to be 1100 Kg/cm 2 .
先と同じγ―アルミナを含有するペーストをス
テンレススクリーン法により上記組成を有する結
晶性ガラスの板の片面に約1mmの厚さで被覆し、
これを上記の温度スケジユールで結晶化した。得
られた結晶化ガラスの板を535gの鋼状による落
下衝撃試験を行つた結果、板の割れた高さは平均
120cmであつた。一方γ―アルミナを塗布しない
場合の結晶化ガラスの板は、平均50cmの高さで割
れた。 The same paste containing γ-alumina as before was coated on one side of a crystalline glass plate having the above composition to a thickness of about 1 mm using the stainless steel screen method.
This was crystallized using the temperature schedule described above. As a result of performing a drop impact test on the obtained crystallized glass plate with a 535g steel plate, the average height at which the plate broke was
It was 120cm. On the other hand, crystallized glass plates without γ-alumina cracked at an average height of 50 cm.
実施例 2
重量%で、SiO267.7、Al2O199、Li2O3.3、
MgO1.7、ZnO1.5、TiO25.0、Na2O0.4、K2O0.1、
AS2O30.4からなる組成を有する結晶性ガラスの
ムク棒及び試料(寸法は先の実施例のものと同
一)を作つた。この結晶性ガラスに対しては、
740℃で2時間加熱後60℃/時間の速さで加熱し、
1140℃で1時間保持する熱処理が行なわれ、膨張
係数10×10-7/℃、主結晶相がβ―スポジユーメ
ンの結晶化ガラスを得た。Example 2 In weight%, SiO 2 67.7, Al 2 O 199, Li 2 O 3.3,
MgO1.7, ZnO1.5, TiO2 5.0, Na2O0.4 , K2O0.1 ,
Bars and samples of crystalline glass having a composition of AS 2 O 3 0.4 (dimensions identical to those of the previous example) were made. For this crystalline glass,
After heating at 740℃ for 2 hours, heating at a rate of 60℃/hour,
A heat treatment was performed at 1140°C for 1 hour to obtain a crystallized glass having an expansion coefficient of 10×10 -7 /°C and a main crystal phase of β-spodium.
重量比でγ―アルミナ(平均粒径50μ)43:3
%カルボキシメチルセルローズの水溶液53:40%
濃度のアルキル硫酸エステルソーダ塩4の割合に
調製したペーストを上記結晶性ガラスのムク棒及
び板の材料の表面に約1mmの厚さで被覆した。こ
れを上記のスケジユールで熱処理し結晶化ガラス
とした。得られた結晶化ガラスのムク棒を先の実
施例の場合と同じ条件で曲げ強度を測定したとこ
ろ、3500Kg/cm2であつた。一方γ―アルミナのペ
ーストを塗布しない結晶化ガラスは、1300Kg/cm2
であつた。 Weight ratio of γ-alumina (average particle size 50μ) 43:3
% carboxymethyl cellulose aqueous solution 53:40%
A paste prepared at a concentration of 4 parts alkyl sulfate sodium salt was coated on the surface of the crystalline glass bar and plate material to a thickness of about 1 mm. This was heat-treated according to the above schedule to obtain crystallized glass. The bending strength of the obtained solid bar of crystallized glass was measured under the same conditions as in the previous example, and it was found to be 3500 Kg/cm 2 . On the other hand, crystallized glass without γ-alumina paste has a weight of 1300Kg/cm 2
It was hot.
また、得られた結晶化ガラスの板を535gの鋼
球落下衝撃試験を行つた結果、板の割れた高さは
平均140cmであつた。一方γ―アルミナを塗布し
ない場合の結晶化ガラスの板は平均50cmの高さで
割れた。 Furthermore, when the obtained crystallized glass plate was subjected to a steel ball drop impact test of 535 g, the average height at which the plate broke was 140 cm. On the other hand, crystallized glass plates without γ-alumina cracked at an average height of 50 cm.
以上説明したように、この発明によれば結晶性
ガラスの表面にγ―アルミナ粉末、表面活性剤を
含有する被覆材を被覆し、次いでこれを熱処理す
ることにより低膨張性の結晶化ガラスに高強度の
特性を付与することができる。本発明の方法によ
り製造された結晶化ガラスはトツププレート用の
材料ばかりでなく、他に種々の広い用途の適用が
期待される。 As explained above, according to the present invention, the surface of crystalline glass is coated with a coating material containing γ-alumina powder and a surfactant, and then this is heat-treated to convert it into low-expansion crystalline glass. It can impart properties of strength. The crystallized glass produced by the method of the present invention is expected to be used not only as a material for top plates but also in a wide variety of other applications.
Claims (1)
熱処理して、熱膨張係数が30×10-7/℃以下の結
晶化ガラスを製造する方法において、該結晶性ガ
ラス成形品の表面にγ―アルミナ粉末、および表
面活性剤を含有する被覆材を被覆して熱処理し、
表面層の結晶化を促進させたことを特徴とする低
膨張性高強度結晶化ガラスの製造方法。 2 表面活性剤は、陰イオンの高級アルコール系
活性剤である、特許請求の範囲第1項に記載の低
膨張性高強度結晶化ガラスの製造方法。 3 被覆材を結晶性ガラスの片面に被覆して熱処
理する、特許請求の範囲第1項に記載の低膨張性
高強度結晶化ガラスの製造方法。 4 SiO2―Al2O3―Li2O系結晶性ガラスは、重量
%で、SiO255〜75、Al2O315〜30、Li2O2〜6、
MgO0〜5、P2O50〜5、ZrO20〜5、TiO21〜
15、Na2O0〜5、K2O0〜5からなる、特許請求
の範囲第1項に記載の低膨張性高強度結晶化ガラ
スの製造方法。 5 結晶化ガラスの主結晶相はβ―スポジユメン
である、特許請求の範囲第1項もしくは第4項に
記載の低膨張性高強度結晶化ガラスの製造方法。[Claims] 1. A method for producing crystallized glass having a coefficient of thermal expansion of 30×10 -7 /°C or less by heat-treating a SiO 2 -Al 2 O 3 -Li 2 O-based crystalline glass molded product , the surface of the crystalline glass molded product is coated with a coating material containing γ-alumina powder and a surfactant, and heat treated;
A method for producing a low-expansion, high-strength crystallized glass characterized by promoting crystallization of a surface layer. 2. The method for producing a low-expansion, high-strength crystallized glass according to claim 1, wherein the surfactant is an anionic higher alcohol-based activator. 3. A method for producing low-expansion, high-strength crystallized glass according to claim 1, wherein one side of crystallized glass is coated with a coating material and heat-treated. 4 SiO 2 -Al 2 O 3 -Li 2 O-based crystalline glass contains SiO 2 55 to 75, Al 2 O 3 15 to 30, Li 2 O 2 to 6, by weight%.
MgO0~ 5 , P2O50 ~5, ZrO20 ~ 5, TiO21 ~
15, Na 2 O 0 to 5, and K 2 O 0 to 5. 5. The method for producing a low-expansion, high-strength crystallized glass according to claim 1 or 4, wherein the main crystalline phase of the crystallized glass is β-spodumene.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57067832A JPS58185455A (en) | 1982-04-20 | 1982-04-20 | Production of crystallized glass of low expansion and high strength |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57067832A JPS58185455A (en) | 1982-04-20 | 1982-04-20 | Production of crystallized glass of low expansion and high strength |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58185455A JPS58185455A (en) | 1983-10-29 |
JPH0157056B2 true JPH0157056B2 (en) | 1989-12-04 |
Family
ID=13356308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57067832A Granted JPS58185455A (en) | 1982-04-20 | 1982-04-20 | Production of crystallized glass of low expansion and high strength |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58185455A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE1010927A4 (en) * | 1997-02-14 | 1999-03-02 | Lizen Christian | Hot plate, especially hob ceramic material and method of making the same. |
FR2863607B1 (en) | 2003-12-11 | 2006-09-29 | Snc Eurokera | VITROCERAMICS WITH MODIFIED SURFACE AND THEIR PREPARATION |
-
1982
- 1982-04-20 JP JP57067832A patent/JPS58185455A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58185455A (en) | 1983-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110143759B (en) | High-strength transparent glass-ceramic | |
US2998675A (en) | Glass body having a semicrystalline surface layer and method of making it | |
US3445252A (en) | Alpha- and beta-cristobalite glassceramic articles and methods | |
US3503763A (en) | Creptallizable lead borosilicate compositions for use as low thermal expansion,devitrifying solder glasses or coatings | |
US3873329A (en) | Glass-ceramic article | |
JPS6351985B2 (en) | ||
US4507392A (en) | Transparent glass-ceramics of high negative expansion for use as decorative glazes | |
US4224074A (en) | Non-toxic frits for decorating glass, glass-ceramic and ceramic articles | |
JPS6159257B2 (en) | ||
JP3244201B2 (en) | Glass frit composition | |
US3834981A (en) | Ceramic and glass-ceramic articles produced from beta-spodumene | |
US4057434A (en) | Opaque infra-red transmitting glass-ceramic articles | |
US3720526A (en) | Glass-ceramic body | |
JPH04338132A (en) | Glass-ceramic bonded ceramic composite material | |
CN106746740B (en) | A method of induction glass surface crystallization is exchanged by High temperature ion | |
US2866713A (en) | Vitreous phosphate enamels and their use | |
JPH0157056B2 (en) | ||
US3565644A (en) | Composition for glazing ceramic ware | |
US4022627A (en) | Crystallizable glasses and nephetine glass-ceramics containing ZrO2 and ZnO | |
KR20120058767A (en) | Glaze for heat resistant ceramic table ware and manufacturing method of the same | |
Jacquin et al. | Crystallization of lithium metasilicate from lithium disilicate glass | |
US4582760A (en) | Glazes for glass-ceramic articles | |
US3473937A (en) | Method of strengthening na2o-al2o3-sio2 glass-ceramics with leaded glazes and product | |
JPS6140610B2 (en) | ||
CN116535107B (en) | High-temperature solid-phase chemical tempering method for high-Tg point glass |