JPS6140300B2 - - Google Patents
Info
- Publication number
- JPS6140300B2 JPS6140300B2 JP17440382A JP17440382A JPS6140300B2 JP S6140300 B2 JPS6140300 B2 JP S6140300B2 JP 17440382 A JP17440382 A JP 17440382A JP 17440382 A JP17440382 A JP 17440382A JP S6140300 B2 JPS6140300 B2 JP S6140300B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- heat treatment
- alloys
- casting
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005266 casting Methods 0.000 claims description 19
- 229910000838 Al alloy Inorganic materials 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 description 22
- 239000000956 alloy Substances 0.000 description 22
- 238000010438 heat treatment Methods 0.000 description 15
- 230000000694 effects Effects 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 239000002932 luster Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229910000861 Mg alloy Inorganic materials 0.000 description 3
- 229910007981 Si-Mg Inorganic materials 0.000 description 3
- 229910008316 Si—Mg Inorganic materials 0.000 description 3
- 238000004040 coloring Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 239000011882 ultra-fine particle Substances 0.000 description 2
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Mold Materials And Core Materials (AREA)
- Heat Treatment Of Steel (AREA)
Description
本発明は、熱処理時における着色がなく、合金
溶解時の酸化膜(すなわち滓)の発生が著しく少
ない鋳物用アルミニウム合金に関する。
従来、Sbを含むA―Si―Mg系合金
(JISAC4C、AC4A等)は鋳造性、改良持続性が
良好で、熱処理により優れた靭性と強度を示すこ
と等から、各種産業部品等に広く使用されてい
る。しかし、この合金は、Sbを含まない通常の
A―Si―Mg系合金に比べると、高温の酸化雰
囲気中で熱処理すると鋳肌が酸化されて黒色化す
る。また、溶解時における酸化膜の生成量が多い
ためにメタル損失が大きい点が不利であつた。
本発明は、前述の問題点を解決するものであつ
て、Si6〜10%、Mg0.2〜0.8%、Sb0.08〜0.2%、
Be0.002〜0.010%、Ca0.01〜0.07%、残部アルミ
ニウムと不可避的な不純物よりなる鋳物用アルミ
ニウム合金、及びさらに前記の合金にMn0.1〜
0.5%添加した鋳物用アルミニウム合金を提供す
ることを目的とする。
本発明の合金における各成分組成の限定理由は
次の通りである。
Siは流動性を向上させるために6%以上添加す
ると好結果が得られるが、10%を越えると靭性を
低下させるので、6〜10%が適当である。
Mgは熱処理によりMg2Siを析出させ強度を高
める効果を有し、そのために0.2%以上添加する
が、0.8%を越えると靭性を低下させるので、0.2
〜0.8%が好適である。
Sbは合金中の共晶Siを微細化する性質を有
し、0.08%より少ないとその効果が不十分であ
り、また0.2%より多量添加してもその効果の向
上は望めず、むしろ機械的性質や耐食性が低下す
るため、0.08〜0.2%が好適である。
Beは溶湯酸化を抑制するのに著しい効果があ
る。0.002%よりも少ないとその効果が不十分で
あり、また0.010%より多量添加してもその効果
の向上は余り望めないので、0.002〜0.010%が適
当である。
Caは、前記組成範囲のBeと共存することによ
り、Sbを含むA―Si―Mg系合金(JISAC4A、
AC4A等)に特有な熱処理時の着色を抑制し、金
属光沢を与える。0.01%より少ないとその効果は
不十分であり、また0.07%より多いと金属光沢が
得られなくなるために、0.01〜0.07%が適当であ
る。A―Si―Mg系合金に上記組成範囲のCa又
はBeを単独添加した場合は熱処理時の着色を抑
制できない。Caを単独添加した場合、熱処理後
に金属光沢が得られず、またBeを単独添加した
場合、鋳造後において鋳肌が着色する。
Mnは特許請求の範囲第1項記載の合金の鋳造
性をさらに向上させる効果を有する。0.1%より
少ないとその効果が不十分であり、また0.5%よ
り多く添加すると靭性が低下するので、0.1〜0.5
%が適当である。
大型鋳物や複雑な形状をした鋳物(厚さが一定
でない鋳物)の場合には凝固速度がおそいから凝
固完了後の鋳物の結晶粒は粗い。結晶粒を微細化
するためにTiを0.05〜0.20%添加することは有益
である。他方、小型の鋳物あるいは厚さが肉薄の
鋳物の場合には、Tiを添加しなくても、溶湯の
冷却速度が速いから溶湯中に超微粒子が続々と発
生し、その超微粒子を核として結晶が生長するの
で結晶粒が微細化された鋳物が得られ、満足すべ
き機械的性質及び引け性試験結果を有している。
Feはアルミニウム中に不純物として不可避的
に含有される成分である。
次に本発明の実施例を示す。
実施例 1
第1表は鋳造後及び熱処理後の鋳肌の色を示
す。各種組成の合金を750℃で、離型剤を塗つた
鋳型を300℃に加熱して鋳造した。熱処理は、空
気雰囲気の調質炉で、530℃にて8時間行つた。
鋳肌の着色状況は8段階の評価にて行つた。
従来合金―2、―3では、従来合金―1
と異なり、熱処理後鋳肌は着色する。本発明合金
―1ないし―4は鋳造後、熱処理後も金属光
沢を示す。比較合金は、―2を除き、鋳造後、
熱処理後の両方、あるいは熱処理後において着色
する。
The present invention relates to an aluminum alloy for casting, which is free from coloring during heat treatment and generates significantly less oxide film (ie, slag) during melting of the alloy. Conventionally, A-Si-Mg alloys containing Sb (JISAC4C, AC4A, etc.) have been widely used in various industrial parts because they have good castability and improvement sustainability, and show excellent toughness and strength when heat treated. ing. However, when this alloy is heat-treated in a high-temperature oxidizing atmosphere, the cast surface becomes oxidized and turns black, compared to ordinary A--Si--Mg alloys that do not contain Sb. Another disadvantage is that metal loss is large due to the large amount of oxide film formed during melting. The present invention solves the above-mentioned problems, and includes Si6 to 10%, Mg0.2 to 0.8%, Sb0.08 to 0.2%,
Aluminum alloy for casting consisting of Be0.002~0.010%, Ca0.01~0.07%, balance aluminum and unavoidable impurities, and the above alloy further includes Mn0.1~0.07%.
The purpose is to provide an aluminum alloy for casting with 0.5% addition. The reason for limiting the composition of each component in the alloy of the present invention is as follows. Good results can be obtained when Si is added in an amount of 6% or more to improve fluidity, but if it exceeds 10%, the toughness decreases, so 6 to 10% is appropriate. Mg has the effect of precipitating Mg 2 Si by heat treatment and increasing strength, and for this purpose it is added at 0.2% or more, but if it exceeds 0.8%, toughness decreases, so 0.2
~0.8% is preferred. Sb has the property of refining the eutectic Si in the alloy, and if it is less than 0.08%, the effect is insufficient, and if it is added in an amount more than 0.2%, no improvement in the effect can be expected, but rather mechanical Since properties and corrosion resistance deteriorate, 0.08 to 0.2% is suitable. Be has a remarkable effect on suppressing molten metal oxidation. If it is less than 0.002%, the effect is insufficient, and if it is added in an amount greater than 0.010%, the effect cannot be improved much, so 0.002 to 0.010% is appropriate. Ca coexists with Be in the above composition range, resulting in Sb-containing A-Si-Mg alloys (JISAC4A,
AC4A, etc.) suppresses coloration during heat treatment and gives it a metallic luster. If it is less than 0.01%, the effect is insufficient, and if it is more than 0.07%, metallic luster cannot be obtained, so 0.01 to 0.07% is appropriate. If Ca or Be in the above composition range is added alone to an A-Si-Mg alloy, coloring during heat treatment cannot be suppressed. When Ca is added alone, metallic luster cannot be obtained after heat treatment, and when Be is added alone, the casting surface becomes colored after casting. Mn has the effect of further improving the castability of the alloy described in claim 1. If it is less than 0.1%, the effect is insufficient, and if it is added more than 0.5%, the toughness decreases, so 0.1 to 0.5
% is appropriate. In the case of large castings or castings with complicated shapes (castings with uneven thickness), the solidification rate is slow, so the crystal grains of the casting after solidification are coarse. It is beneficial to add 0.05-0.20% Ti to refine the grains. On the other hand, in the case of small castings or thin castings, even without the addition of Ti, ultrafine particles are generated one after another in the molten metal because the cooling rate of the molten metal is fast, and crystallization occurs with these ultrafine particles as nuclei. grows, resulting in a casting with fine grains and satisfactory mechanical properties and shrinkage test results. Fe is a component that is inevitably contained as an impurity in aluminum. Next, examples of the present invention will be shown. Example 1 Table 1 shows the color of the casting surface after casting and after heat treatment. Alloys of various compositions were cast at 750°C by heating a mold coated with a release agent to 300°C. The heat treatment was performed at 530° C. for 8 hours in a tempering furnace in an air atmosphere.
The coloring of the cast surface was evaluated on an 8-level scale. In conventional alloy-2 and -3, conventional alloy-1
Unlike, after heat treatment, the casting surface becomes colored. Alloys-1 to -4 of the present invention exhibit metallic luster even after casting and heat treatment. The comparative alloys, except for -2, after casting,
Colors both or after heat treatment.
【表】【table】
【表】
実施例 2
第2表に示す組成の合金を溶解保持したときの
酸化による重量増加を第1図に示す。従来合金の
中でもSbを含む合金―5、―6は重量増加
が大きいが、本発明合金―5は溶湯の酸化が著
しく抑制されていることが判る。試験は熱天秤を
用いて行つた。[Table] Example 2 Figure 1 shows the weight increase due to oxidation when the alloys having the compositions shown in Table 2 were melted and held. Among the conventional alloys, Alloys-5 and -6 containing Sb have a large weight increase, but it can be seen that the oxidation of the molten metal is significantly suppressed in the present invention Alloy-5. The test was conducted using a thermobalance.
【表】
実施例 3
第3表に示す組成の合金にT6処理(530℃にて
8時間溶体化処理を行い、水焼入れ後、室温にて
15時間放置し、140℃にて6時間焼もどしを行う
熱処理)を行つた後の機械的性質を第2図に示
す。本発明合金―6は、Ca量の変化に伴い、
引張強さ及び耐力はほとんど変化しないが、伸び
及び衝撃値はCa0.04%付近において極小値を示
す。しかしこの極小値はNaあるいはCaで改良処
理を施した比較合金―11あるいは―12と
比較しても遜色がない。なお、伸び及び衝撃値の
変化は、A―7%Si―0.33%Mg合金のミクロ
組織に及ぼすSbとCaの共存効果を調査した結
果、共晶Siの微細化の程度に起因しているものと
考えられる。[Table] Example 3 An alloy with the composition shown in Table 3 was subjected to T6 treatment (solution treatment at 530°C for 8 hours, water quenched, and then heated at room temperature).
Figure 2 shows the mechanical properties after heat treatment (heat treatment of leaving for 15 hours and tempering at 140°C for 6 hours). Inventive alloy-6, with changes in Ca content,
The tensile strength and proof stress hardly change, but the elongation and impact value show minimum values around 0.04% Ca. However, this minimum value is comparable to comparative alloys -11 and -12 which were treated with Na or Ca. Furthermore, as a result of investigating the coexistence effect of Sb and Ca on the microstructure of the A-7%Si-0.33%Mg alloy, the changes in elongation and impact value were found to be due to the degree of refinement of the eutectic Si. it is conceivable that.
【表】
実施例 4
第4表に示す組成の合金をテーターモールド
(Tatur mold)を用いて引け性試験を行つた結果
を第5表に示す。ちなみに、テーターモールド法
はA.Taturによつて提唱された測定法で、第3図
に示す寸法(単位はmm)を有するテーター鋳型を
使つて鋳造した第4図に示すテーター試料の引け
を測定する。第5図をみると、試料内部のポロシ
テイーの発生状況は、従来合金―7では引け巣
集中型を示すが、本発明合金―7では引け巣分
散型を示す。本発明合金―7にMnを添加した
本発明合金―8は引け巣集中型を示す。[Table] Example 4 The alloys having the compositions shown in Table 4 were subjected to a shrinkage test using a Tatur mold, and the results are shown in Table 5. By the way, the Tater mold method is a measurement method proposed by A. Tatur, which measures the shrinkage of the Tater sample shown in Figure 4, which was cast using a Tater mold with the dimensions (unit: mm) shown in Figure 3. do. Referring to FIG. 5, the state of occurrence of porosity inside the sample shows that conventional alloy-7 shows a concentrated type of shrinkage cavities, but alloy-7 of the present invention shows a dispersed type of shrinkage cavities. The present invention alloy-8, which is obtained by adding Mn to the present invention alloy-7, exhibits concentrated shrinkage cavities.
【表】【table】
【表】
本発明合金の利点は次のとおりである。(i)合金
溶解時の酸化膜の発生が著しく少ない。(ii)通常の
Sbを含むA―Si―Mg合金は熱処理後黒色化す
るが、本発明合金は熱処理後でも金属光沢を維持
し、良好な外観が得られる。(iii)すぐれた強度と伸
びを有する。
本発明合金は上述の利点を有するので、各種産
業部品に用いることができ、例えばホイール、ハ
ンドルクラウン用材料として好適である。[Table] The advantages of the alloy of the present invention are as follows. (i) Significantly less oxide film is formed during alloy melting. (ii) normal
A--Si--Mg alloys containing Sb turn black after heat treatment, but the alloy of the present invention maintains metallic luster even after heat treatment and provides a good appearance. (iii) Has excellent strength and elongation. Since the alloy of the present invention has the above-mentioned advantages, it can be used for various industrial parts, and is suitable as a material for wheels and steering wheel crowns, for example.
第1図は第2表に示す組成の合金を溶解保持し
たときの酸化による重量増加を示すグラフ、第2
図は第3表に示す組成の合金にT6処理を施した
後の機械的性質を示すグラフ、第3図はテーター
鋳型の断面図、第4図はテーター試料の概略図で
ある。
Figure 1 is a graph showing the weight increase due to oxidation when alloys having the composition shown in Table 2 are melted and held.
The figure is a graph showing the mechanical properties of an alloy having the composition shown in Table 3 after T6 treatment, FIG. 3 is a cross-sectional view of a Teter mold, and FIG. 4 is a schematic diagram of a Teter sample.
Claims (1)
Be0.002〜0.010%、Ca0.01〜0.07%、残部アルミ
ニウムと不可避的な不純物よりなる鋳物用アルミ
ニウム合金。 2 Si6〜10%、Mg0.2〜0.8%、Sb0.08〜0.2%、
Be0.002〜0.010%、Ca0.01〜0.07%、Mn0.1〜0.5
%、残部アルミニウムと不可避的な不純物よりな
る鋳物用アルミニウム合金。[Claims] 1 Si6-10%, Mg0.2-0.8%, Sb0.08-0.2%,
Aluminum alloy for castings consisting of 0.002~0.010% Be, 0.01~0.07% Ca, and the balance being aluminum and unavoidable impurities. 2 Si6~10%, Mg0.2~0.8%, Sb0.08~0.2%,
Be0.002~0.010%, Ca0.01~0.07%, Mn0.1~0.5
%, an aluminum alloy for castings consisting of the balance aluminum and unavoidable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17440382A JPS5964736A (en) | 1982-10-04 | 1982-10-04 | Aluminum alloy for casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17440382A JPS5964736A (en) | 1982-10-04 | 1982-10-04 | Aluminum alloy for casting |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5964736A JPS5964736A (en) | 1984-04-12 |
JPS6140300B2 true JPS6140300B2 (en) | 1986-09-08 |
Family
ID=15977952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17440382A Granted JPS5964736A (en) | 1982-10-04 | 1982-10-04 | Aluminum alloy for casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5964736A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0243339A (en) * | 1988-07-31 | 1990-02-13 | Asahi Tec Corp | Casting aluminum alloy and vehicle wheel |
JP2016132786A (en) * | 2015-01-16 | 2016-07-25 | 日立金属株式会社 | Method for manufacturing load wheel made of aluminum alloy |
JP6454450B1 (en) * | 2018-03-27 | 2019-01-16 | 日軽エムシーアルミ株式会社 | Method for producing Al-Si-Mg aluminum alloy casting material |
US11649530B2 (en) * | 2018-03-27 | 2023-05-16 | Nikkei Mc Aluminium Co., Ltd. | Al—Si—Mg aluminum alloy |
-
1982
- 1982-10-04 JP JP17440382A patent/JPS5964736A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5964736A (en) | 1984-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3121302B1 (en) | Aluminum alloy for die casting, and die-cast aluminum alloy using same | |
CN102943193A (en) | Grain refinement machining process of hard aluminium alloy cast ingot | |
CN102965553A (en) | Aluminum alloy cast ingot for automotive bumper and production process thereof | |
CN102965554A (en) | Hard aluminum alloy cast ingot | |
WO2021147397A1 (en) | Cast magnesium alloy and preparation method therefor | |
US3759758A (en) | High strength aluminum casting alloy | |
JPS6242985B2 (en) | ||
CN102994840A (en) | MgAlZn heat resistance magnesium alloy | |
JPS6128739B2 (en) | ||
JPS6140300B2 (en) | ||
US2146330A (en) | Aluminum-zinc alloys | |
US2908566A (en) | Aluminum base alloy | |
JPH07126790A (en) | Highly corrosion resistant mg-base alloy | |
CN112119172B (en) | Al-Si-Mg series aluminum alloy | |
US3297435A (en) | Production of heat-treatable aluminum casting alloy | |
JP3037926B2 (en) | Aluminum alloy for aluminum wheel casting | |
JPH0649572A (en) | High strength zinc alloy for die casting and zinc alloy die-cast parts | |
JPS594496B2 (en) | Aluminum alloy for casting | |
JPH07113133B2 (en) | Cu alloy for continuous casting mold | |
US11542580B2 (en) | Method for manufacturing Al—Si—Mg aluminum alloy cast material | |
CN115896563B (en) | High-performance gravity casting aluminum alloy material and preparation method thereof | |
JP7401080B1 (en) | Manufacturing method of Al alloy for casting | |
JPH0819504B2 (en) | Zinc alloy for casting, dimensional change-free, cast parts and heat treatment method for cast parts | |
JP2020105545A (en) | Aluminum alloy having low casting crack sensitivity, and aluminum alloy casting using the same | |
US2146331A (en) | Aluminum-chromium-titanium alloys |