JPS614011A - Automatic tracking device of camera - Google Patents

Automatic tracking device of camera

Info

Publication number
JPS614011A
JPS614011A JP59124891A JP12489184A JPS614011A JP S614011 A JPS614011 A JP S614011A JP 59124891 A JP59124891 A JP 59124891A JP 12489184 A JP12489184 A JP 12489184A JP S614011 A JPS614011 A JP S614011A
Authority
JP
Japan
Prior art keywords
circuit
subject
signal
tracking
view
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59124891A
Other languages
Japanese (ja)
Other versions
JP2603211B2 (en
Inventor
Masamichi Toyama
当山 正道
Yoichi Iwasaki
陽一 岩崎
Akihiro Fujiwara
昭広 藤原
Takashi Amikura
網蔵 孝
Naoya Kaneda
直也 金田
Masahiro Takei
武井 正弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59124891A priority Critical patent/JP2603211B2/en
Publication of JPS614011A publication Critical patent/JPS614011A/en
Priority to US07/569,371 priority patent/US5031049A/en
Priority to US07/860,289 priority patent/US5204749A/en
Application granted granted Critical
Publication of JP2603211B2 publication Critical patent/JP2603211B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7864T.V. type tracking systems
    • G01S3/7865T.V. type tracking systems using correlation of the live video image with a stored image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/61Control of cameras or camera modules based on recognised objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • H04N23/958Computational photography systems, e.g. light-field imaging systems for extended depth of field imaging
    • H04N23/959Computational photography systems, e.g. light-field imaging systems for extended depth of field imaging by adjusting depth of field during image capture, e.g. maximising or setting range based on scene characteristics

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Color Television Image Signal Generators (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PURPOSE:To perform stable tracking operation regardless of variation in the brightness of illumination light by extracting the color difference signals and brightness signal of a subject as to a tracking visual field, and detecting the movement of the subject to be tracked on the basis of the signal obtained by normalizing the color difference signals with the brightness signal. CONSTITUTION:A tracked subject image is photodetected by an image pickup element (CCD)5 through a photographic optical system. The signal outputted from the element 5 through an image pickup element driving circuit 8 is inputted to a signal processing circuit 9. The circuit 9 outputs the color difference signals (R-Y) and (B-Y) and brightness signal Y to a color detecting circuit 12 through a tracking gate setting circuit (corresponding to the tracking visual field) 11 to extract normalized color signals (R-Y)/Y and (B-Y)/Y by the circuit 12, and they are stored in a memory 13. A signal Y, on the other hand, is inputted to a range finding gate setting circuit 16. The data stored in the memory 13 is compared with a newly extracted signal by a movement decision circuit 14 to detect whether a subject moves or nor, its direction, etc., from variation in the color of the background of the subject, thereby moving the tracking visual field through a tracking gate moving circuit 15 and the circuit 11.

Description

【発明の詳細な説明】 (技術分野) この発明は、カメラ、とくにビデオカメラ用の自動焦点
検出又は自動焦点調節装置において、移動する被写体に
対する自動追尾装置に関し、とくに照明光の輝度の変化
にかかわらず安定な追尾動作を行うことができる手段に
関する。
Detailed Description of the Invention (Technical Field) The present invention relates to an automatic tracking device for a moving subject in an automatic focus detection or automatic focus adjustment device for a camera, especially a video camera, and particularly relates to an automatic tracking device for a moving subject, regardless of changes in the brightness of illumination light. The present invention relates to means that can perform stable tracking operations.

(背景技術) ビデオカメラの映像信号を利用する自動焦点検出装置に
ついては、例えば米国特許第2.831.057号明細
書、特公昭39−5265号公報又は特公昭4B−17
172号公報等多くの提案がなされている。
(Background Art) Regarding an automatic focus detection device that uses a video signal from a video camera, for example, US Pat.
Many proposals have been made, such as Publication No. 172.

また」二記の方式中のひとつであるいわゆる山登り制御
方式についてはrNHK技術研究」第17巻第1号(通
巻第86号)(昭和40年発行)の21頁石田ほかによ
る「山登リサーボ方式によるテレビカメラの自動焦点調
整」の論文に、またこの山登り制御と後玉フォーカス駆
動レンズとを組み合わせた方式については昭和57年1
1月29日のテレビジョン学会技術報告で半開はかによ
り「輪郭検出オートフォーカス方式」としてそれぞれ詳
細に発表されている。
Regarding the so-called mountain-climbing control method, which is one of the methods mentioned in "2," refer to "Mountain-climbing reservo method" by Ishida et al. ``Automatic focus adjustment of television cameras'' by 1981, and a method that combines this mountain climbing control with a rear focus drive lens.
In the Technical Report of the Television Society of Japan on January 29th, Haka Hanban announced the method in detail as a ``contour detection autofocus method''.

ところで、この種の装置では、第1図(A)に示すよう
に測距視野が撮影画面中央部に固定されているため、同
図(B)に示すようにピントを合わせたい被写体(以下
目標被写体という)(この例では人物)が移動してしま
うと、この目標被写体とは異る距離にある物体(この例
では家屋)にピントが合い、目標被写体である人物がぼ
けてしまうという欠点がある。なお第1図及び後記第2
図は、無視差の自動焦点調節装置を具えるカメラで測距
した場合の画面を示すものである。
By the way, in this type of device, the distance measurement field of view is fixed at the center of the photographing screen as shown in Figure 1 (A), so as shown in Figure 1 (B), the object to be focused on (hereinafter referred to as the target) is If the subject (in this example, a person) moves, an object at a different distance from the target subject (in this example, a house) will be in focus, and the target subject, the person, will become blurred. be. In addition, Figure 1 and Part 2 below
The figure shows a screen when distance measurement is performed using a camera equipped with an automatic focusing device with negligible difference.

上記の欠点を解消するために、本出願人は、先に、移動
可能な追尾視野を設定し、被測距物体の特徴をこの追尾
視野に関して抽出し、この抽出された特徴を記憶させ、
この記憶された特徴と新たに抽出された被測距物体の特
徴とに基づいて物体の移動の有無を検出し、物体の相対
的な移動に応じて測距視野を物体の移動に追尾して移動
させるようにした自動追尾焦点検出装置学者について提
案したが(昭和59年5月25日付は特許願、発明の名
称[自動追尾焦点検出装置」)、この提案を実施するに
当たっては、照明光の輝度の変化にかかわらず安定な追
尾動作を行うことができることが望ましい。
In order to eliminate the above drawbacks, the applicant first sets a movable tracking field of view, extracts the features of the object to be ranged with respect to this tracking field of view, stores the extracted features,
The presence or absence of movement of the object is detected based on the memorized characteristics and the newly extracted characteristics of the object to be ranged, and the distance measurement field of view is tracked to the movement of the object according to the relative movement of the object. We have proposed an automatic tracking focus detection device that can be moved (patent application dated May 25, 1981, title of invention [Automatic tracking focus detection device]). It is desirable to be able to perform stable tracking operations regardless of changes in brightness.

(目 的) ?     =ty>:5M1N−t:、いえ。、−や
よtfJ*H(1)@ll5(1)欠点を解消し、移動
する被写体について自動的にその移動を検出し、測距視
野を被写体の移動に追尾して移動させて焦点検出ないし
焦点調節を行うに当たり、照明光の輝度の変化にかかわ
らず安定な追尾動作を行うことができる自動追尾装置を
提供することを目的とする。
(the purpose) ? =ty>:5M1N-t:, No. , - YayotfJ*H (1) @ll5 (1) Eliminate the drawbacks, automatically detect the movement of a moving subject, and move the distance measurement field of view to track the movement of the subject to detect focus or An object of the present invention is to provide an automatic tracking device that can perform stable tracking operations when performing focus adjustment regardless of changes in the brightness of illumination light.

(実施例による説明) 以下第2図ないし第9図等を参照して上記の目的を達成
するためこの発明において講じた手段について例示説明
する。下記の説明は、この発明を適用した自動追尾焦点
検出機能の概要、この発明の実施例における信号正規化
手段及びこの発明の実施例の全体構成の順序で行う。
(Explanation based on Examples) Hereinafter, the means taken in this invention to achieve the above object will be exemplified and explained with reference to FIGS. 2 to 9 and the like. The following explanation will be given in the following order: an outline of the automatic tracking focus detection function to which the present invention is applied, a signal normalization means in an embodiment of the present invention, and an overall configuration of the embodiment of the present invention.

(この発明を適用した自動追尾焦点検出機能の概要)(
第2図〜第5図) 先ず、この発明を適用した自動追尾焦点検出機能の一例
についてその概要を説明すると、第1図(A)の状態に
あった目標被写体(人物)が第2図(A)に示すように
同一距離のまま画面右上方へ移動すると、後述の追尾手
段により、被写体の移動を自動的に検出し、測距視野を
第2図(A)に示すように被写体の移動に追尾して移動
させ、この移動位置で焦点検出ないし焦点調節を行うも
のである。すなわち、被写体の特徴を表わすなんらかの
パラメータ、例えば被写体及び背景の色を、前記の追尾
手段により設定された追尾視野に関して抽出し、この抽
出された特徴を記憶させ、この記憶された特徴と新たに
抽出された被写体の特徴とに基づいて被写体の移動の有
無、及び被写体が移動した場合にその移動方向又は移動
位置を検出して、前記の追尾視野を被写体の移動に追尾
して移動させ、また追尾視野の移動に伴って測距視野を
これと同じ位置関係で移動させるものである。したがっ
て、第2図は、被写体の移動と追尾視野の移動との関係
を示すものとみなすこともできる。なお追尾視野は被写
体の移動を判定する手段のひとつであって、通常は、測
距視野のようにファインダ画面等に表示し、これを介し
て被写体が観察されることはない。また追尾視野を仮に
画面上に表示したとすれば、前述のように追尾視野と測
距視野とは画面上同じ位置関係で表示されるが、これら
の大きさは、必要に応じ、追尾視野又は測距視野のどち
らを大きくすることもできる。
(Outline of automatic tracking focus detection function to which this invention is applied) (
(Figs. 2 to 5) First, an overview of an example of the automatic tracking focus detection function to which the present invention is applied will be explained. When the subject moves toward the upper right of the screen while maintaining the same distance as shown in A), the tracking means described later automatically detects the subject's movement, and the distance measurement field of view is adjusted as shown in Fig. 2 (A). The object is tracked and moved, and focus detection or focus adjustment is performed at this movement position. That is, some parameter representing the feature of the subject, such as the color of the subject and the background, is extracted with respect to the tracking field of view set by the tracking means, this extracted feature is stored, and the newly extracted feature is combined with the stored feature. The tracking field of view is moved to follow the movement of the subject by detecting whether the subject is moving or not, and if the subject moves, the moving direction or moving position based on the subject's characteristics. As the field of view moves, the distance measurement field of view is moved in the same positional relationship. Therefore, FIG. 2 can also be regarded as showing the relationship between the movement of the subject and the movement of the tracking field of view. Note that the tracking field of view is one of the means for determining the movement of a subject, and is normally displayed on a finder screen or the like like a distance measurement field of view, and the subject is not observed through this. Furthermore, if the tracking field of view were to be displayed on the screen, the tracking field of view and the distance measurement field of view would be displayed in the same positional relationship on the screen as described above, but the sizes of these fields may vary depending on the tracking field of view or distance measurement field of view, as described above. Either field of view can be enlarged.

第2図(A)では、距離が同一であるから、撮影レンズ
のうちの合焦レンズを調整することはないが、同図(B
)では、被写体が画面内の右上方へ移動するとともに距
離も変化するので、測距の結果に従って合焦レンズが移
動する。したがって、後述の追尾ゲート大きさ決定手段
により追尾視野の大きさを変化させ、つねにその被写体
に一適した大きさに保ち、その状態で焦点検出ないし焦
点調節を打ち。ここで、被写体とカメラとの間の移動は
相対的であるから、上記の追尾作用は、カメラが固定さ
れて被写体が移動する場合のほか、逆に被写体が停止し
てカメラが移動する場合、あるいは両者がともに移動す
る場合にも有効に機能し、また追尾視野の大きさは、被
写体距離が変化する場合のほか、レンズの焦点距離を変
える場合にも調整することができる。
In Figure 2 (A), since the distances are the same, the focusing lens of the photographic lens is not adjusted;
), the subject moves to the upper right of the screen and the distance also changes, so the focusing lens moves according to the distance measurement results. Therefore, the size of the tracking field of view is changed by the tracking gate size determining means described later, and is always maintained at a size suitable for the subject, and focus detection or focus adjustment is performed in this state. Here, since the movement between the subject and the camera is relative, the above-mentioned tracking effect works not only when the camera is fixed and the subject moves, but also when the subject stops and the camera moves. Alternatively, it functions effectively when both move together, and the size of the tracking field of view can be adjusted not only when the subject distance changes, but also when the focal length of the lens changes.

追尾視野は、原則として2次元の拡がりをもつものであ
るが、説明を簡単にするために、ここでは第3図(A)
に示すように追尾視野が水平方向に延びる1次元の拡が
りをもつものであるとする。また追尾視野は、A、B、
Cの3部分(以下各部分を画素という)に分れていると
する。なお2次元の追尾視野を構成するには、例えば同
図の画素B又はA、B及びCを中心にしてその上下に位
置する画素を設ければよい。
In principle, the tracking field of view has a two-dimensional extent, but to simplify the explanation, it is shown in Fig. 3 (A).
Assume that the tracking field of view has a one-dimensional extension extending in the horizontal direction as shown in FIG. Also, the tracking field of view is A, B,
Suppose that it is divided into three parts (hereinafter each part is referred to as a pixel) of C. In order to construct a two-dimensional tracking field of view, for example, pixels positioned above and below pixel B or A, B, and C in the figure may be provided as the center.

上記の各画素から色差信号(R−Y)及び(B−Y)並
びに輝度信号Yを抽出し、これらを第5図を参照して後
述する手段により処理して」二記色差信号(R−Y)及
び(B−Y)をそれぞれ輝度信号Yで割って正規化した
信号を後述のメモリに記憶させる。この記憶された値を
各画素A、B及びCについて(R,−Y/Y)及び(B
−Y/Y)直交座標上にプロットすると、例えば第4図
のように表示される。なお第4図は、照明光の輝度が標
準状態にある場合を示すものとし、後記の数値例もこの
状態で得られる数値であるとする。第41      
図でA、、B、及びCoの各点は、それぞれ、第3図(
A)のA、B及びCの各画素から得られた信号を表わし
ている。ここで1画素Bからは被写体である人物の例え
ば服装のみを表わす信号が、画素A及びCからは、それ
ぞれ被写体の服装と背景とを表わす信号が加算された信
号が抽出されるとする。さらに、同図で被写体の左側と
右側とで背景の色が異っているものとする。したがって
、点A、とCoとは、色差信号座標上の位置が異ってい
る。
The color difference signals (R-Y) and (B-Y) and the luminance signal Y are extracted from each pixel mentioned above, and these are processed by the means described later with reference to FIG. Y) and (B-Y) are each divided by the luminance signal Y and the normalized signals are stored in a memory to be described later. This stored value is used for each pixel A, B and C as (R, -Y/Y) and (B
-Y/Y) When plotted on orthogonal coordinates, it is displayed as shown in FIG. 4, for example. Note that FIG. 4 shows the case where the luminance of the illumination light is in a standard state, and the numerical examples described later are also the numerical values obtained in this state. 41st
In the figure, points A, B, and Co are respectively shown in Figure 3 (
It represents the signals obtained from each pixel of A, B, and C in A). Here, it is assumed that from one pixel B, a signal representing only the clothing of the subject, for example, is extracted, and from pixels A and C, a signal in which signals representing the clothing of the subject and the background are added together is extracted. Furthermore, assume that the background colors on the left and right sides of the subject in the figure are different. Therefore, points A and Co are at different positions on the color difference signal coordinates.

次に、第3図(A)に示す被写体が、同図(B)に示す
ように画面内で右方向へ移動すると、画素A及びC内に
占める被写体と背景の割合が変化する結果、画素A及び
Cから得られる信号は、第5図A1及びC1に示すよう
にそれぞれ変化する。一方、画素Bは第3図(B)に示
すように被写体内にとどまっているので、その服装がほ
ぼ単色であるとすれば、画素Bから得られる信号はほと
んど変化しない。したがって、ここでは、簡単のために
B1=B、とする。この場合、第5図に示すように、点
C1は点Bo(=Bt)に近づき、点A1は点Bo(=
Bt)から遠ざかるので、線分BIC1は線分BoC,
より小さくなり、線分AIB、は線分AOBOより大き
くなる。逆に、線分BICIが線分nocoより大きく
なり、線分AlB1が線分AOB、より小さくなる場合
は、被写体が第3図(B)で左方向へ移動していること
になる。
Next, when the subject shown in Fig. 3 (A) moves to the right within the screen as shown in Fig. 3 (B), the ratio of the subject to the background in pixels A and C changes, and as a result, the pixels The signals obtained from A and C change as shown in FIG. 5 A1 and C1, respectively. On the other hand, since pixel B remains within the object as shown in FIG. 3(B), the signal obtained from pixel B hardly changes if the clothing is almost monochromatic. Therefore, here, for simplicity, it is assumed that B1=B. In this case, as shown in FIG. 5, point C1 approaches point Bo (=Bt), and point A1 approaches point Bo (=Bt).
Bt), the line segment BIC1 becomes the line segment BoC,
The line segment AIB becomes larger than the line segment AOBO. Conversely, if the line segment BICI becomes larger than the line segment noco and the line segment AlB1 becomes smaller than the line segment AOB, it means that the subject is moving to the left in FIG. 3(B).

この発明では画素A、B及びCから得られる信号が、被
写体の相対的な移動の結果、(R−Y/Y)及び(B−
Y/Y)平面上でAO、BO。
In this invention, the signals obtained from pixels A, B, and C are changed to (RY/Y) and (B-
Y/Y) AO, BO on the plane.

Coから、それぞれA、、B、、CIに変化する現象を
利用して被写体の相対的な移動を自動的に検出し、その
検出結果に従って追尾視野を被写体の移動に追尾して自
動的に移動させるものである。なおそのための具体的手
段については、第5図〜第7図を参照して後述する。
Automatically detects the relative movement of the subject using the phenomenon that changes from Co to A, B, and CI, respectively, and automatically moves the tracking field of view to follow the movement of the subject according to the detection result. It is something that makes you Note that specific means for that purpose will be described later with reference to FIGS. 5 to 7.

次に、上記のように色差信号(R−Y)及び(B −Y
)を輝度信号Yで正規化した信号によって被写体の移動
を検出するようにした理由について説明する。すなわち
、色差信号のみによっても被写体の移動を検出し、自動
追尾の目的を達成することができるが、この場合は、照
明光の輝度が時間的に変化するとき、被写体が移動しな
いにもかかわらず色差信号座標上の点が変化することが
ある。例えば、照明光が暗くなると座標上の各点が0点
に近づき、明るくなると0点から遠ざかる。これに対し
て、前記の各画素から(R−Y)及び(B −Y)信号
のほかにY信号をも抽出し、(R−Y/Y)及び(B−
Y/Y)(正規化された信号)を算出し、各画素を表わ
す点の(R−Y/Y)及び(B−Y/Y)直交座標上の
位置の変化から被写体の移動を検出するようにすれば、
照明光の輝度の変化を自動的に補償して安定な追尾動作
を行うことができる。
Next, the color difference signal (R-Y) and (B-Y
) is normalized by the luminance signal Y to detect the movement of the subject. In other words, it is possible to detect the movement of the subject using only color difference signals and achieve the purpose of automatic tracking, but in this case, when the brightness of the illumination light changes over time, even though the subject is not moving, Points on the color difference signal coordinates may change. For example, when the illumination light becomes dark, each point on the coordinates approaches the 0 point, and when the illumination light becomes bright, it moves away from the 0 point. On the other hand, in addition to the (R-Y) and (B-Y) signals from each pixel, the Y signal is also extracted, and (R-Y/Y) and (B-Y) are extracted.
Y/Y) (normalized signal), and detect the movement of the subject from the change in position on the (R-Y/Y) and (B-Y/Y) orthogonal coordinates of the point representing each pixel. If you do this,
It is possible to automatically compensate for changes in the brightness of illumination light and perform stable tracking operations.

なお被写体の左右両側で背景の色が同じであるとすれば
、被写体が画面内で第3図(B)の右方向へ移動すると
き上記の点A1は線分AoB、の延長線」二に位置を占
め、点C1は線分B o Co U二に位置を占めるこ
とになる。この発明は、上記どちらの場合にも適用する
ことができる。
Assuming that the background color is the same on both the left and right sides of the subject, when the subject moves to the right in Figure 3 (B) within the screen, the above point A1 is an extension of the line segment AoB. The point C1 will occupy a position on the line segment B o Co U2. This invention can be applied to either of the above cases.

(この発明の実施例における信号正規化手段)(第5図
) 第5図は、この発明の実施例において前記の正規化信号
(R−Y/Y)及び(B−Y/Y)を作成する回路の一
例を示すものであって色差信号(R−Y)及び(B−Y
)は、それぞれ積分回路100a、1oobで積分され
、サンプルホールド(S/H)回路10ta、101b
でサンプルホールドされて、それぞれ割算器102 a
’ 。
(Signal normalization means in the embodiment of the present invention) (Fig. 5) Fig. 5 shows the creation of the normalized signals (R-Y/Y) and (B-Y/Y) in the embodiment of the invention. This figure shows an example of a circuit in which color difference signals (RY) and (B-Y
) are integrated by integration circuits 100a and 1oob, respectively, and are integrated by sample and hold (S/H) circuits 10ta and 101b.
are sampled and held by the divider 102a, respectively.
'.

102bに入力される。一方、入力輝度信号Yは積分回
路100Cで積分され、サンプルホールド回路101c
でサンプルホールドされて割算器102a、102bに
入力され、同割算器からそれぞれ正規化された信号(R
−Y/Y)、(B−Y/Y)が出力される。これらの正
規化された信号がそれぞれA/D変換回路103a、1
03bでA/D変換されてメモリ104a、104bに
記憶される。前記の回路の変形として、割算器102a
、102bをA/D変換回路103a。
102b. On the other hand, the input luminance signal Y is integrated by the integrating circuit 100C, and the input luminance signal Y is integrated by the integrating circuit 100C.
is sampled and held and input to the dividers 102a and 102b, and the normalized signals (R
-Y/Y) and (B-Y/Y) are output. These normalized signals are sent to A/D conversion circuits 103a and 1, respectively.
At step 03b, the signals are A/D converted and stored in memories 104a and 104b. As a variation of the circuit described above, divider 102a
, 102b is an A/D conversion circuit 103a.

”       103bの後段に設け、サンプルホー
ルドされたY信号をA/D変換した後、割算器102a
” It is provided after the divider 103b, and after A/D converting the sampled and held Y signal, the divider 102a
.

102bで正規化処理をしてもよい。あるいは割算器1
02a、102bを積分回路100a。
Normalization processing may be performed in step 102b. Or divider 1
02a and 102b are an integrating circuit 100a.

1oobの前段に設け、これらの割算器にそれぞれ(R
−Y)信号及びY信号並びに(B−Y)信号及びY信号
を入力して正規化処理をしてもよい。
1oob, and each of these dividers has (R
-Y) signal and Y signal and (B-Y) signal and Y signal may be input and normalized.

(この発明の実施例の全体構成)(第6図〜第9図) 第6図は、この発明の自動追尾装置の一実施例を示し、
この例は、この発明をビデオカメラにおける自動追尾焦
点検出装置に適用した例である。
(Overall configuration of an embodiment of the present invention) (Figs. 6 to 9) Fig. 6 shows an embodiment of an automatic tracking device of the invention,
This example is an example in which the present invention is applied to an automatic tracking focus detection device for a video camera.

第6図において、撮影光学系は、合焦レンズl、ズーム
系レンズ2、絞り3及びリレーレンズ4からなり、被写
体像は撮像素子5(例えばC,C。
In FIG. 6, the photographing optical system consists of a focusing lens 1, a zoom lens 2, an aperture 3, and a relay lens 4, and a subject image is captured by an image sensor 5 (eg C, C).

D、)上で受光される。6はクロック信号発生回路であ
り、その出力は分周器7で所要の比率に分周され、この
分周出力が後述の撮像素子駆動回路8、追尾ゲート設定
回路11及び測距ゲート設定回路16に付与される。撮
像素子5は、撮像素子駆動回路8により駆動されて時系
列信号が出力され、この出力は信号処理回路9で所要の
同期信号合成、変調及び補正処理を受け、出力ビデオ信
号例えばNTSC信号が形成される。これらの処理は、
当業者に周知であるので、その詳細な説明を省略する。
The light is received on D, ). Reference numeral 6 denotes a clock signal generation circuit, whose output is frequency-divided by a frequency divider 7 to a required ratio, and this frequency-divided output is used by an image sensor drive circuit 8, a tracking gate setting circuit 11, and a ranging gate setting circuit 16, which will be described later. granted to. The image sensor 5 is driven by an image sensor drive circuit 8 to output a time-series signal, and this output is subjected to necessary synchronization signal synthesis, modulation, and correction processing in a signal processing circuit 9 to form an output video signal, for example, an NTSC signal. be done. These processes are
Since it is well known to those skilled in the art, detailed explanation thereof will be omitted.

なお以下の説明では、出力ビデオ信号がNTSC信号で
あるとする。
Note that in the following description, it is assumed that the output video signal is an NTSC signal.

信号処理回路9は、同時に、色差信号(R−Y)及び(
B−Y)並びに輝度信号Yを追尾ゲート設定回路11(
追尾視野に対応する)に出力し、また前記輝度信号Yを
測距ゲート設定回路16に出力する。追尾ゲート設定回
路llの出力は色検出回路12に供給されて、被写体に
関して前記の正規化された色差信号が抽出され、これが
例えば不図示のスイッチなどの手動による機械的入力手
段を介してメモリ13に記憶される。なお色検出回路1
2は、第5図に示し、あるいはその変形として先に説明
した正規化手段を含むものである。上記の処理は、テレ
ビジョン信号の1フイールドの期間である1/60秒の
間に又はその数フィールド分の期間の間にその平均値に
従って行われる。以下両者を一括して1フイールドの期
間に処理されるとして説明する。
The signal processing circuit 9 simultaneously processes color difference signals (RY) and (
B-Y) and luminance signal Y to the tracking gate setting circuit 11 (
(corresponding to the tracking field of view), and also outputs the luminance signal Y to the ranging gate setting circuit 16. The output of the tracking gate setting circuit 11 is supplied to the color detection circuit 12 to extract the normalized color difference signal for the subject, which is input to the memory 13 via manual mechanical input means such as a switch (not shown). is memorized. Note that color detection circuit 1
2 includes the normalization means shown in FIG. 5 or described above as a modification thereof. The above processing is performed according to the average value during 1/60 second, which is the period of one field of the television signal, or during a period of several fields thereof. In the following, both will be explained as being processed in one field period.

次の1フイールドでは、新たに抽出された信号とメモリ
13に記憶されている信号とが移動判定回路14で比較
され、被写体の移動の有無及び被写体が移動する場合の
移動方向が検知される。移動があった場合には、ゲート
移動回路15によって追尾ゲート設定回路11を制御し
て追尾視野を移動させ、次の1フイールドで同様の演算
を行い、以後追尾が完了するまで上記の処理をくり返す
In the next field, the newly extracted signal and the signal stored in the memory 13 are compared in the movement determination circuit 14, and the presence or absence of movement of the subject and the direction of movement of the subject are detected. If there is movement, the tracking gate setting circuit 11 is controlled by the gate movement circuit 15 to move the tracking field of view, perform the same calculation in the next field, and repeat the above process until tracking is completed. return.

追尾が完了した時点でゲート移動回路15によって、測
距ゲート設定回路16により設定される測距視野を追尾
視野と同じ関係位置に設定し、この測距視野内の映像信
号(信号処理回路9の出力)を用いて自動焦点調節(A
 F)回路17で、例えば山登り制御等の公知の手段に
よって焦点検出を行い、その出力によってモータMを駆
動し、合焦レンズlの位置を制御する。
When tracking is completed, the gate moving circuit 15 sets the ranging field of view set by the ranging gate setting circuit 16 to the same relative position as the tracking field of view, and the video signal within this ranging field of view (signal processing circuit 9) automatic focus adjustment (A
F) The circuit 17 performs focus detection by known means such as hill climbing control, and its output drives the motor M to control the position of the focusing lens l.

第6図において、Plは合焦レンズ1の位置(被写体距
離に相当する)の絶対位置を検出するポジションセンサ
、P2はズーム系レンズ2の位置(焦点距離に相当する
)の絶対位置を検出するポジションセンサであり、これ
らの信号に基づいて追尾ゲート大きさ決定回路10が追
尾ゲート設定回路11及び測距ゲート設定回路16を制
御し、それぞれ追尾視野及び測距視野の大きさを定める
。いま、撮影レンズの焦点距離をf、被写体距離をR1
撮像面の長手方向の寸法をy、追尾視野長(第3図(A
)の画素A、B、Cの合計の長さ)をa、追尾視野長の
被写体上での長さをW、υ/y=にとおくと、k=fW
/Ryで与えらへ が大人の場合としてW=500mmとするとに=0.3
4 となる。ここでyは撮像素子例えばC,C,D。
In FIG. 6, Pl is a position sensor that detects the absolute position of the focusing lens 1 (corresponding to the subject distance), and P2 is a position sensor that detects the absolute position of the zoom lens 2 (corresponding to the focal length). Based on these signals, the tracking gate size determining circuit 10 controls the tracking gate setting circuit 11 and the ranging gate setting circuit 16, and determines the sizes of the tracking field of view and the ranging field of view, respectively. Now, the focal length of the photographic lens is f, and the subject distance is R1.
The longitudinal dimension of the imaging surface is y, and the tracking field of view length (Fig. 3 (A
) is a, the length of the tracking field of view on the subject is W, and υ/y=, then k=fW
/Ry is given as an adult, and if W = 500mm, then = 0.3
It becomes 4. Here, y is an image sensor such as C, C, or D.

の大きさによって、Wは被追尾被写体によって定(まる
ので、ボジシ冒ンセンサP1、P2の出力値から上記の
式によりkを追尾ゲート大きさ決定回路10で演算すれ
ば、つねに被写体に対して最適の大きさの追尾視野が得
られる。
Since W is determined by the object to be tracked, if k is calculated by the tracking gate size determination circuit 10 from the output values of the position sensors P1 and P2 using the above formula, it will always be optimal for the object. A tracking field of view of the size can be obtained.

第7図は、前述の色検出回路12、メモリ13及び移動
判定回路14の詳細を示すものであって、第6図の追尾
ゲート設定回路11を通った画素A及びBそれぞれの色
差信号(R−Y)及び(B −Y)信号並びに輝度信号
Yから、距離演算回路21により第4図の(R−Y/Y
)及び(B−Y/Y)直交座標上の線分AOB、の長さ
DAOoBOが求められ、メモリ22に記憶される。次
のフィールドの信号から、同様にしてDAl、B1又は
DAl、BOが求められる。ここで、簡単のためにB 
、 =B 、である場合を考えると、 DAI・B1=DA1−BO であり、割算器23で DAl、Bl/DAO,BO が算出される。この値が、しきい値設定器24が設定す
る第1のしきい値と比較回路25で比較され、しきい値
を超える変化があると移動判定回路14にl”を出力す
る。同様にして、距離演算回路31から比較回路35ま
での回路によってDCl、B1/DCO,BO が算出され、これに第2のしきい値を超える変化がある
と比較回路35から移動判定回路14にII I II
を出力する。具体的な数値例について説明すると、第5
図に示す設例では、第1及び第2のしきい値をともに2
として、 DAl、Bl/DAO,BO=2.2゜D c 1. 
B 1 / D c O,B O= 0 、36である
ので、比較回路25のみが“1 ”を出力する。この場
合は、移動判定回路14がゲート設定タイミングを所定
時間(例えばNTSC方式の場合l水平走査周期のl/
125程度)だけ遅らせる信号を発生する。逆に比較回
路35のみが111 IIを出力する場合は、移動判定
回路14がゲート設定タイミングを上記の所定時間だけ
早める信号を発生する。後者は、被写体が第3図で左方
向へ移動した場合である。
FIG. 7 shows details of the color detection circuit 12, memory 13, and movement determination circuit 14 described above, and shows the color difference signals (R -Y) and (B -Y) signals and the luminance signal Y, the distance calculation circuit 21 calculates (R-Y/Y) in FIG.
) and the length DAOoBO of the line segment AOB on the (B-Y/Y) orthogonal coordinates are determined and stored in the memory 22. DAl, B1 or DAl, BO are found in the same way from the signal of the next field. Here, for simplicity, B
, =B, then DAI·B1=DA1−BO, and the divider 23 calculates DAl, Bl/DAO,BO. This value is compared with the first threshold value set by the threshold setting device 24 in the comparison circuit 25, and if there is a change exceeding the threshold value, l'' is output to the movement determination circuit 14.Similarly, , DCl, B1/DCO, BO are calculated by the circuits from the distance calculation circuit 31 to the comparison circuit 35, and if there is a change in this that exceeds the second threshold, the comparison circuit 35 sends a signal to the movement determination circuit 14.
Output. To explain a specific numerical example, the fifth
In the example shown in the figure, both the first and second thresholds are set to 2.
As, DAl, Bl/DAO, BO=2.2°D c 1.
Since B 1 /D c O, B O = 0, 36, only the comparison circuit 25 outputs "1". In this case, the movement determination circuit 14 adjusts the gate setting timing for a predetermined period of time (for example, in the case of NTSC, l/l/horizontal scanning period).
125). Conversely, when only the comparison circuit 35 outputs 111 II, the movement determination circuit 14 generates a signal that advances the gate setting timing by the predetermined time. The latter case is when the subject moves to the left in FIG.

したがって、比較回路25又は35の出力“I 11に
応じて移動判定回路14がゲート設定りイミングを、例
えば上記の所定時間だけ変化させる信号を発生し、この
信号に応じてゲート移動回路15が前述のようにゲート
設定回路11及び16を制御することにより測距視野を
被写体が移動する方向へ移動させ、その位置で焦点検出
を行うことができる。そして上記の装置では、(R−Y
/Y)及び(B−Y/Y)直交座標上でDAl、B1/
DAO,BO 及び  DCl、81/DCO0BO の演算を行うことにより、前述のように照明光の輝度の
変化にかかわらず安定な追尾動作を行うことができる。
Therefore, in response to the output "I11" of the comparator circuit 25 or 35, the movement determination circuit 14 generates a signal that changes the gate setting timing, for example, by the above-mentioned predetermined time, and in response to this signal, the gate movement circuit 15 By controlling the gate setting circuits 11 and 16 as shown in FIG.
/Y) and (B-Y/Y) on the orthogonal coordinates DAl, B1/
By calculating DAO, BO and DCl, 81/DCO0BO, stable tracking operation can be performed regardless of changes in the brightness of the illumination light, as described above.

前述の実施例では、第4図の回路で正規化処理を行い、
その出力である(R−Y/Y)及び(B−Y/Y)信号
が、第7図の距離演算回路21.31で処理されるもの
であるが、その変形として、第8図に示すようにそれぞ
れ積分、サンプルホールド及びA/D変換された(R−
Y)。
In the above embodiment, the normalization process is performed using the circuit shown in FIG.
The output (R-Y/Y) and (B-Y/Y) signals are processed by the distance calculation circuit 21.31 shown in FIG. Integration, sample hold and A/D conversion were carried out as follows (R-
Y).

(B −Y)及びY信号を第9図の距離演算回路21.
31に入力し、ここで正規化処理及び(R−Y/Y)、
(B−Y/Y)直交座標上における距離演算を行うよう
にしてもよい。なお第8図及び第9図において、それぞ
れ第4図及び第7図中の各回路と基本的に同じ構成及び
機能を有する回路は、第4図及び第7図と同じ符号を付
しており、又第8図中103c 、104cはそれぞれ
Y信号に対するA/D変換回路及びメモリを示すもので
ある。
(B - Y) and Y signals to the distance calculation circuit 21 of FIG.
31, here normalization processing and (RY/Y),
(BY/Y) Distance calculation may be performed on orthogonal coordinates. In addition, in FIGS. 8 and 9, circuits that have basically the same configuration and function as each circuit in FIGS. 4 and 7, respectively, are given the same symbols as in FIGS. 4 and 7. , and 103c and 104c in FIG. 8 indicate an A/D conversion circuit and memory for the Y signal, respectively.

また、前述の実施例では2つの色差信号(R−Y/Y)
及び(B−Y/Y)によって被写体の移動を検出してい
るが、被写体の移動に伴う被写体及び背景の特徴を表わ
す各画素からの色信号の変化が上記2つの信号のうちの
一方に主として依存よ する場合には、その一方の信号のみにって被写体へ の移動を検出することも可能である。
In addition, in the above embodiment, two color difference signals (R-Y/Y) are used.
The movement of the subject is detected by (B-Y/Y), but the change in color signal from each pixel representing the characteristics of the subject and background due to the movement of the subject is mainly caused by one of the above two signals. If the two signals depend on each other, it is also possible to detect movement toward the subject using only one of the signals.

(効 果) 前述のように、この発明によれば、被追尾被写1   
、、、。−一ゎオ。え*4h−aqh−*n野に関して
抽出する手段と、色差信号を輝度信号によって正規化し
た信号に基づいて被追尾被写体の移動を検出する手段と
を具えているので、照明光の輝度の変化にかかわらず安
定な追尾動作を行うことができる。
(Effect) As described above, according to the present invention, the tracked subject 1
,,,. -1ゎoh. Since it is equipped with a means for extracting the *4h-aqh-*n field and a means for detecting the movement of the tracked subject based on the signal obtained by normalizing the color difference signal with the brightness signal, changes in the brightness of the illumination light can be detected. Stable tracking operation can be performed regardless of the

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のカメラにおける測距視野と被写体像との
関係を示すもので同図(A)は測距視野と被写体像とが
一致している場合、同図(B)は被写体が移動した場合
をそれぞれ示す説明図、第2図はこの発明を実施したカ
メラにおける測距視野と被写体像との関係を示すもの〒
同図(A)は被写体が同一距離で画面内を移動した場合
、同図(B)は被写体が画面内を移動し、かつその距離
が遠ざかった場合をそれぞれ示す説明図、第3図(A)
はこの発明を実施した自動追尾装置において追尾視野を
分割した場合の追尾視野と被写体像との関係を示す説明
図、同図CB)は同図(A)において被写体が画面内を
移動した場合の説明図、第4図は第3図(A)及び(B
)に示す追尾視野の各画素から得られる信号を(R−Y
/Y)及び(B−Y/Y)平面上にプロットした状況を
示す説明図、第5図はこの発明の実施例において(R−
Y/Y)及び(B−Y/Y)信号を得るための装置の一
例を示すブロック図、第6図はこの発明の自動追尾装置
の一実施例の全体構成を示すブロック図、第7図は第6
図の装置の要部の詳細を示すブロック図、第8図は正規
化処理を距離演算回路で行うこの発明の他の実施例にお
いて第3図の各画素から得られる信号を処理する装置の
ブロック図、第9図はこの発明の自動追尾装置の他の実
施例の要部のブロック図である。 符号の説明 l:合焦レンズ、2:ズーム系レンズ、5:撮像素子、
8:撮像素子駆動回路、9:信号処理回路、ll:追尾
ゲート設定回路、12:色検出回路、13:メモリ、1
4:移動判定回路、15:ゲート移動回路、16:測距
ゲート設定回路、17:自動焦点調節回路。 第7図 第8図 第9図
Figure 1 shows the relationship between the distance measurement field of view and the subject image in a conventional camera. Figure 1 (A) shows when the distance measurement field and the subject image match, and Figure 1 (B) shows the relationship between the distance measurement field of view and the subject image. Figure 2 shows the relationship between the distance measurement field of view and the subject image in a camera implementing this invention.
Figure 3 (A) is an explanatory diagram showing the case where the subject moves within the screen at the same distance, Figure 3 (B) is an explanatory diagram showing the case where the subject moves within the screen and the distance becomes farther away, and Figure 3 (A) )
is an explanatory diagram showing the relationship between the tracking field of view and the subject image when the tracking field of view is divided in an automatic tracking device embodying the present invention, and Figure CB) is an explanatory diagram showing the relationship between the tracking field of view and the subject image when the tracking field of view is divided in the automatic tracking device implementing the present invention, and Figure CB) is an explanatory diagram showing the relationship between the tracking field of view and the subject image in the case where the subject moves within the screen in Figure (A). The explanatory diagram, Figure 4, is similar to Figures 3 (A) and (B).
) is the signal obtained from each pixel of the tracking visual field shown in (R-Y
/Y) and (B-Y/Y) plane, and FIG.
FIG. 6 is a block diagram showing an example of a device for obtaining Y/Y) and (B-Y/Y) signals, FIG. 6 is a block diagram showing the overall configuration of an embodiment of the automatic tracking device of the present invention, and FIG. is the 6th
FIG. 8 is a block diagram showing the details of the main parts of the device shown in FIG. 8, and FIG. 8 is a block diagram of a device for processing the signal obtained from each pixel in FIG. 9 are block diagrams of main parts of another embodiment of the automatic tracking device of the present invention. Explanation of symbols 1: Focusing lens, 2: Zoom lens, 5: Image sensor,
8: Image sensor drive circuit, 9: Signal processing circuit, ll: Tracking gate setting circuit, 12: Color detection circuit, 13: Memory, 1
4: movement determination circuit, 15: gate movement circuit, 16: ranging gate setting circuit, 17: automatic focus adjustment circuit. Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】 被追尾被写体の特徴を表わす色差信号と輝度信号とを追
尾視野に関して抽出する手段と、 前記色差信号を前記輝度信号によって正規化した信号に
基づいて被追尾被写体の移動を検出する手段と、 を具えるカメラにおける自動追尾装置。
[Scope of Claims] Means for extracting a color difference signal and a luminance signal representing characteristics of a tracked subject with respect to the tracking field of view, and detecting movement of the tracked subject based on a signal obtained by normalizing the color difference signal with the luminance signal. an automatic tracking device in a camera, comprising: a means for doing so;
JP59124891A 1984-05-25 1984-06-18 Automatic tracking device in camera Expired - Fee Related JP2603211B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59124891A JP2603211B2 (en) 1984-06-18 1984-06-18 Automatic tracking device in camera
US07/569,371 US5031049A (en) 1984-05-25 1990-08-14 Automatic object image follow-up device
US07/860,289 US5204749A (en) 1984-05-25 1992-03-20 Automatic follow-up focus detecting device and automatic follow-up device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59124891A JP2603211B2 (en) 1984-06-18 1984-06-18 Automatic tracking device in camera

Publications (2)

Publication Number Publication Date
JPS614011A true JPS614011A (en) 1986-01-09
JP2603211B2 JP2603211B2 (en) 1997-04-23

Family

ID=14896657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59124891A Expired - Fee Related JP2603211B2 (en) 1984-05-25 1984-06-18 Automatic tracking device in camera

Country Status (1)

Country Link
JP (1) JP2603211B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997000575A1 (en) * 1995-06-19 1997-01-03 Sony Corporation Object recognizing device and image pick-up device
JP2010072659A (en) * 2009-11-06 2010-04-02 Olympus Corp Camera
WO2013148591A1 (en) * 2012-03-28 2013-10-03 Qualcomm Incorporated Method and apparatus for autofocusing an imaging device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244120A (en) * 1975-10-06 1977-04-06 Nippon Hoso Kyokai <Nhk> Color information detection circuit
JPS53132213A (en) * 1977-04-25 1978-11-17 Hitachi Ltd Tracking control unit
JPS5778008A (en) * 1980-11-04 1982-05-15 Hitachi Ltd Method and device for controlling automatic forcusing
JPS5966271A (en) * 1982-10-08 1984-04-14 Tomohito Koyama Picture processor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244120A (en) * 1975-10-06 1977-04-06 Nippon Hoso Kyokai <Nhk> Color information detection circuit
JPS53132213A (en) * 1977-04-25 1978-11-17 Hitachi Ltd Tracking control unit
JPS5778008A (en) * 1980-11-04 1982-05-15 Hitachi Ltd Method and device for controlling automatic forcusing
JPS5966271A (en) * 1982-10-08 1984-04-14 Tomohito Koyama Picture processor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997000575A1 (en) * 1995-06-19 1997-01-03 Sony Corporation Object recognizing device and image pick-up device
JP2010072659A (en) * 2009-11-06 2010-04-02 Olympus Corp Camera
WO2013148591A1 (en) * 2012-03-28 2013-10-03 Qualcomm Incorporated Method and apparatus for autofocusing an imaging device

Also Published As

Publication number Publication date
JP2603211B2 (en) 1997-04-23

Similar Documents

Publication Publication Date Title
US5877809A (en) Method of automatic object detection in image
US9639754B2 (en) Subject tracking apparatus, camera having the subject tracking apparatus, and method for tracking subject
US8605942B2 (en) Subject tracking apparatus, imaging apparatus and subject tracking method
JP5157256B2 (en) Image tracking device and imaging device
US20060181634A1 (en) Imaging apparatus having an autofocus function
US7831091B2 (en) Pattern matching system
JP5056136B2 (en) Image tracking device
JP2012208507A (en) Image tracking device
JPS6110372A (en) Automatic tracking device in camera
JPS60249477A (en) Automatic tracking focus detector
JPH0815315B2 (en) Automatic focus adjustment device
JPH0568666B2 (en)
JPS614011A (en) Automatic tracking device of camera
JP2603212B2 (en) Automatic tracking device in camera
JPS60250318A (en) Automatic tracking device of camera
JP2537170B2 (en) camera
JPS60254108A (en) Automatic tracking device of camera
JPS60254107A (en) Automatic tracking device of camera
JPS6139009A (en) Camera
JPH065909B2 (en) Automatic tracking device in camera
JPH0560714B2 (en)
JPS6138918A (en) Camera
JPH057325A (en) Camera control device
JPH0586701B2 (en)
JPS6238083A (en) Focus adjusting device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees