JPS6140019A - Solid electrolytic condenser - Google Patents

Solid electrolytic condenser

Info

Publication number
JPS6140019A
JPS6140019A JP16249284A JP16249284A JPS6140019A JP S6140019 A JPS6140019 A JP S6140019A JP 16249284 A JP16249284 A JP 16249284A JP 16249284 A JP16249284 A JP 16249284A JP S6140019 A JPS6140019 A JP S6140019A
Authority
JP
Japan
Prior art keywords
solid electrolytic
sintered body
electrolytic capacitor
forming
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16249284A
Other languages
Japanese (ja)
Inventor
三井 紘一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIKON SPRAGUE KK
Original Assignee
NICHIKON SPRAGUE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIKON SPRAGUE KK filed Critical NICHIKON SPRAGUE KK
Priority to JP16249284A priority Critical patent/JPS6140019A/en
Publication of JPS6140019A publication Critical patent/JPS6140019A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は固体電解コンデンサ、特に漏れ電流が小さく、
高周波パルス特性の優れた固体電解コンデンサに関する
ものである。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to solid electrolytic capacitors, particularly those having low leakage current.
This invention relates to a solid electrolytic capacitor with excellent high frequency pulse characteristics.

従来の技術 近年半導体ICの進歩により電子計算機などに高速MO
Sスタチ7りRAMが多く使用されるようになり、応答
速度の速い、すなわち立上り速度のきわめて速いパルス
信号が使用され、それに伴い高速麿パルス回路で発生す
るノイズを除去するために種々のノイズリミッタ−用コ
ンデンサが使用されている。これらのコンデンサは一般
にセラミックコンデンサと、タンタル、アルミニウムな
どの固体電解コンデンサケ使用されており、後者は比較
的容量の大きいものが小形で安価に作成できる5ので多
用されている。しかし粉末状金属を成形、焼結して陽極
用焼一体を形成するため、コンデンサの等価直列抵抗が
太き(高周波におけるインピーダンスが大きい欠、点が
あった。そのため実公昭39−19574号公報のよう
に、リード線を粉末状金属成形体中に埋設して成形し、
該成形体の軸方向に透孔を設けて焼結したもの、実開昭
50−104948号公報のように粉末金属成形体にリ
ード線を埋設すると共に該成形体の周面にそれの肉厚を
実質的に小さくする凹部を形成したものなどが考案され
試みられていた。
Conventional technology Recent advances in semiconductor ICs have enabled high-speed MO in electronic computers, etc.
As RAMs have come into widespread use, pulse signals with fast response speeds, that is, extremely fast rise speeds, are being used, and various noise limiters are being used to remove the noise generated in high-speed pulse circuits. − capacitor is used. These capacitors generally include ceramic capacitors and solid electrolytic capacitors made of tantalum, aluminum, etc., and the latter is widely used because it can have a relatively large capacity, be small, and be manufactured at low cost5. However, since the sintered body for the anode is formed by molding and sintering powdered metal, the equivalent series resistance of the capacitor is large (the impedance at high frequencies is large). As shown in the figure, the lead wire is embedded in a powder metal molded body and molded.
A through hole is provided in the axial direction of the molded body and sintered, and a lead wire is embedded in the powder metal molded body and the thickness of the lead wire is embedded in the peripheral surface of the molded body as in Japanese Utility Model Application Publication No. 50-104948. Attempts have been made to form concave portions that substantially reduce the size of

発明が解決しようとする問題点 高CV(#電容量と化成電圧の積)化された粒径の小さ
い粉末状金属を用いる場合、上述のような相方向に透孔
等を設ける従来の方法ではプレス成形が困難となる欠点
があった。
Problems to be Solved by the Invention When using a powdered metal with a small particle size and a high CV (product of capacitance and formation voltage), the conventional method of forming through holes in the phase direction as described above There was a drawback that press molding was difficult.

また成形体の加圧端部分の密度が高くなり、固体電解質
層の浸透が不充分となるため等価直列抵抗の低減にも限
界があった。
Furthermore, the density at the pressurized end portion of the molded body becomes high, and penetration of the solid electrolyte layer becomes insufficient, so there is a limit to the reduction in equivalent series resistance.

問題点を解決するための手段 本発明は上述の問題を解消するため、粉末状酸化皮膜生
成用金属を成形、焼結して焼結体を形成し、その表面に
酸化皮膜層、固体電解質層、陰極層を順次形成してなる
固体電解コンデンサにおいて、上記粉末酸化皮膜生成用
金属を、穴または凹凸を有する板状に成形して仮焼した
後、これに引出しタブを溶接し、さらに焼結して陽極用
焼結体を形成したことを特徴とする固体電解コンデンサ
である。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention involves molding and sintering a powdered metal for forming an oxide film to form a sintered body, and forming an oxide film layer and a solid electrolyte layer on the surface of the sintered body. In a solid electrolytic capacitor in which cathode layers are sequentially formed, the above metal for forming a powder oxide film is formed into a plate shape having holes or irregularities, calcined, a drawer tab is welded to this, and further sintered. This is a solid electrolytic capacitor characterized in that a sintered body for an anode is formed by

作用 粉末状酸化皮膜生成用金属を穴を有する板状あるいは凹
凸のある板状に形成するため、小径の粉末状金属を用い
ても、プレス成形が容易であると共に、成形体内部への
固体電解質層の浸透性の良い多孔性焼結体が得られ、等
価直列抵抗ならびにインピルダンスの低減効果により高
速パルスに対する応答特性が改善する。
Function Since the powdered oxide film forming metal is formed into a plate shape with holes or a plate shape with unevenness, press molding is easy even when using a small diameter powdered metal, and the solid electrolyte inside the molded body is easily formed. A porous sintered body with good layer permeability is obtained, and response characteristics to high-speed pulses are improved due to the effect of reducing equivalent series resistance and impillance.

実施例 以下、本発明を第1図〜第9図に示す実施例により説明
する。
EXAMPLES Hereinafter, the present invention will be explained with reference to examples shown in FIGS. 1 to 9.

第1図(イ)は陽極用焼結体の斜視図、(II)はその
側断面図で、粉末状酸化皮膜生成用タンタル金属を成形
して多数の穴1を有する粉末成形体を形成し、真空度5
xlO−6Torr、温度1700℃中にて15分間仮
焼した後、これにタンクル線からなる引出しタブ2を溶
接し、さらに真空度5χ1O−6Torr、温度170
0℃中にて15分間焼結して多孔性焼結体3を形成する
。次いで引出しタブ2を化成用導電性金属板に溶接して
並べて焼結体3を化成液中に浸漬して焼結体表面に酸化
皮膜を生成させ、硝酸マンガン液に浸漬焼付を数回繰返
し固体電解質層を形成し、さらにグラファイト、銀ペー
ストなどにしタブ2を化成用導電性金属板から切離して
陽極剤リード端子を溶接し、陰極導電層と陰極層リード
端子とをはんだで接続し、これを樹脂外装して完成する
FIG. 1(A) is a perspective view of a sintered body for an anode, and FIG. 1(II) is a side sectional view thereof, in which powdered tantalum metal for forming an oxide film is molded to form a powder compact having a large number of holes 1. , degree of vacuum 5
After calcining for 15 minutes at xlO-6 Torr and temperature 1700°C, a pull-out tab 2 made of Tankle wire was welded to this, and further the vacuum was 5xlO-6 Torr and temperature 170°C.
The porous sintered body 3 is formed by sintering at 0° C. for 15 minutes. Next, the drawer tab 2 is welded to a conductive metal plate for chemical conversion, the sintered body 3 is immersed in a chemical liquid to form an oxide film on the surface of the sintered body, and the sintered body is immersed in a manganese nitrate solution and baked several times to form a solid. After forming an electrolyte layer, using graphite or silver paste, etc., the tab 2 is separated from the conductive metal plate for chemical conversion, the anode agent lead terminal is welded, and the cathode conductive layer and the cathode layer lead terminal are connected with solder. Completed with resin exterior.

第2図は上述の実施例に基づいて定格35v11μFの
同一方向2本端子形固体電解コンデンサを製作し、これ
に50Ωの直列抵抗および50Ωの並列抵抗を通じて立
上り時間T’r ” l’ n’sの短形波パルス電圧
を印加しコンデンサ端子電圧を測定し、同定格の従来品
と比較した゛結果を示す。またこの特性図よりイ↓ダク
タンスおよび等価直列抵抗(ESR)を算出した結果を
表に示す。
Figure 2 shows that a solid electrolytic capacitor with two terminals in the same direction with a rating of 35V and 11μF was fabricated based on the above-mentioned embodiment, and the rise time T'r ''l'n's was connected to it through a series resistance of 50Ω and a parallel resistance of 50Ω. The capacitor terminal voltage was measured by applying a rectangular wave pulse voltage of Shown below.

表 、また第3図は同製品のインピ・−ダンスおよび等価直
列抵抗(ESR)の周波数特性比較図で、図、中白線a
は本発明品のインピーダンス、曲線すは従来品のインピ
ーダンス、曲線Cは本発明品の等価直列抵抗、曲線dは
従来品の等価直列抵抗である。
The table and Figure 3 are comparison diagrams of the impedance and equivalent series resistance (ESR) frequency characteristics of the same product.
is the impedance of the product of the present invention, curve C is the impedance of the conventional product, curve C is the equivalent series resistance of the product of the present invention, and curve d is the equivalent series resistance of the conventional product.

第3図および第4図から明らかのように本発明品はパル
スの応答特性および周波数特性が著しく改善できること
が実証された。
As is clear from FIGS. 3 and 4, it was demonstrated that the product of the present invention can significantly improve the pulse response characteristics and frequency characteristics.

なお、第4図〜第9図は他の実施例を示し、4は穴、5
.6.7.8は凹部である。10は引出しiブ2を板の
平面側に溶接したものである。いずれも、上述の実施例
直間様にして製作することが−でき、その電気特性□は
第2図、第3図における本発明品と同様な結果が得られ
た。
In addition, FIGS. 4 to 9 show other embodiments, where 4 is a hole and 5 is a hole.
.. 6.7.8 is a recess. Reference numeral 10 indicates a drawer i-b 2 welded to the flat side of the plate. Both of them could be manufactured in the same manner as in the above-mentioned embodiments, and their electrical properties were similar to those of the products of the present invention shown in FIGS. 2 and 3.

なお、上述の実施例において端子の導出方法は適宜必要
に応じて扁平チップ形、3端子リード形、4端子リード
形などに利用できる。
In the above-described embodiments, the terminal lead-out method can be used for a flat chip type, a three-terminal lead type, a four-terminal lead type, etc., as appropriate.

発明の効果 以上のように本発明の固禄電解コンデンサは、低損失で
、高速パルス応答速度の速い固体電解コンデンサが得ら
れ、しかも粒径の小さい高りv化粉末状金属を容易に成
形できるなど、品質ならびに生産性向上の面で極めて有
利となる。
Effects of the Invention As described above, the solid electrolytic capacitor of the present invention provides a solid electrolytic capacitor with low loss and high high-speed pulse response speed, and furthermore, it is possible to easily mold high-v powder metal with small particle size. This is extremely advantageous in terms of improving quality and productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の固体電解コンデンサの多孔性焼結体の
一実施例で、(イ)は斜視図、(D)は側断面図、第2
図は従来品と本発明品とを比較した固体電解コンデンサ
のパルス応答特性図、第3図は従来品と本発明とを比較
した固体電解コンデンサのインピーダンスおよび等価直
列抵抗の周波数特性図、第4図〜第8図は本発明の固体
電解コンデンサの各々異なる多孔性焼結体の斜視図、第
9図は本発明の固体電解コンデンサの多孔性焼結体のそ
の他の実施例の側面図である。 1.4:穴  2:引出しタブ 3.9.10.11.12.13.14:焼結体  5
.6.7.8:凹部
FIG. 1 shows one embodiment of the porous sintered body of the solid electrolytic capacitor of the present invention, in which (A) is a perspective view, (D) is a side sectional view, and FIG.
Figure 3 is a pulse response characteristic diagram of a solid electrolytic capacitor comparing a conventional product and the product of the present invention. Figure 3 is a frequency characteristic diagram of impedance and equivalent series resistance of a solid electrolytic capacitor comparing a conventional product and the present invention. Figure 4 8 are perspective views of different porous sintered bodies of solid electrolytic capacitors of the present invention, and FIG. 9 is side views of other embodiments of porous sintered bodies of solid electrolytic capacitors of the present invention. . 1.4: Hole 2: Drawer tab 3.9.10.11.12.13.14: Sintered body 5
.. 6.7.8: Recess

Claims (1)

【特許請求の範囲】[Claims] 粉末状酸化皮膜生成用金属を成形、焼結して焼結体を形
成し、その表面に酸化皮膜層、固体電解質層、陰極導電
層を順次形成してなる固体電解コンデンサにおいて、上
記粉末状酸化皮膜生成用金属を穴または凹凸を有する板
状に成形して仮焼した後、これに引出タブを溶接し、さ
らに焼結して多孔性焼結体を形成したことを特徴とする
固体電解コンデンサ。
In a solid electrolytic capacitor formed by molding and sintering a metal for forming a powdery oxide film to form a sintered body, and sequentially forming an oxide film layer, a solid electrolyte layer, and a cathode conductive layer on the surface of the sintered body, the above-mentioned powdery oxide A solid electrolytic capacitor characterized in that a metal for forming a film is formed into a plate shape having holes or irregularities, calcined, a pull-out tab is welded to the plate, and a porous sintered body is formed by further sintering. .
JP16249284A 1984-07-31 1984-07-31 Solid electrolytic condenser Pending JPS6140019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16249284A JPS6140019A (en) 1984-07-31 1984-07-31 Solid electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16249284A JPS6140019A (en) 1984-07-31 1984-07-31 Solid electrolytic condenser

Publications (1)

Publication Number Publication Date
JPS6140019A true JPS6140019A (en) 1986-02-26

Family

ID=15755645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16249284A Pending JPS6140019A (en) 1984-07-31 1984-07-31 Solid electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS6140019A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277476A (en) * 2007-04-27 2008-11-13 Sanyo Electric Co Ltd Solid electrolytic capacitor and method of manufacturing the same
JP2010171255A (en) * 2009-01-23 2010-08-05 Sanyo Electric Co Ltd Solid electrolytic capacitor and method of manufacturing the same
JP2011258998A (en) * 2011-10-03 2011-12-22 Sanyo Electric Co Ltd Solid electrolytic capacitor and manufacturing method of the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165314A (en) * 1980-05-23 1981-12-18 Nippon Electric Co Solid electrolytic condenser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165314A (en) * 1980-05-23 1981-12-18 Nippon Electric Co Solid electrolytic condenser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277476A (en) * 2007-04-27 2008-11-13 Sanyo Electric Co Ltd Solid electrolytic capacitor and method of manufacturing the same
JP2010171255A (en) * 2009-01-23 2010-08-05 Sanyo Electric Co Ltd Solid electrolytic capacitor and method of manufacturing the same
JP2011258998A (en) * 2011-10-03 2011-12-22 Sanyo Electric Co Ltd Solid electrolytic capacitor and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US3686535A (en) Electrolytic capacitor with separate interconnected anode bodies
JP3199871B2 (en) Chip type solid electrolytic capacitor
US11521802B2 (en) Solid electrolyte capacitor and fabrication method thereof
JPS6140019A (en) Solid electrolytic condenser
JPS6041716Y2 (en) solid electrolytic capacitor
JPS63124511A (en) Aluminum solid electrolytic capacitor
JPH0785461B2 (en) Capacitor
JPH0763045B2 (en) Capacitor
KR102016481B1 (en) Solid Electrolyte Capacitor and fabrication method thereof
US20230078854A1 (en) Multi-Directional and Multi-Channel Anode for Enhancement of Capacitor Performance
JP3316896B2 (en) Capacitor
JP3505763B2 (en) Chip-shaped solid electrolytic capacitor
JPS62188215A (en) Manufacture of electrolytic capacitor
JPS61163630A (en) Manufacture of solid electrolytic capacitor
KR100251761B1 (en) Method of manufacturing tantalum solid electrolysis condenser
JPH02166715A (en) Solid electrolytic capacitor
JP3401447B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2003173937A (en) Solid-state electrolytic capacitor
JPS5923099B2 (en) solid electrolytic capacitor
KR20040054356A (en) High capacity tantalum solid electrolytic capacitor and thereof manufacturing method
JP2003045757A (en) Electrolytic capacitor anode body and manufacturing method therefor
JPS6043004B2 (en) Manufacturing method of solid electrolytic capacitor
JPS6236373B2 (en)
JPS60196926A (en) Solid electrolytic condenser
JPS60196927A (en) Solid electrolytic condenser