JPS6139844B2 - - Google Patents

Info

Publication number
JPS6139844B2
JPS6139844B2 JP57207258A JP20725882A JPS6139844B2 JP S6139844 B2 JPS6139844 B2 JP S6139844B2 JP 57207258 A JP57207258 A JP 57207258A JP 20725882 A JP20725882 A JP 20725882A JP S6139844 B2 JPS6139844 B2 JP S6139844B2
Authority
JP
Japan
Prior art keywords
moisture absorption
moisture
air
sunlight
dry air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57207258A
Other languages
Japanese (ja)
Other versions
JPS5995919A (en
Inventor
Yoshikazu Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57207258A priority Critical patent/JPS5995919A/en
Publication of JPS5995919A publication Critical patent/JPS5995919A/en
Publication of JPS6139844B2 publication Critical patent/JPS6139844B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1417Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with liquid hygroscopic desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/60Details of absorbing elements characterised by the structure or construction
    • F24S70/65Combinations of two or more absorbing elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Description

【発明の詳細な説明】 本発明は、吸湿剤を使用した吸湿装置、特に、
太陽光を熱源として吸湿剤の再生を効率良く行う
太陽光直射再生式吸湿装置を使用した乾燥空気連
続生成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a moisture absorbing device using a moisture absorbing agent, in particular,
The present invention relates to a method for continuously generating dry air using a direct sunlight regeneration type moisture absorption device that efficiently regenerates a moisture absorbent using sunlight as a heat source.

我国のように高温多湿な国においては、夏期の
冷房手段として室内空気又は外気を吸湿剤で吸湿
して乾燥空気を生成し、これを蒸発冷却器で冷却
して室内に供給する、所謂除湿冷房が最も効果的
な冷房手段であり、また、かかる除湿冷房システ
ムにおける吸湿剤の再生熱源として太陽エネルギ
ーを利用すれば、システムの運転コストを大巾に
削減し、従来の吸収式冷凍機等を使用して冷房運
転を行う空調システムのコスト高を解消すること
が出来る。
In hot and humid countries like ours, so-called dehumidifying cooling is used as a means of cooling in the summer by absorbing moisture from indoor or outdoor air with a moisture absorbent to produce dry air, which is then cooled by an evaporative cooler and supplied indoors. is the most effective means of cooling, and if solar energy is used as a regenerating heat source for the moisture absorbent in such a dehumidifying cooling system, the operating cost of the system can be drastically reduced, and conventional absorption chillers can be used instead. The high cost of air conditioning systems that perform cooling operations can be eliminated.

そのため、本発明者はかかる要望に呼応すべく
先に実願昭54−15410号(実開昭55−114428号公
報参照)において第1図に示す如き太陽熱を利用
した除湿冷房システムを提案した。即ち第1図イ
は除湿冷房システムの吸湿サイクルであつて、該
吸湿サイクルは、居室等の空調対象域Rから送風
器1で吸い込んだ湿分含有空気を空気通路2,3
の途中に設けたシリカゲル等の吸湿剤4を充填し
た吸湿槽5に通じて乾燥空気を生成し、これを水
分を含ませた湿潤性多孔質物体6が収設された蒸
発冷却器7内に供給し、多孔質物体6内の空気通
路6aを通過させて蒸発冷却作用により空気の温
度を下げ、空気通路8から前記空調対象域Rに冷
風を供給するものである。
Therefore, in order to respond to such a demand, the present inventor previously proposed a dehumidifying cooling system using solar heat as shown in FIG. That is, FIG. 1A shows the moisture absorption cycle of the dehumidifying and cooling system, in which moisture-containing air sucked in by the blower 1 from the air-conditioned area R such as a living room is passed through the air passages 2 and 3.
Dry air is generated through a moisture absorbing tank 5 filled with a moisture absorbing agent 4 such as silica gel, which is provided in the middle of the air, and is then transferred to an evaporative cooler 7 in which a moist porous body 6 containing moisture is housed. The temperature of the air is lowered by the evaporative cooling effect by passing through the air passage 6a in the porous body 6, and cold air is supplied from the air passage 8 to the air conditioning target area R.

図中、9は前記吸湿剤4に内蔵され、貯水タン
ク10からポンプ11によつて汲み上げた冷却水
を通過させて除湿運転時の吸着熱を奪い、除湿能
力の低下を防ぐ冷却コイル、12は、蒸発冷却器
7底部からポンプ13によつて汲み上げた冷却水
を前記湿潤性多孔質物体6に噴霧する水分噴霧器
である。また、第1図ロは、上記の吸湿サイクル
に並設され吸湿能力の低下した吸湿剤4を脱着す
る再生サイクルを示したもので、送風器14で吸
い込んだ外気を公知の太陽集熱器15に送り込ん
で温風となし、これを除湿層5に供給し、対流伝
熱によつて吸湿剤4を加熱再生している。
In the figure, reference numeral 9 denotes a cooling coil built into the moisture absorbent 4, through which the cooling water pumped up from the water storage tank 10 by the pump 11 passes, absorbing heat of adsorption during dehumidification operation, and preventing a decrease in dehumidification capacity; This is a moisture sprayer that sprays cooling water pumped up from the bottom of the evaporative cooler 7 by a pump 13 onto the wet porous object 6. In addition, FIG. 1B shows a regeneration cycle which is installed in parallel with the above-mentioned moisture absorption cycle and desorbs the moisture absorbent 4 whose moisture absorption capacity has decreased. The hot air is supplied to the dehumidifying layer 5, and the moisture absorbent 4 is heated and regenerated by convection heat transfer.

16は除湿層5の排気熱で外気を予熱するため
の熱交換器である。
16 is a heat exchanger for preheating outside air with exhaust heat from the dehumidifying layer 5.

なお、前記吸湿層5は、通常2基以上使用さ
れ、これらを空気通路の切換え操作によつて前記
第1図イの吸湿サイクルおよび第1図ロの再生サ
イクルに交互に組み替え、連続して乾燥空気生成
に利用される。
Note that two or more of the moisture absorption layers 5 are normally used, and these are alternately rearranged into the moisture absorption cycle shown in FIG. 1A and the regeneration cycle shown in FIG. Used for air generation.

従つて、上記構成の冷房システムにおいては、
吸湿サイクルでの吸湿剤の吸湿効率はもとより、
再生サイクルにおける吸湿剤の再生効率の向上、
および再生時間の短縮化が乾燥空気を安定的に供
給して、除湿冷房を連続運転するための重要な要
件となつている。
Therefore, in the cooling system with the above configuration,
In addition to the moisture absorption efficiency of the moisture absorbent during the moisture absorption cycle,
Improving regeneration efficiency of moisture absorbent in regeneration cycle,
Shortening the regeneration time is an important requirement for stably supplying dry air and continuously operating dehumidifying air conditioners.

ところが、かかる従来の太陽熱利用除湿冷房シ
ステムにおいては、吸湿剤4の脱着に相当高温の
空気を必要とするため吸湿剤再生回路(第1図
ロ)の太陽集熱器15で高温集熱を行う必要があ
り、その結果、集熱効率が低く、再生時間が相当
長くなるため、集熱効率の低さを補おうとすれ
ば、当然、集熱器15の集熱面積を大きくしなけ
ればならず集熱器が大型化して据付けが困難にな
る難点があつた。また、このように高温空気を介
して太陽集熱器15で吸湿剤4を間接的に脱着す
るシステムでは、太陽集熱器15の集熱効率に実
際上限界があるため、システム全体の効率が低
く、曇天時のように日射量が小さい場合には、ほ
とんど太陽エネルギーを利用出来ないという問題
を有していた。
However, in such a conventional dehumidifying cooling system using solar heat, considerably high temperature air is required to desorb the moisture absorbent 4, so high temperature heat is collected in the solar collector 15 of the moisture absorbent regeneration circuit (FIG. 1B). As a result, the heat collection efficiency is low and the regeneration time is considerably long. Therefore, in order to compensate for the low heat collection efficiency, it is natural that the heat collection area of the heat collector 15 must be increased. The problem was that the size of the device made it difficult to install. In addition, in a system in which the moisture absorbent 4 is indirectly desorbed by the solar collector 15 through high-temperature air, there is a practical limit to the heat collection efficiency of the solar collector 15, so the efficiency of the entire system is low. However, when the amount of solar radiation is small, such as during cloudy days, there is a problem in that almost no solar energy can be used.

本発明は、かかる従来の太陽熱利用除湿冷房シ
ステムの問題点に着目し、吸着剤を直接太陽光で
加熱して再生効率を高めることにより、上記問題
点を解消することを目的としてなされたもので、
その特徴は、広い受光面積をもつ平板状吸湿体
を、上面が透明カバーで覆われた吸湿槽本体内に
吸容し、該板状吸湿体に直接太陽光を照射して吸
湿剤の温度を高め効率良く吸湿剤の再生を行うと
共に、板状吸湿体上方の透明カバー間隙に設けた
遮光手段を開閉することにより吸湿・再生運転の
切換えを容易に行い得る太陽光直射再生式吸湿装
置2基以上使用し、これらを交互に吸湿回路およ
び再生回路に組み込んで連続的に乾燥空気を得る
に際し、吸湿運転中の吸湿装置の透明カバー間に
発生する高温空気を再生運転中の吸湿装置の吸湿
槽本体内に供給することにより、脱着用空気の温
度を高め、装置の再生効率を高めながら連続的に
乾燥空気を連続生成する方法を提供することにあ
る。
The present invention has focused on the problems of the conventional solar dehumidification cooling system, and has been made with the aim of solving the above problems by directly heating the adsorbent with sunlight to increase the regeneration efficiency. ,
The feature is that a flat moisture absorbent with a wide light-receiving area is absorbed into the moisture absorption tank body whose top surface is covered with a transparent cover, and the temperature of the moisture absorbent is controlled by directly irradiating sunlight onto the plate-shaped moisture absorbent. Two solar direct sunlight regeneration type moisture absorption devices that regenerate the moisture absorbent with high efficiency and can easily switch between moisture absorption and regeneration operation by opening and closing the light shielding means provided in the gap between the transparent covers above the plate-shaped moisture absorbent body. When using the above methods and incorporating them alternately into the moisture absorption circuit and the regeneration circuit to continuously obtain dry air, the high temperature air generated between the transparent covers of the moisture absorption device during moisture absorption operation is transferred to the moisture absorption tank of the moisture absorption device during regeneration operation. It is an object of the present invention to provide a method for continuously generating dry air while increasing the temperature of desorption air by supplying it into a main body and increasing the regeneration efficiency of the device.

以下、本発明を添付図面に示す実施例について
説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第2図は本発明乾燥空気連続生成方法に適用可
能な太陽光直射再生式吸湿装置の一実施例を斜視
図で示したもので、21は上面がガラス板又はア
クリル板等からなる二重の透明カバー22,23
で覆われ、全体が偏平な筐体形状をなした除湿槽
本体であつて、該吸湿槽本体21は、通常、上面
が太陽光線を直角に受け易い角度に傾斜して設置
され、下方の端面に横長スリツト形状の空気流入
口24を備えた入口ヘツダ25が、上方端面に同
様な横長スリツト形状の空気流出口26を備えた
出口ヘツダ27が夫々設けられていると共に、内
部の中空室28において、該中空室28を前記空
気流入口24側と空気流出口26側とに対角線状
に2分割し、上面が前記透明カバー22と対向し
て、太陽光線を略々直角に受ける如く板状吸湿体
29が収設されている。
Fig. 2 is a perspective view of an embodiment of a solar direct sunlight regeneration type moisture absorption device applicable to the dry air continuous generation method of the present invention. Transparent covers 22, 23
The dehumidifying tank main body 21 has a flat housing shape as a whole, and the moisture absorbing tank main body 21 is usually installed with the upper surface inclined at an angle that easily receives sunlight at right angles, and the lower end surface An inlet header 25 is provided with an air inlet 24 in the shape of a horizontally long slit at the top thereof, and an outlet header 27 is provided with an air outlet 26 in the shape of a horizontally long slit in the upper end thereof. , the hollow chamber 28 is diagonally divided into two sides, the air inlet 24 side and the air outlet 26 side, and the upper surface faces the transparent cover 22 and is formed into a plate-like moisture absorbing structure so as to receive sunlight at a substantially right angle. A body 29 is housed there.

なお、前記中空室28は、吸湿槽本体21の底
部に積層した断熱材30、ベニヤ板31およびア
ルミ箔32によつて十分な断熱が施されている。
The hollow chamber 28 is sufficiently insulated by a heat insulating material 30, a plywood board 31, and an aluminum foil 32 laminated on the bottom of the moisture absorption tank body 21.

また、前記透明カバー22,23のカバー間隙
に画成した遮光手段収容空間33には、回転軸3
4,34……を中心として回動可能な複数枚の細
巾帯状遮光翼35,35……を備えた回転式遮光
ブラインド36が収設されており、各遮光翼3
5,35……は、傾斜角度を一勢に変化すること
により、前記板状吸湿体29表面への太陽光照射
量を調整し得るようになつていると共に、前記収
容空間33の一方端には、太陽光を前記遮光ブラ
インド36で遮つた時に発生する高温空気を送出
するための送出口37が設けられ、また、下端に
は該収容空間33を大気連通させる外気導入口3
8が設けられている。
Further, a rotation shaft 3 is provided in a light shielding means housing space 33 defined in the cover gap between the transparent covers 22 and 23.
A rotary light-shielding blind 36 is provided with a plurality of narrow band-shaped light-shielding wings 35, 35, which are rotatable around 4, 34, and each light-shielding wing 3.
5, 35... are designed so that the amount of sunlight irradiated onto the surface of the plate-shaped moisture absorbing body 29 can be adjusted by changing the inclination angle all at once, and at one end of the accommodation space 33. is provided with an outlet 37 for discharging high-temperature air generated when sunlight is blocked by the light-shielding blind 36, and an outside air inlet 3 at the lower end for communicating the accommodation space 33 with the atmosphere.
8 is provided.

前記吸湿槽本体21内に収設した板状吸湿体2
9は、第3図に示す如く冷却水導通管39,39
を平面的に所要本数並列配置し、これに冷却フイ
ン40を取付けて形成した平板形フインチユーブ
41の上下両面に布網42および金網43を夫々
配設し、両網42,43の中間間隙部にビーズ
状、チツプ状等の粒形状をなしたシリカゲル等の
粒状吸湿剤44を充填保持せしめて構成したもの
で、前記網42,43の網目および吸湿剤44の
充填隙間を空気が自由に通過し得るようになつて
いる。
A plate-shaped moisture absorbent body 2 housed in the moisture absorption tank body 21
9 is a cooling water conduit pipe 39, 39 as shown in FIG.
A required number of fins are arranged in parallel on a plane, and cooling fins 40 are attached thereto to form a flat plate-type finch tube 41. A cloth net 42 and a wire net 43 are respectively arranged on the upper and lower surfaces of the flat finch tube 41. It is constructed by filling and holding a granular moisture absorbent 44 such as silica gel in the shape of beads, chips, etc., so that air can freely pass through the meshes of the meshes 42 and 43 and the filling gaps of the moisture absorbent 44. I'm starting to get it.

一方、第4図は上記構成の吸湿装置を複数基使
用して連続的に乾燥空気を生成する場合の回路構
成を示したもので、第1の吸湿装置A1は、その
空気出口26が途中に送風器45を介設した空気
通路46によつて前記第1図に示した如き蒸発冷
却器7に連結され、該蒸発冷却器7で蒸発冷却し
た空気を居室等の空調対象域Rに空気通路47を
通じて供給するようになつていると共に、該空調
対象域Rから空気通路48に送り込まれた湿分含
有空気は前記第1の吸湿装置A1の空気入口24
を通じて中空室28に導入される。また、該第1
の吸湿装置A1に収設した板状吸湿体29内の冷
却水導通管39は、一端に貯水タンク49からポ
ンプ50で汲み上げた冷却水を注入する冷却水配
管51が接続されていると共に、他端側に、冷却
水を前記貯水タンク49に還流させる冷却水配管
52が接続されている。
On the other hand, FIG. 4 shows a circuit configuration when dry air is continuously generated using a plurality of moisture absorption devices having the above configuration. It is connected to the evaporative cooler 7 as shown in FIG. 1 through an air passage 46 with an air blower 45 interposed therein, and the air evaporatively cooled by the evaporative cooler 7 is supplied to the air-conditioned area R such as a living room. Moisture-containing air is supplied through the passage 47 and sent from the air-conditioned area R to the air passage 48 through the air inlet 24 of the first moisture absorption device A1 .
is introduced into the hollow chamber 28 through. Also, the first
The cooling water conduit 39 in the plate-shaped moisture absorbing body 29 housed in the moisture absorption device A 1 is connected to one end of the cooling water pipe 51 for injecting the cooling water pumped up by the pump 50 from the water storage tank 49. A cooling water pipe 52 for circulating cooling water back to the water storage tank 49 is connected to the other end.

更に、第1の吸湿装置A1上部の高温空気送出
口37は、空気通路53によつて第2の吸湿装置
A2の空気流入口24に接続されており、第1の
吸湿装置A1の遮光手段収容空間33の外気導入
口38および第2の吸湿装置A2の空気流出口2
6は、夫々空気通路を通じて大気に連通してい
る。
Furthermore, the high temperature air outlet 37 at the top of the first moisture absorbing device A1 is connected to the second moisture absorbing device by an air passage 53.
It is connected to the air inlet 24 of A2 , and is connected to the outside air inlet 38 of the light shielding means housing space 33 of the first moisture absorbing device A1 and the air outlet 2 of the second moisture absorbing device A2.
6 are in communication with the atmosphere through air passages, respectively.

なお、上記図示実施例では、第1の吸湿装置
A1を遮光ブラインド36の各遮光翼35,35
……を一勢に所定角度傾けて板状吸湿体29への
太陽光直射を遮断し、第2の吸湿装置A2を遮光
ブラインド33の各遮光翼35,35……を太陽
光線入射方向と並行させて板状吸湿体29に太陽
光を照射している状態を夫々示しているが、第
1、第2の吸湿装置A1,A2は、空気通路の切換
えおよび遮光ブラインド33の開閉により交互に
吸湿・再生運転状態となし、連続的に乾燥空気を
生成するのに使用される。
In addition, in the illustrated embodiment, the first moisture absorption device
A 1 to each light-shielding wing 35, 35 of the light-shielding blind 36
. . . are tilted at a predetermined angle to block direct sunlight on the plate-shaped moisture absorbing body 29, and the second moisture absorption device A2 is connected to the light shielding blades 35, 35 of the light shielding blind 33 in the direction of sunlight incidence. Although the state in which sunlight is irradiated to the plate-shaped moisture absorbing body 29 in parallel is shown, the first and second moisture absorption devices A 1 and A 2 are operated by switching the air passages and opening and closing the light-shielding blind 33. It is used to alternately operate in moisture absorption and regeneration modes and continuously generate dry air.

本発明は叙上の如き構成を有するものである
が、次にその作用を第4図について説明すると、
先ず第1の吸湿装置A1により除湿冷房を行うに
当つては、送風機45を運転して空調対象域Rの
湿分含有空気を中空室28に導入し、板状吸湿体
29内に通過させて、内部の吸湿剤44に水分を
吸着させ、生成した乾燥空気を空気流出口26か
ら送出して蒸発冷却器7に供給し、ここで蒸発冷
却作用により温度を下げ、冷風を空調対象域Rを
送風する。このとき、板状吸湿体29内の冷却水
導通管39に、ポンプ49で冷却水を供給すれ
ば、これが吸湿剤44の吸着熱を奪い、温度上昇
による吸湿効率低下を防止することが出来る。
The present invention has the configuration as described above, and its operation will be explained next with reference to FIG. 4.
First, when dehumidifying and cooling is performed by the first moisture absorbing device A 1 , the air blower 45 is operated to introduce moisture-containing air in the air conditioning target area R into the hollow chamber 28 and allow it to pass through the plate-shaped moisture absorbing body 29 . The moisture is adsorbed by the internal moisture absorbent 44, and the generated dry air is sent out from the air outlet 26 and supplied to the evaporative cooler 7, where the temperature is lowered by the evaporative cooling action and the cold air is sent to the air conditioning target area R. to blow air. At this time, if cooling water is supplied by the pump 49 to the cooling water conduit 39 in the plate-shaped moisture absorbent body 29, this absorbs the heat of adsorption from the moisture absorbent 44, and it is possible to prevent a decrease in moisture absorption efficiency due to a rise in temperature.

また、かかる吸湿運転時において該第1の吸湿
装置A1の遮光手段収容空間33内では、遮光ブ
ラインド36に太陽光線が照射され、ホツトボツ
クスの原理によつて該遮光ブラインド36周囲の
空気が温められて該空間33内に高温空気が発生
する。
Furthermore, during the moisture absorption operation, sunlight is irradiated onto the light shielding blind 36 in the light shielding means housing space 33 of the first moisture absorbing device A1 , and the air around the light shielding blind 36 is warmed by the hot box principle. As a result, high temperature air is generated within the space 33.

一方、上記第1の吸湿装置A1による吸湿運転
と並行して、第2の吸湿装置A2の再生運転を実
施するに際しては、第1の吸湿装置A1の遮光手
段収容空間33に、外気導入口38より図示なき
送風機で外気を導入しながら、該収容空間33内
の高温空気を送出口37および空気通路53を通
じて第2の吸湿装置A2の中空室28に供給し、
該中空室28に収設した板状吸湿体29の再生を
行う。このとき、第2の吸湿装置A2の中空室2
8に導入された高温空気は、板状吸湿体29上部
の室が気体通過方向に沿つて先細状となつている
ことから、板状吸湿体29の全面に亘つて均一に
通過し、吸湿剤44に均一に接触して、該吸湿剤
44を加熱すると同時に、板状吸湿体29は、そ
の表面に直接照射される太陽光線によつて更に加
熱され、再生効率を高く維持して、前記第1の吸
湿装置A1の板状吸湿体29が吸湿能力をなくす
までの間に急速に再生される。
On the other hand, when carrying out the regeneration operation of the second moisture absorption device A 2 in parallel with the moisture absorption operation of the first moisture absorption device A 1 , outside air is While introducing outside air from the inlet 38 using a blower (not shown), the high-temperature air in the accommodation space 33 is supplied to the hollow chamber 28 of the second moisture absorption device A 2 through the outlet 37 and the air passage 53;
The plate-shaped moisture absorbent body 29 housed in the hollow chamber 28 is regenerated. At this time, the hollow chamber 2 of the second moisture absorption device A2
Since the chamber above the plate-shaped moisture absorbent body 29 is tapered along the gas passage direction, the high-temperature air introduced into the plate-shaped moisture absorbent body 29 passes uniformly over the entire surface of the plate-shaped moisture absorbent body 29, and the moisture absorption agent 44 and heats the moisture absorbent 44, the plate-shaped moisture absorbent 29 is further heated by the sunlight directly irradiated on its surface, maintaining high regeneration efficiency, and at the same time heating the moisture absorbent 44. The moisture absorption device A1 is rapidly regenerated until the plate-shaped moisture absorption body 29 loses its moisture absorption ability.

また、このときの風量は吸湿運転時の半分程度
に減じて吸再生効率を高く維持することができる
ことから、送風機動力を低減することが可能にな
る。
Further, the air volume at this time can be reduced to about half that of the moisture absorption operation, and the absorption and regeneration efficiency can be maintained at a high level, making it possible to reduce the power of the blower.

また、各吸湿装置A1,A2の吸湿・再生運転切
換えは、通常、1日に数回反復して行うため、手
動では操作が面倒であるが、これは、空気流路の
切換えダンパおよび遮光ブラインド操作機構に適
宜の駆動機構を付設する一方、吸湿体29に温度
検知器を内蔵するか、又は空気流出口26に湿度
を検知器を配設し、これらの検知信号に対応して
前記駆動機構を作動させるか、もしくは駆動機構
をタイマーにより時限的に制御して切換えを自動
的に行うことにより解消できる。
In addition, the switching between moisture absorption and regeneration operation of each moisture absorption device A 1 and A 2 is normally repeated several times a day, which is cumbersome to operate manually. While an appropriate drive mechanism is attached to the light-shielding blind operation mechanism, a temperature sensor is built into the moisture absorbing body 29, or a humidity sensor is provided at the air outlet 26, and the above-mentioned This problem can be solved by operating the drive mechanism or by controlling the drive mechanism in a timed manner using a timer to automatically perform switching.

なお、本発明装置に用いる太陽光直射再生式吸
湿装置を単体として吸湿剤の再生実験を行つた結
果、同実験装置の吸着剤が吸収した太陽熱を基準
とした再生効率は、前記第1図ロに示した如き太
陽集熱器によつて得られる熱風によつて再生を行
なうシステムにおける供給熱量を基準にした再生
効率とほゞ同程度又はそれ以上の値が得られた。
In addition, as a result of conducting a moisture absorbent regeneration experiment using the sunlight direct regeneration type moisture absorption device used in the device of the present invention as a single unit, the regeneration efficiency based on the solar heat absorbed by the adsorbent of the experimental device was as shown in Figure 1 above. A value approximately equal to or higher than the regeneration efficiency based on the amount of heat supplied in a system in which regeneration is performed using hot air obtained by a solar collector as shown in Figure 1 was obtained.

従つて、集熱器自体の効率を考慮すれば、本発
明方法にもとづくシステムは前記再生効率が同一
の場合においても従来装置よりシステム効率が高
くなり、またこれによつて再生サイクルの系にお
ける再生効率は本発明方法にもとづくシステムの
方が大きくなる。
Therefore, if the efficiency of the heat collector itself is taken into account, the system based on the method of the present invention has a higher system efficiency than the conventional device even when the regeneration efficiency is the same, and this also results in a higher system efficiency than the conventional device even when the regeneration efficiency is the same. Efficiency is greater for systems based on the method of the invention.

以上述べた如く、 本発明方法は、太陽照射位置に設置した少くと
も2基の太陽光直射再生式吸湿装置の透明カバー
間隔を空気式集熱器として利用し、吸着運転中の
吸湿装置の透明カバー間に発生する高温空気を再
生運転中の吸湿剤に供給して加熱を行うと同時
に、該吸湿剤に太陽光を照射して加熱再生を行う
ものであるから、吸湿剤の加熱温度をより高温に
維持して再生効率を高めることが出来、これによ
つて再生時間を短縮し、少数の吸湿装置を交互に
使用して乾燥空気を連続生成することが可能とな
る。
As described above, the method of the present invention utilizes the space between the transparent covers of at least two solar direct regeneration type moisture absorption devices installed at the solar irradiation position as a pneumatic heat collector, and the transparent cover of the moisture absorption devices during adsorption operation is The high-temperature air generated between the covers is supplied to the moisture absorbent during regeneration operation to heat it, and at the same time, the moisture absorbent is irradiated with sunlight for heating and regeneration, so the heating temperature of the moisture absorbent can be lowered. High temperatures can be maintained to increase regeneration efficiency, thereby reducing regeneration time and allowing a small number of moisture absorption devices to be used alternately to continuously produce dry air.

従つて、本発明方法を適用すれば、太陽熱を有
効利用して低湿乾燥用の乾燥空気を安定的に供給
したり吸湿冷房システムを1日中稼動することが
可能となり、冷房装置の運転コストを大巾に低減
し、かつ、装置をコンパクト化して住居等への設
備を容易にするという目的が達成される。
Therefore, by applying the method of the present invention, it becomes possible to effectively utilize solar heat to stably supply dry air for low-humidity drying and to operate a hygroscopic cooling system all day long, thereby reducing the operating cost of the cooling equipment. This achieves the objectives of greatly reducing the width and making the device more compact so that it can be easily installed in residences and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の太陽熱利用除湿冷房システムの
一例を示したもので、イは吸湿槽を含む吸湿サイ
クル、ロは吸湿剤の再生サイクルを示す概要図で
ある。また、第2図は本発明に係る太陽光直射再
生式吸湿装置の斜視図、第3図は同装置に適用可
能な板状吸湿体の一例を示す部分断面図、第4図
は、同装置を使用して乾燥空気を連続生成する乾
燥空気連続生成装置の概要図である。 21……吸湿槽本体、22,23……透明カバ
ー、24……空気流入口、26……空気流出口、
28……中空室、29……板状吸湿体、33……
遮光手段収容空間、35……遮光翼、36……遮
光手段、37……高温空気送出口、38……外気
導入口、42,43……網状体、44……吸湿
剤、A1,A2……吸湿装置。
FIG. 1 shows an example of a conventional dehumidifying and cooling system using solar heat, in which A is a schematic diagram showing a moisture absorption cycle including a moisture absorption tank, and B is a schematic diagram showing a regeneration cycle of a moisture absorbent. Further, FIG. 2 is a perspective view of the sunlight direct regeneration type moisture absorption device according to the present invention, FIG. 3 is a partial sectional view showing an example of a plate-like moisture absorption body applicable to the same device, and FIG. 4 is a perspective view of the same device. 1 is a schematic diagram of a continuous dry air generation device that continuously generates dry air using a dry air generator. 21... Moisture absorption tank body, 22, 23... Transparent cover, 24... Air inlet, 26... Air outlet,
28...Hollow chamber, 29...Plate moisture absorber, 33...
Light blocking means housing space, 35... Light blocking blade, 36... Light blocking means, 37... High temperature air outlet, 38... Outside air inlet, 42, 43... Reticular body, 44... Moisture absorbent, A 1 , A 2 ... Moisture absorption device.

Claims (1)

【特許請求の範囲】 1 上面が太陽光透過可能な少なくとも2重の透
明カバーで覆われた断熱性を有する筐体からな
り、一端に空気流入口を、他端に空気流出口を有
してなる吸湿槽本体と、該吸湿槽本体の中空室内
に収設され、上面が前記透明カバーと対向し、前
記中空室を空気流入口側と空気流出口側とに分割
し、気体を通過させる板状吸湿体と、前記少なく
とも2重の透明カバーのカバー間隙に形成される
遮光手段収容空間内に収容され、前記吸湿体に対
する太陽光照射量を調整する開閉自在な遮光手段
とを具備し、かつ、前記遮光手段収容空間におい
て外気導入口と高温空気送出口とを具備してなる
太陽光直射再生式吸湿装置を少なくとも2基使用
し、これらを太陽光射位置に設置し、第1の吸湿
装置の遮光手段を閉じて中空室に湿分含有空気を
導入し、板状吸湿体で水分を吸着して乾燥空気を
生成すると同時に、第2の吸湿装置の遮光手段を
開放し、板状吸湿板に太陽光を照射しながら中空
室に通気し、該吸湿体の再生を行い、これら複数
基の吸湿装置の吸湿および再生運転を交互に反復
して乾燥空気を連続生成すると共に、吸湿運転中
の吸湿装置において遮光手段収容空間に発生した
高温空気を再生運転中の吸湿装置の中空室に導入
し、吸湿体を加熱再生せしめることを特徴とする
乾燥空気連続生成方法。 2 吸湿体が所要間隙をおいて対向配置した網状
体間にシリカゲル等の粒状吸湿剤を充填保持せし
めた平板状吸湿体である特許請求の範囲第1項記
載の乾燥空気連続生成方法。 3 吸湿体が気体通過可能な多孔質吸湿構造体で
ある特許請求の範囲第1項又は第2項記載の乾燥
空気連続生成方法。 4 吸湿槽本体両端の空気流入口および空気流出
口が夫々槽内を通過する気体の通過方向に対し直
交する方向に延びるスリツト状開口である特許請
求の範囲第1項乃至第3項のいずれかに記載の乾
燥空気連続生成方法。 5 遮光手段が複数の細巾帯状翼を並列し、各翼
を長手方向に沿う軸を中心として同期的に回動す
る回転式遮光ブラインドである特許請求の範囲第
1項乃至第4項のいずれかに記載の乾燥空気連続
生成方法。 6 吸湿槽の吸湿・再生運転切換え時における空
気流路切換え、および遮光手段開閉操作が、吸湿
体の温度変化、空気流出口の湿度変化もしくはタ
イマーによる時限設定に対応して自動制御される
特許請求の範囲第1項乃至第5項のいずれかに記
載の乾燥空気連続生成方法。
[Claims] 1. Consists of a heat-insulating casing whose top surface is covered with at least two transparent covers that allow sunlight to pass through, and has an air inlet at one end and an air outlet at the other end. a moisture absorption tank body, and a plate housed in a hollow chamber of the moisture absorption tank body, whose upper surface faces the transparent cover, divides the hollow chamber into an air inlet side and an air outlet side, and allows gas to pass through. a hygroscopic body, and a shading means that is housed in a shading means housing space formed in a gap between the at least two transparent covers and is openable and closable for adjusting the amount of sunlight irradiated to the hygroscopic body, and , in the light shielding means housing space, at least two sunlight direct regeneration type moisture absorption devices each having an outside air inlet and a high temperature air outlet are used, and these devices are installed at a position exposed to sunlight, and a first moisture absorption device is provided. The light shielding means of the second moisture absorption device is closed to introduce moisture-containing air into the hollow chamber, and the plate-shaped moisture absorbing body adsorbs moisture to produce dry air.At the same time, the light shielding means of the second moisture absorption device is opened, and the plate-shaped moisture absorption plate The hollow chamber is ventilated while being irradiated with sunlight to regenerate the moisture absorber, and the moisture absorption and regeneration operations of these multiple moisture absorption devices are alternately repeated to continuously generate dry air. A method for continuously generating dry air, characterized in that high temperature air generated in a light-shielding means housing space in a moisture absorption device is introduced into a hollow chamber of the moisture absorption device during regeneration operation, and a moisture absorption body is heated and regenerated. 2. The method for continuously generating dry air according to claim 1, wherein the moisture absorbent is a flat plate-like moisture absorbent in which a particulate moisture absorbent such as silica gel is filled and held between network bodies facing each other with a required gap. 3. The dry air continuous generation method according to claim 1 or 2, wherein the moisture absorber is a porous moisture absorbing structure through which gas can pass. 4. Any one of claims 1 to 3, wherein the air inlet and air outlet at both ends of the moisture absorption tank body are slit-shaped openings extending in a direction perpendicular to the direction of gas passing through the tank. The dry air continuous generation method described in . 5. Any one of claims 1 to 4, wherein the light shielding means is a rotary light shielding blind in which a plurality of narrow band-shaped blades are arranged in parallel and each blade is rotated synchronously about an axis along the longitudinal direction. A method for continuously generating dry air as described in . 6. A patent claim in which the switching of the air flow path and the opening/closing operation of the light shielding means when switching between moisture absorption and regeneration operations of the moisture absorption tank are automatically controlled in response to changes in the temperature of the moisture absorption body, changes in humidity at the air outlet, or time settings using a timer. The method for continuously generating dry air according to any one of items 1 to 5.
JP57207258A 1982-11-25 1982-11-25 Direct sunlight irradiation regenerating type moisture absorbing device and continuous production of dry air by using said device Granted JPS5995919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57207258A JPS5995919A (en) 1982-11-25 1982-11-25 Direct sunlight irradiation regenerating type moisture absorbing device and continuous production of dry air by using said device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57207258A JPS5995919A (en) 1982-11-25 1982-11-25 Direct sunlight irradiation regenerating type moisture absorbing device and continuous production of dry air by using said device

Publications (2)

Publication Number Publication Date
JPS5995919A JPS5995919A (en) 1984-06-02
JPS6139844B2 true JPS6139844B2 (en) 1986-09-05

Family

ID=16536812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57207258A Granted JPS5995919A (en) 1982-11-25 1982-11-25 Direct sunlight irradiation regenerating type moisture absorbing device and continuous production of dry air by using said device

Country Status (1)

Country Link
JP (1) JPS5995919A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310444U (en) * 1989-06-19 1991-01-31
JP2006029732A (en) * 2004-07-21 2006-02-02 Takenaka Komuten Co Ltd Heat collection duct and ventilation system using heat collection duct

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2668665B2 (en) * 1995-09-06 1997-10-27 株式会社オーエム研究所 Solar system house
JP3764325B2 (en) * 2000-07-11 2006-04-05 吉寛 奥山 Solar cooling system and natural cooling, hot water supply, snow melting equipment
WO2012050084A1 (en) * 2010-10-15 2012-04-19 日本エクスラン工業株式会社 Recycled photothermal conversion desiccant sheet, and desiccant element and desiccant rotor using sheet, and air-conditioning system using element or rotor
US20130118478A1 (en) * 2011-11-11 2013-05-16 Masdar Institute Of Science And Technology Liquid-air transpired solar collectors
CN107003078B (en) * 2014-10-27 2020-01-21 英德科斯控股私人有限公司 Dehumidification system and dehumidification method
CN110508104B (en) * 2019-08-26 2021-11-05 陕西金源自动化科技有限公司 Upper air inlet and outlet type maintenance-free moisture absorber, heating assembly thereof and control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310444U (en) * 1989-06-19 1991-01-31
JP2006029732A (en) * 2004-07-21 2006-02-02 Takenaka Komuten Co Ltd Heat collection duct and ventilation system using heat collection duct
JP4618632B2 (en) * 2004-07-21 2011-01-26 株式会社竹中工務店 Heat collection duct and ventilation system using heat collection duct

Also Published As

Publication number Publication date
JPS5995919A (en) 1984-06-02

Similar Documents

Publication Publication Date Title
US4113004A (en) Air conditioning process
US4081024A (en) Air conditioning apparatus and method
US4180126A (en) Air conditioning apparatus and method
JP5055944B2 (en) Dehumidifying / humidifying device for vehicles
US4536198A (en) Moisture control device
Kabeel Solar powered air conditioning system using rotary honeycomb desiccant wheel
JP5103993B2 (en) Dehumidifying / humidifying device for vehicles
JP2008100144A (en) Adsorbent module
CN108644928B (en) Continuous moisture absorption intermittent type formula palingenetic solid adsorption dehydrating unit
JP4340756B2 (en) Dehumidifying air conditioner
JPS6139844B2 (en)
US4014380A (en) Air conditioning process
JP2008142656A (en) Dehumidification apparatus
JPS62297647A (en) Dehumidification system of building
JPH07163830A (en) Dry dehumidifier and air conditioner used therewith
JP5007098B2 (en) Adsorber, humidity control device and air conditioner indoor unit
JP4230038B2 (en) Dehumidifying air conditioner
JP3161636B2 (en) Air cooling device using moisture absorbent
JP2001330273A (en) Cooling system using solid absorbent
JP7036491B2 (en) Humidity control device
JPH07275642A (en) Dehumidifier
JP3329850B2 (en) Open-type adsorption air conditioner
JP2006145092A (en) Air conditioning system and building
JPH05222A (en) Apparatus for regenerating adsorbing material
JP3649203B2 (en) Humidity control device