JPS6139609B2 - - Google Patents

Info

Publication number
JPS6139609B2
JPS6139609B2 JP7040781A JP7040781A JPS6139609B2 JP S6139609 B2 JPS6139609 B2 JP S6139609B2 JP 7040781 A JP7040781 A JP 7040781A JP 7040781 A JP7040781 A JP 7040781A JP S6139609 B2 JPS6139609 B2 JP S6139609B2
Authority
JP
Japan
Prior art keywords
equation
density
signal
fluid
mechanical vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7040781A
Other languages
Japanese (ja)
Other versions
JPS57184950A (en
Inventor
Kyoichi Ikeda
Katsumi Isozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP7040781A priority Critical patent/JPS57184950A/en
Publication of JPS57184950A publication Critical patent/JPS57184950A/en
Publication of JPS6139609B2 publication Critical patent/JPS6139609B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/002Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は、機械的振動子の共振周波数が、機械
的振動子周囲の流体の密度によつて変化すること
を利用した振動式密度計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vibrating density meter that utilizes the fact that the resonance frequency of a mechanical vibrator changes depending on the density of the fluid surrounding the mechanical vibrator.

第1図は従来公知のこの種の密度計の一例を示
す構成図である。この装置は、特公昭51−16794
号公報に記載されているものであつて、被測定流
体が内側および外側を通過するようになつている
円筒共振子(機械的振動子)1と、この円筒共振
子1を励振してこれを共振周波数で振動させるた
めの駆動手段2と、円筒共振子1の振動数を検出
する検出手段3と、検出手段3からの信号を入力
するとともに駆動手段2に励振信号を与える増幅
器4と、共振周波数を監視する監視装置5とを備
えている。
FIG. 1 is a block diagram showing an example of a conventionally known density meter of this type. This device was manufactured by the Special Publication Publication No. 51-16794.
The device described in the above publication includes a cylindrical resonator (mechanical resonator) 1 in which a fluid to be measured passes through inside and outside, and a cylindrical resonator 1 which is excited to vibrate the cylindrical resonator 1. A driving means 2 for vibrating at a resonant frequency, a detecting means 3 for detecting the frequency of the cylindrical resonator 1, an amplifier 4 which inputs a signal from the detecting means 3 and gives an excitation signal to the driving means 2, It also includes a monitoring device 5 that monitors the frequency.

このような構成の密度計は、密度に関連した出
力信号が周波数信号で得られることなどの特徴が
あるが、被測定流体の粘度による影響を受け、精
度に限界があつた。被測定流体中に粘度測定手段
を挿入し、ここからの粘度信号によつて密度信号
を補正すれば、精度を向上させることは可能であ
るが、全体構成が複雑になる。
A densitometer with such a configuration has the feature that an output signal related to density can be obtained as a frequency signal, but there is a limit to its accuracy because it is affected by the viscosity of the fluid to be measured. Although it is possible to improve accuracy by inserting a viscosity measuring means into the fluid to be measured and correcting the density signal using the viscosity signal from the viscosity measuring means, the overall configuration becomes complicated.

ここにおいて、本発明は、粘度計等を用いるこ
となく、被測定流体の粘度による影響を除去した
測定精度の高い密度計を実現しようとするもので
ある。
Here, the present invention aims to realize a density meter with high measurement accuracy that eliminates the influence of the viscosity of the fluid to be measured without using a viscometer or the like.

本発明は、機械振動子のQあるいは利得を測定
し、共振周波数と演算する点に特徴を有する。
The present invention is characterized in that the Q or gain of a mechanical vibrator is measured and calculated as the resonance frequency.

第2図は本発明に係る振動式密度計の構成ブロ
ツク図である。図において、1は機械振動子を総
括的に示したもの、2はこの機械振動子を振動さ
せる励振手段、3は機械振動子の振動を検出する
振動検出手段、4は発振回路である。発振回路4
は、振動検出手段3からの信号を入力とし、その
出力は振動手段2に加えられ、振動子1を含んで
自励振式の発振ループを形成しており、振動子1
を共振周波数で振動させている。5は発振回路4
からの周波数信号を計数するカウンタ、6は発振
回路4に結合し、機械振動子1のQ又は利得を測
定する利得測定回路、7はカウンタ5からの信号
と利得測定回路6からの信号を入力とする演算回
路、8は表示回路である。
FIG. 2 is a block diagram of the vibrating density meter according to the present invention. In the figure, 1 generally shows a mechanical vibrator, 2 is an excitation means for vibrating the mechanical vibrator, 3 is a vibration detection means for detecting the vibration of the mechanical vibrator, and 4 is an oscillation circuit. Oscillation circuit 4
inputs the signal from the vibration detection means 3, and its output is applied to the vibration means 2, forming a self-excited oscillation loop including the vibrator 1.
is vibrated at a resonant frequency. 5 is the oscillation circuit 4
6 is a gain measurement circuit that is coupled to the oscillation circuit 4 and measures the Q or gain of the mechanical resonator 1; 7 inputs the signal from the counter 5 and the signal from the gain measurement circuit 6; 8 is a display circuit.

第3図は第2図ブロツク図で代表される機械振
動子1の一例を示す構成断面図である。ここでは
円筒共振子を用いたものであつて、一端側はフラ
ンジ11が、他端側はフランジ12および他端側
を閉じる底部13が設けられている。他端側のフ
ランジ12には、一端側の開口部から入つた被測
定流体が流出する貫通孔14が形成してある。励
振手段2および振動検出手段3は、フランジ12
の段部に取付けられており、ここではいずれも
PZTが用いられている。16,17はいずれも同
一径のカバーで、カバー16は両端のフランジ部
11,12に結合し、円筒共振子1の外側を覆
い、また、カバー17は一端がフランジ部12に
結合し、励振手段2および振動検出手段3に接続
されるリード線21,31を覆つている。カバー
16と円筒共振子1との間に形成される部屋15
内は、大気圧あるいは一定圧力(真空も含む)の
気体が封入されている。
FIG. 3 is a sectional view showing an example of the mechanical vibrator 1 shown in the block diagram of FIG. 2. As shown in FIG. Here, a cylindrical resonator is used, and one end is provided with a flange 11, the other end is provided with a flange 12, and a bottom portion 13 that closes the other end. A through hole 14 is formed in the flange 12 on the other end side, through which the fluid to be measured that has entered through the opening on the one end side flows out. The excitation means 2 and the vibration detection means 3 are connected to the flange 12
It is attached to the stepped part of the
PZT is used. 16 and 17 are covers with the same diameter. The cover 16 is connected to the flange portions 11 and 12 at both ends and covers the outside of the cylindrical resonator 1. The cover 17 is connected to the flange portion 12 at one end and is used for excitation. It covers the lead wires 21 and 31 connected to the means 2 and the vibration detecting means 3. A chamber 15 formed between the cover 16 and the cylindrical resonator 1
The inside is filled with gas at atmospheric pressure or constant pressure (including vacuum).

このように構成した装置の動作を次に説明す
る。まず、円筒共振子1の内部の流体密度ρと共
振周波数との関係は次式で表わされる。
The operation of the apparatus configured in this way will be explained next. First, the relationship between the fluid density ρ inside the cylindrical resonator 1 and the resonance frequency is expressed by the following equation.

ただし、o:円筒共振子1を真空中においた
ときの共振周波数 α:密度感度で円筒共振子1の密度、
肉厚、半径などで決まる。
However, o: resonance frequency when the cylindrical resonator 1 is placed in a vacuum α: density of the cylindrical resonator 1 with density sensitivity,
Determined by wall thickness, radius, etc.

したがつて、共振周波数を測定することによ
つて、流体密度ρを知ることができる。
Therefore, by measuring the resonance frequency, the fluid density ρ can be determined.

ところで、(1)式は流体の粘度ηを考慮したもの
ではない。いま、流体の粘性が増加したものとす
れば、横波が発生し、振動子1の法線方向の流体
成分に加え、接線方向の流体成分も振動し、振動
子の等価質量が増加する。このため、この増加分
が粘性による指示誤差となつて表われてくる。
By the way, equation (1) does not take into account the viscosity η of the fluid. Now, assuming that the viscosity of the fluid increases, a transverse wave is generated, and in addition to the fluid component in the normal direction of the vibrator 1, the fluid component in the tangential direction also vibrates, and the equivalent mass of the vibrator increases. Therefore, this increase appears as an indication error due to viscosity.

ここで粘性による質量増加分L′および振動子1
のQは、剪断運動の方程式から次のようにして求
められる。
Here, the mass increase L′ due to viscosity and the oscillator 1
Q of is obtained from the equation of shear motion as follows.

まず、ニユートン流体において、剪断力Yは(2)
式で表わすことができる。
First, in a Newtonian fluid, the shear force Y is (2)
It can be expressed by the formula.

Y=η・∂v/∂y (2) ただし、v:速度 η:粘性率 力のつり合いより、(3)式、(4)式の通りとなる。 Y=η・∂v/∂y (2) However, v: speed η: Viscosity coefficient From the balance of forces, equations (3) and (4) are obtained.

Y・dA=ρ・∂v/∂t・(dx dy pz) (3) ∴ρ∂v/∂t=η(∂v/∂y) (4) ただし、dA=dx・dz ρ:密度 (4)式の解は(5)式で表わすことができる。 Y・dA=ρ・∂v/∂t・(dx dy pz) (3) ∴ρ∂v/∂t=η(∂ 2 v/∂y 2 ) (4) However, dA=dx・dz ρ: Density The solution to equation (4) can be expressed as equation (5).

ただし、ω:角周波数 (5)式および(2)式より、振動子1の入力インピー
ダンスZiは次の通りとなる。
However, ω: angular frequency From equations (5) and (2), the input impedance Zi of the vibrator 1 is as follows.

(7)式は、(8)式のように書表わせる。 Equation (7) can be written as equation (8).

(8)式において、第1項は粘性の変化によるQの
低下分であり、第2項が質量増加分である。よつ
て、 ただし、k:振動子の等価バネ定数 Qo:η=0におけるQ (9)式、(10)式より、(11)式が得られる。
In equation (8), the first term is the decrease in Q due to the change in viscosity, and the second term is the increase in mass. Then, However, k: equivalent spring constant of the vibrator Qo: Q at η=0 From equations (9) and (10), equation (11) is obtained.

L′=k/ω2(1/Q−1/Qo) (11) (11)式から明らかなように、(11)式におい
てk,Qoを一定とすれば、ω及びQを測定する
ことにより、質量増加分L′を求めることができ
る。
L'=k/ω2(1/Q-1/Qo) (11) As is clear from equation (11), if k and Qo are constant in equation (11), by measuring ω and Q, , the mass increase L′ can be determined.

流体密度と共振周波数との関係は、一般に2次
式で与えられるが、粘性による見掛の質量増を償
うために、(12)式を用いて演算する。
The relationship between fluid density and resonance frequency is generally given by a quadratic equation, but is calculated using equation (12) in order to compensate for the apparent increase in mass due to viscosity.

ρ=A・1/ω2+B・1/ω+C−D/ω2(1/
Q−1/Qo)(12) ただし、A,B,C,D:定数 一方、第2図に示すような自励振式の共振系が
共振を持続するためには、消費エネルギーPと、
駆動エネルギーPoとが等しいはずであり、これ
らは次式でそれぞれ示される。
ρ=A・1/ω2+B・1/ω+C−D/ω2(1/
Q-1/Qo) (12) However, A, B, C, D: Constants On the other hand, in order for a self-excited resonant system as shown in Figure 2 to maintain resonance, the consumed energy P and
The driving energy Po should be equal, and these are respectively shown by the following equations.

P=1/Q・EM・2π (13) ただしEM:内部蓄積エネルギー Po=Vo2/Z (14) ただし、Z:入力インピーダンス Vo:駆動電圧 ここで、入力インピーダンスZは、共振点にあ
ることから(15)式で表わすことができる。
P=1/Q・E M・2π (13) where EM : internal storage energy Po=Vo 2 /Z (14) where, Z: input impedance Vo: drive voltage Here, the input impedance Z is at the resonance point Therefore, it can be expressed by equation (15).

Z=R=1/ωCoQ (15) また、機械振動子1の等価回路を第4図に示す
ようなインダクタンスLo、機抗R、コンデンサ
Coの直列接続で表わすものとすれば、内部蓄積
エネルギーEMは、(16)式で表わすことができ
る。
Z=R=1/ωCoQ (15) Also, the equivalent circuit of mechanical oscillator 1 is shown in Figure 4 with inductance Lo, mechanical resistance R, and capacitor.
If it is expressed by series connection of Co, the internal storage energy E M can be expressed by equation (16).

M=1/2Co・e2 (16) ただし、e:振動振幅 (13)式〜(16)式から、発振回路の利得を
Avとすれば、このAvは(17)式の通りとなる。
E M = 1/2Co・e 2 (16) where e: vibration amplitude From equations (13) to (16), the gain of the oscillation circuit is
Av, this Av is as shown in equation (17).

Av=Vo/e=1/Q (17) (17)式を(12)式へ代入すると、(18)式が
得られる。
Av=Vo/e=1/Q (17) By substituting equation (17) into equation (12), equation (18) is obtained.

ρ=A・1/ω2+B1/ω+C−D/ω2(Av−
Aro)(1 8) ただし、Avo:共振子1を真空中においたとき
の利得。
ρ=A・1/ω2+B1/ω+C−D/ω2(Av−
Aro)(1 8) However, Avo: Gain when resonator 1 is placed in a vacuum.

第2図のブロツク図において、回路利得測定回
路6は、発振回路4に結合しており、例えば、こ
の発振回路4の入力電圧eと出力電圧Voとを測
定することによつて、(17)式から共振子1の利
得Avを求めている。演算回路7は、カウンタ5
からの周波数信号ωと、回路利得測定回路6から
の利得信号Avを入力し、前記(17)式を演算す
ることによつて、粘性ηによる影響を除去した密
度信号ρを出力する。表示回路8はこの密度を表
示する。
In the block diagram of FIG. 2, a circuit gain measuring circuit 6 is coupled to an oscillation circuit 4, and for example, by measuring the input voltage e and output voltage Vo of this oscillation circuit 4, (17) The gain Av of resonator 1 is determined from the formula. The arithmetic circuit 7 has a counter 5
By inputting the frequency signal ω from the circuit and the gain signal Av from the circuit gain measuring circuit 6 and calculating the above equation (17), a density signal ρ from which the influence of the viscosity η has been removed is output. Display circuit 8 displays this density.

なお、演算回路7は、例えばマイクロプロセツ
サが用いられ、ここには、あらかじめ、定数A,
B,C,D及びAvo等に関する諸データが設定し
てあるものとし、利得信号AvはA/D変換器
(図示せず)を経て、デイジタル信号で印加され
る。
Note that the arithmetic circuit 7 is, for example, a microprocessor, in which constants A, A,
It is assumed that various data regarding B, C, D, Avo, etc. have been set, and a gain signal Av is applied as a digital signal via an A/D converter (not shown).

このように本発明に係る装置は、被測定流体の
粘度が変化すると、機械共振子1のQも変化する
という現象に着目し、振動子のQ又は利得を測定
し、この信号と共振周波数信号とを演算すること
によつて、粘度の影響を除去するようにしたもの
で、粘度計等を用いることなく、精度の高い密度
測定を行うことができる。
In this way, the device according to the present invention focuses on the phenomenon that when the viscosity of the fluid to be measured changes, the Q of the mechanical resonator 1 also changes, measures the Q or gain of the vibrator, and combines this signal with the resonant frequency signal. By calculating this, the influence of viscosity is removed, and it is possible to perform highly accurate density measurements without using a viscometer or the like.

なお、上記の説明では、利得測定(Q測定)を
発振回路4の入力電圧e、出力電圧Voを測定
し、(17)式で演算して得るようにしたものであ
るが、例えば出力電圧Voを一定に維持する場合
には、入力電圧eを測定するだけで、振動子1の
Qに関連した信号を得ることができる。また、Q
測定器を設け、ここからの信号を利用するように
してもよい。また、機械的振動子としては、第3
図に示す以外の他の構成のものでもよい。
In the above explanation, the gain measurement (Q measurement) is obtained by measuring the input voltage e and the output voltage Vo of the oscillation circuit 4, and calculating it using equation (17). When keeping constant, a signal related to the Q of the vibrator 1 can be obtained by simply measuring the input voltage e. Also, Q
A measuring device may be provided and the signal from the measuring device may be used. In addition, as a mechanical vibrator, the third
Other configurations than those shown in the figures may also be used.

第5図は、グリセリン水溶液(1〜100cp)を
用いた実験結果の一例を示す線図で、(イ)は本発明
を適用した場合、(ロ)は適用しない場合であつて、
極めて満足すべき結果を示している。
FIG. 5 is a diagram showing an example of the experimental results using a glycerin aqueous solution (1 to 100 cp), in which (a) is when the present invention is applied and (b) is when the present invention is not applied.
The results are extremely satisfactory.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来公知の密度計の一例を示す構成
図、第2図は本発明に係る装置の構成ブロツク
図、第3図は第2図において機械振動子の一例を
示す構成断面図、第4図は機械振動子部分の等価
回路、第5図は実験結果の一例を示す線図であ
る。 1……機械振動子、2……励振手段、3……振
動検出手段、4……発振回路、5……カウンタ、
6……利得測定回路、7……演算回路、8……表
示器。
FIG. 1 is a configuration diagram showing an example of a conventionally known density meter, FIG. 2 is a configuration block diagram of an apparatus according to the present invention, FIG. 3 is a configuration sectional view showing an example of a mechanical vibrator in FIG. FIG. 4 is an equivalent circuit of the mechanical vibrator portion, and FIG. 5 is a diagram showing an example of experimental results. DESCRIPTION OF SYMBOLS 1... Mechanical vibrator, 2... Excitation means, 3... Vibration detection means, 4... Oscillation circuit, 5... Counter,
6...Gain measurement circuit, 7...Arithmetic circuit, 8...Display device.

Claims (1)

【特許請求の範囲】[Claims] 1 機械的振動子の共振周波数が機械的振動子周
囲の流体密度によつて変化することを利用した振
動式密度計において、前記機械的振動子のQに関
連した信号を得るための回路手段と、前記機械的
振動子のQに関連した信号と前記機械的振動子の
共振周波数に関連した信号とを入力し両信号を演
算することによつて被測定流体の粘度の影響を除
去した密度信号を出力する演算回路とを具備した
ことを特徴とする振動式密度計。
1. In a vibrating density meter that utilizes the fact that the resonant frequency of a mechanical vibrator changes depending on the fluid density around the mechanical vibrator, circuit means for obtaining a signal related to the Q of the mechanical vibrator; , a density signal in which the influence of the viscosity of the fluid to be measured is removed by inputting a signal related to the Q of the mechanical vibrator and a signal related to the resonance frequency of the mechanical vibrator and calculating both signals. A vibrating density meter characterized by comprising an arithmetic circuit that outputs .
JP7040781A 1981-05-11 1981-05-11 Vibration type density meter Granted JPS57184950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7040781A JPS57184950A (en) 1981-05-11 1981-05-11 Vibration type density meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7040781A JPS57184950A (en) 1981-05-11 1981-05-11 Vibration type density meter

Publications (2)

Publication Number Publication Date
JPS57184950A JPS57184950A (en) 1982-11-13
JPS6139609B2 true JPS6139609B2 (en) 1986-09-04

Family

ID=13430577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7040781A Granted JPS57184950A (en) 1981-05-11 1981-05-11 Vibration type density meter

Country Status (1)

Country Link
JP (1) JPS57184950A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8720355D0 (en) * 1987-08-28 1987-10-07 Emi Plc Thorn Measuring fluid density
JP3911191B2 (en) * 2002-04-26 2007-05-09 株式会社アルバック Analysis method

Also Published As

Publication number Publication date
JPS57184950A (en) 1982-11-13

Similar Documents

Publication Publication Date Title
EP0161049B1 (en) Angular velocity sensor
US5069075A (en) Mass flow meter working on the coriolis principle
US4811595A (en) System for monitoring fluent material within a container
US5323638A (en) Sensor apparatus
US8220313B2 (en) Apparatus for ascertaining and/or monitoring a process variable of a meduim
US4312235A (en) Sensor and meter for measuring the mass flow of a fluid stream
JPS60105917A (en) Resonance conversion system, resonance-force conversion system and method of determining force or other parameter and temperature
US7331231B2 (en) Apparatus and method for measuring micro mass using oscillation circuit
US7424376B2 (en) Precise pressure measurement by vibrating an oval conduit along different cross-sectional axes
JPH09126851A (en) Vibration type measuring device
US8515691B2 (en) Method for determining measuring tube wall thickness of a coriolis, flow measuring device
US6573725B2 (en) Sensor for non-contacting electrostatic detector
US6079266A (en) Fluid-level measurement by dynamic excitation of a pressure- and fluid-load-sensitive diaphragm
JPS6139609B2 (en)
JPS59192937A (en) Measuring device for characteristics of fluid
JPH0129550Y2 (en)
JPS6067839A (en) Cylinder vibration type density meter
JPH0331207B2 (en)
JPS6126912Y2 (en)
JPS61212737A (en) Power detector
JPH0783730A (en) Volumenometer
JPH05215659A (en) Apparatus for measuring density of liquid and gas from cycle duration time of measuring vibrator filled with sample
SU1767352A1 (en) Device for determining fluid level
JPS6125024A (en) Measuring method of liquid level
JPS5855816A (en) Vortex flowmeter