JPS6139563B2 - - Google Patents

Info

Publication number
JPS6139563B2
JPS6139563B2 JP15930178A JP15930178A JPS6139563B2 JP S6139563 B2 JPS6139563 B2 JP S6139563B2 JP 15930178 A JP15930178 A JP 15930178A JP 15930178 A JP15930178 A JP 15930178A JP S6139563 B2 JPS6139563 B2 JP S6139563B2
Authority
JP
Japan
Prior art keywords
gas
temperature
treated
switching
untreated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15930178A
Other languages
Japanese (ja)
Other versions
JPS5589615A (en
Inventor
Nobuyoshi Takahashi
Toshiaki Kurihara
Yoshiaki Kinoshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITTETU CHEM ENG
Original Assignee
NITTETU CHEM ENG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITTETU CHEM ENG filed Critical NITTETU CHEM ENG
Priority to JP15930178A priority Critical patent/JPS5589615A/en
Priority to DE19792951525 priority patent/DE2951525A1/en
Priority to GB7944298A priority patent/GB2044901A/en
Publication of JPS5589615A publication Critical patent/JPS5589615A/en
Publication of JPS6139563B2 publication Critical patent/JPS6139563B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • F23G7/066Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator
    • F23G7/068Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator using regenerative heat recovery means

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)
  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 本発明は蓄熱型有害物質処理炉の処理効率を改
善する方法に関し、さらに詳しくは切換え式蓄熱
型処理炉において残留未処理ガスを清浄ガスで押
し出した後切換えを行なう処理効率を改善する方
法に関する。 蓄熱型有害物質処理炉の蓄熱方式は熱媒体であ
る固体の固定層を用い、低温ガスと高温ガスを交
互に固定層に通し熱回収を行なう蓄熱型熱交換器
であり、その基礎技術は製鋼用平炉、ガラス槽
窯、コークス炉用の蓄熱室、溶鉱炉用の熱風炉に
従来より使われていた公知の方法であるが、従来
の技術は異形レンガ等を使用し、その単位体積当
りの伝熱面積が10〜25m2/m3、レンガ積空間率が
0.3程度のものであつたため、装置として大きく
且つ高価なものであつた。本発明方法において主
な対象としている型式の蓄熱型有害物質処理炉の
蓄熱用充填物には化学装置で使用する充填物を採
用し、その単位体積当りの伝熱面積が100〜400
m2/m3、空間率が例えば0.7〜0.74のものを使用す
るため装置として小型化出来、安価なものを提供
するものであると同時に直接燃焼式有害物質処理
炉としては非常に熱回収率の高い省エネルギーの
装置であるが、その高比表面積及び空間率が災い
し逆に、有害物質処理効率が96%程度以上あがら
ない欠点があつた。この理由としては、切換時充
填層その他の低温部分に残留した被処理ガスの逆
流及び固体表面に吸着した有害物質のサーマル・
スイングが考えられた。 本発明は蓄熱型有害物質処理炉からの70〜250
℃の処理済排気ガスあるいは同等温度の清浄ガス
を用いて低温部分に残留した未処理ガス及び吸
着、付着成分を高温燃焼帯に押し出すことにより
処理効率99.0%以上の著るしい効果をあげる方法
を提供するものである。 以下に本発明を図面に基づき詳細に説明する。 蓄熱型有害物質処理炉1は隔壁で仕切られた複
数個の充填物充填層2と各充填層の上部で各充填
層に接続した燃焼室3とそれに配設する助燃バー
ナー4、各充填層下部に、充填層に均一にガスを
通すために設けられた下部チヤンバー5及び各充
填層に通すガスを切換えるために設けられた被処
理ガス入口弁7、高温処理済ガス出口弁8、押し
出し用ガス入口弁9より構成される。その運転は
説明を簡単にするため第1図に示す如く、2個充
填層,のもので説明するが、2個以上の処理
炉であつてもこの操作を順繰りに行なうことによ
り同様に処理し得る。 第2図は定常状態で運転している第1図の各充
填層,内のガス温度及び充填物の温度と充填
層の位置の関係を示したものである。図中破線は
ガスの温度分布を示し、α,αは第1―1図
においてそれぞれ切換直前の被処理ガス流入側、
即ち側及び同じく高温処理済ガス排出側、即ち
側の値を示す。また実線は充填物の温度分布を
示し、p1,p2はそれぞれ切換直前の第1―1図の
,における値を示す。(第1―3図にあつて
は,を左右入れ替れば同じこととなる)実際
の操業において被処理ガスの温度は切換毎にp2
近からαの間をスイングし、高温処理済ガスの
温度はαからp1附近の値の間をスイングし、充
填物の温度はp2からp1の間をスイングすることに
なる。 ある定常状態で切換直前の状態を第1―1図の
如くすると、切換操作は高温処理済ガス側充填層
の下部チヤンバー5に取付けた温度計(図示せ
ず)により所定温度、通常の場合は70〜250℃の
ある所定温度に達したならば、バルブ切換信号を
制御盤(図示せず)より発し、第1―1図のバル
ブ開閉の状態(図中白は開、黒は閉)より第1―
3図の状態にして、ガス通路を逆転させて切換
え、この様な切換を交互に行ない、熱回収を計る
のであるが、すぐにこの様に切換えた場合、切換
直前に第1―1図の充填層1の低温部分等に残留
し未処理ガスが第1―3図の状態に切換えると逆
流に押されて未処理のまま排気ガスとなつてしま
うため、処理効率に限界を生じる。このため前述
の各部に残留した被処理ガスを高温帯に導いて処
理するために、切換時に空気など他の清浄ガスを
使用し残留ガスを高温帯に押し出す操作が必要と
なる。清浄ガスとして常温の空気を使用し、固体
表面への付着、吸着等が起らない無臭性の低級炭
化水素を混合させた常温の清浄ガスを使用した場
合の押し出し効果を測定したものが第3図であ
る。第3図は押し出しガス流速比をパラメーター
とし、その通風時間と押し出し効果即ち除去率を
示したもので、その結果は除去率99.9%以上を得
るには押し出し清浄ガス流速が被処理ガス流速の
80%以上で押し出し時間7秒以上であれば充分す
ぎる位であることが判つた。これは1充填層空間
容積+下部チヤンバー空間容積の役2倍量以上に
相当する。しかしメルカプタン、アミン類、その
他の有機塩基類、アルデヒド類、有機酸類、アル
コール類等のヘテロ原子を含むもの、あるいはや
や高沸点の芳香族、例えばナフタリン等の有臭物
質を含んだ被処理ガスの場合には低級炭化水素が
99.9%以上分解するための条件と同一の条件で行
なつても除去率は、96〜98℃程度に止まり、大き
な相違があることが判つた。 この原因として上記のような有臭物質は固体表
面に付着又は吸着され易いことが見出され、その
付着又は吸着は有臭物質の種類及びその被処理ガ
ス中の濃度と温度により異なることが判つた。即
ち本蓄熱型有害物質処理炉の操作では、第2図で
例示した如き温度スイングがあるため、切換直前
の被処理ガス側充填層の下部の充填物の温度(第
2図、p1下部チヤンバー側)及び下部チヤンバー
壁面等は比較的低温となつており、切換直後の高
温処理済ガスはその温度より若干高い温度で逆流
して来るが、これは経時的にαまで温度上昇し
て来、それにつれて充填物及び下部チヤンバー壁
面の温度は段々と高くなり、それらに付着又は吸
着された有臭成分が再びガス中に追出されるため
平均的処理効率が落ちることになることが判明し
た。 本発明は以上の知見に基づいて鋭意研究の結果
完成されたものであつて、その方法はガス流の切
換手順として第1―1図、第1―2図、第1―3
図の順にバルブを切換えることによつて行なうこ
とが出来る。即ち第1―1図においてバルブ7及
び8′を開とし、7′,8,9及び9′を閉として
吸引ブロワー6によつて被処理ガスを第2図のp2
の温度分布にある充填層に送り込む(吸い込
む)。被処理ガスは熱回収しつつ昇温し、燃焼室
で所定の温度(例えば900℃)に最終的に調温燃
焼処理され、次いでp1の温度分布にある充填層
に進み、これを加熱しながら自身は次第に冷却さ
れ、当初は70℃程度の温度となつて吸引ブロワー
6を経て排気ガスとなつて放出される。この操作
によつて充填層の充填物は放熱により次第に冷
却し充填層の充填物は次第に受熱により加熱さ
れる。そして排気ガス温度も次第に上昇し、70乃
至250℃の所定温度に到るとバルブ切換の指令が
発せられる。この最終温度があまり高いと熱損失
が大きくなるので、次に述べる脱着及び押し出し
工程との関連において出来るだけ低い温度に止め
る方が好ましいが、先に述べた有臭物質の種類及
び被処理ガス中の有臭物質の濃度により異なる
が、通常の被処理ガスの場合、被処理ガスの温度
より若干高い温度、即ち70℃以上、好ましくは
130℃以上、とくに好ましくは150℃前後のガスで
行なうことが処理効率及び熱経済の面から良い。
70℃以下では効果が一般に少ない。又温度の上限
は熱経済及び装置のメンテナンス面、コスト面か
ら250℃以下が好ましい。 次いでバルブで切換えによつて脱着及び押し出
し工程である第1―2図が始まる。この場合バル
ブ7が開かれ、9が開けられるほかは第1―1図
と同じバルブの開閉位置がとられる。かくて最高
温度となつた処理済ガスが吸引ブロワー6を経て
再び冷却した充填層の下部から送り込まれ循環
することになるので残留ガスが燃焼室へ送り出さ
れると同時に冷却部分が加熱され吸着、付着成分
は脱離して循環ガス中に移行し、同じく燃焼室で
燃焼し殆ど完全に処理される。この脱着、押し出
し工程は装置の形状、大小、被処理ガス中の有害
物質の種類及びその組成、循環ガス温度、所要の
処理効率等によつて多少変動があるが、普通5〜
15秒、ガス量にして充填層1個の空間容積+下部
チヤンバー空間容積の約1.5〜4.5倍程度あれば充
分であり、温度も被処理ガスより若干高ければよ
い。所定の時間後再びバルブが切換えられ、第1
―3図の工程が始まり、今度は被処理ガスは充填
層より充填層へと流れ、所定の条件に到達し
た時、第1〜2図と反対の処理済ガスの循環とな
る様にバルブが切換えられ、(7,7′,8′9
閉、8,9′開)脱着及び押し出し工程が所定の
時間操作される。そしてまた最初の工程に戻り、
操作が繰返されることになる。以上の様な場合、
処理済ガス排出側に吸引ブロワーを設置しておけ
ば一台で3個若しくはそれ以上の数の充填層の場
合でも排気ガスの排出と循環が出来るので好都合
である。尚3個もしくはそれ以上の数の充填層の
場合は切換時の処理済ガス温度は必ずしも最高温
度ではないが、切換直前の被処理ガス入口側の下
部チヤンバー温度よりも常に高温であり、2個の
場合と同様にして循環できる。なお上記の処理済
ガス温度と同程度あるいはそれ以上の高温清浄ガ
ス例えば加熱空気が別途得られる場合、これを脱
着及び押し出し用に用いても処理効率が改善され
ることは勿論である。 本発明は以上の様な比較的簡単な操作によつて
蓄熱型有害物質処理炉の処理効率を飛躍的に改善
する方法を提供するものであり、公害防止上寄与
する所は極めて大きく、又本発明の処理可能な有
害物質としては有臭成分、大気汚染成分等すべて
含まれるので、その適用範囲は広い。 次に本発明を実施例により具体的に説明する。 実施例 処理ガス量100Nm3/Hの蓄熱型有害物質処理炉
により、切換サイクル約60秒、燃焼室温度1100
℃、処理済排気ガス最高温度140℃の条件で、プ
リント配線基板製造工程より排出される50℃の有
臭ガスを処理した。押し出しガスとして通常の空
気、加熱空気及び処理炉からの排気ガスを第1図
の如く使用した場合の三通り行ない、押し出しガ
スの温度を変化させた。その結果は次表の如くで
ある。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for improving the treatment efficiency of a regenerative type hazardous substance treatment furnace, and more specifically, to a process in which residual untreated gas is pushed out with clean gas in a switching type regenerative type treatment furnace, and then switching is performed. Concerning how to improve efficiency. The heat storage method of the heat storage type hazardous substance treatment furnace is a heat storage type heat exchanger that uses a fixed bed of solid as a heat medium and recovers heat by passing low temperature gas and high temperature gas alternately through the fixed bed.The basic technology is steel manufacturing. This is a well-known method that has traditionally been used in open hearths, glass tank kilns, heat storage chambers for coke ovens, and hot blast furnaces for blast furnaces. Thermal area is 10~25m 2 /m 3 , brick volume porosity is
Since it was about 0.3, the device was large and expensive. The heat storage filling of the type of heat storage hazardous substance processing furnace that is the main target of the method of the present invention is the filling used in chemical equipment, and the heat transfer area per unit volume is 100 to 400.
m 2 /m 3 and a space ratio of, for example, 0.7 to 0.74, the equipment can be made compact and inexpensive, and at the same time, it has a very high heat recovery rate for a direct combustion hazardous substance treatment furnace. Although it is a highly energy-saving device, it suffers from its high specific surface area and void ratio, and on the other hand, it has the disadvantage that the hazardous substance treatment efficiency cannot be increased above about 96%. The reasons for this are the backflow of the gas remaining in the packed bed and other low-temperature parts during switching, and the thermal effects of harmful substances adsorbed on the solid surface.
Swing was considered. The present invention is capable of handling 70 to 250
A method that achieves a remarkable treatment efficiency of 99.0% or more by using treated exhaust gas at ℃ or clean gas at an equivalent temperature to push out the untreated gas and adsorbed and adhered components remaining in the low-temperature part to the high-temperature combustion zone. This is what we provide. The present invention will be explained in detail below based on the drawings. The regenerative hazardous substance treatment furnace 1 includes a plurality of packed beds 2 separated by partition walls, a combustion chamber 3 connected to each packed bed at the top of each packed bed, an auxiliary combustion burner 4 disposed therein, and a lower part of each packed bed. , a lower chamber 5 provided to uniformly pass gas through the packed bed, a treated gas inlet valve 7 provided to switch the gas to be passed through each packed bed, a high temperature treated gas outlet valve 8, and extrusion gas. It is composed of an inlet valve 9. To simplify the explanation, the operation will be explained using two packed beds as shown in Figure 1, but even if two or more processing furnaces are used, the same process can be performed by repeating this operation. obtain. FIG. 2 shows the relationship between the gas temperature and the temperature of the packed material in each of the packed beds shown in FIG. 1 operating in a steady state, and the position of the packed bed. The broken line in the figure shows the temperature distribution of the gas, and α 1 and α 2 are the inflow side of the gas to be treated immediately before switching in Figure 1-1, respectively;
ie side and also the high temperature treated gas discharge side, ie side. Further, the solid line indicates the temperature distribution of the filling, and p 1 and p 2 respectively indicate the values in , in Fig. 1-1 immediately before switching. (In Figure 1-3, the same effect can be obtained by switching left and right.) In actual operation, the temperature of the gas to be treated swings from around p 2 to α 1 with each switch, and the temperature of the high-temperature treated gas The temperature of will swing between values around α 2 to p 1 and the temperature of the filling will swing between p 2 and p 1 . If the state immediately before switching in a certain steady state is as shown in Figure 1-1, the switching operation will be performed at a predetermined temperature using a thermometer (not shown) attached to the lower chamber 5 of the packed bed on the high temperature treated gas side. When a predetermined temperature of 70 to 250°C is reached, a valve switching signal is issued from the control panel (not shown), and the valve is opened and closed according to the valve opening/closing status shown in Figure 1-1 (white indicates open, black indicates closed). 1st-
In the state shown in Figure 3, the gas passages are reversed and switched, and such switching is performed alternately to measure heat recovery. If the untreated gas remaining in the low-temperature portion of the packed bed 1 switches to the state shown in FIGS. 1-3, it will be pushed by the reverse flow and become untreated exhaust gas, which will limit the treatment efficiency. Therefore, in order to guide the gas to be treated remaining in each of the above-mentioned parts to the high-temperature zone for treatment, it is necessary to push the residual gas to the high-temperature zone using another clean gas such as air at the time of switching. The third experiment measured the extrusion effect when air at room temperature was used as the clean gas, and a clean gas at room temperature mixed with odorless lower hydrocarbons that did not adhere to or adsorb onto solid surfaces was used. It is a diagram. Figure 3 shows the ventilation time and extrusion effect, that is, the removal rate, using the extrusion gas flow rate ratio as a parameter.
It was found that an extrusion time of 7 seconds or more at 80% or more is more than sufficient. This corresponds to more than twice the volume of one packed bed space plus the volume of lower chamber space. However, gases to be treated that contain heteroatoms such as mercaptans, amines, other organic bases, aldehydes, organic acids, alcohols, etc., or aromatic substances with a slightly high boiling point, such as naphthalene, etc. In some cases, lower hydrocarbons
It was found that even when the same conditions were used to decompose 99.9% or more, the removal rate remained at about 96-98°C, indicating a large difference. It has been found that the reason for this is that the above-mentioned odorous substances are easily attached or adsorbed to solid surfaces, and that the adhesion or adsorption differs depending on the type of odorous substance, its concentration in the gas to be treated, and temperature. Ivy. In other words, in the operation of this regenerative hazardous substance processing furnace, there is a temperature swing as illustrated in Fig. 2 . side) and the lower chamber walls are at a relatively low temperature, and the high-temperature treated gas immediately after switching flows back at a temperature slightly higher than that temperature, but this temperature rises to α 2 over time. It has been found that as the temperature of the packing and the lower chamber wall increases, the odorous components attached or adsorbed thereto are expelled back into the gas, resulting in a drop in the average treatment efficiency. The present invention was completed as a result of intensive research based on the above knowledge, and the method is as shown in Figures 1-1, 1-2, and 1-3 as a gas flow switching procedure.
This can be done by switching the valves in the order shown. That is, valves 7 and 8' are opened in FIG. 1-1, valves 7', 8, 9, and 9' are closed, and the gas to be treated is supplied by the suction blower 6 to p 2 in FIG.
It is pumped (sucked) into a packed bed with a temperature distribution of . The gas to be treated is heated while recovering heat, and is finally subjected to temperature-controlled combustion treatment to a predetermined temperature (for example, 900℃) in a combustion chamber, and then proceeds to a packed bed with a temperature distribution of p 1 , where it is heated. Meanwhile, the gas itself is gradually cooled down to a temperature of approximately 70° C. and is then released as exhaust gas through the suction blower 6. By this operation, the filling material in the packed bed is gradually cooled by heat radiation, and the filling material in the packed bed is gradually heated by heat reception. The exhaust gas temperature also gradually rises, and when it reaches a predetermined temperature of 70 to 250°C, a valve switching command is issued. If this final temperature is too high, heat loss will increase, so it is preferable to keep the temperature as low as possible in relation to the desorption and extrusion steps described below. Although it varies depending on the concentration of the odorous substance, in the case of a normal gas to be treated, the temperature is slightly higher than the temperature of the gas to be treated, i.e. 70°C or higher, preferably
From the viewpoint of processing efficiency and thermal economy, it is better to use gas at a temperature of 130°C or higher, particularly preferably around 150°C.
There is generally little effect below 70°C. Further, the upper limit of the temperature is preferably 250° C. or lower from the viewpoint of thermal economy, equipment maintenance, and cost. Then, by switching the valve, the desorption and extrusion process shown in FIGS. 1-2 begins. In this case, the opening and closing positions of the valves are the same as in FIG. 1-1, except that valve 7 is opened and valve 9 is opened. The treated gas, which has now reached its maximum temperature, is sent through the suction blower 6 from the bottom of the cooled packed bed and circulated, so that the residual gas is sent to the combustion chamber and at the same time the cooled part is heated and adsorbed and attached. The components are desorbed and passed into the circulating gas, which is also burned in the combustion chamber and almost completely processed. This desorption and extrusion process varies somewhat depending on the shape and size of the equipment, the type and composition of harmful substances in the gas to be treated, the temperature of the circulating gas, the required processing efficiency, etc.
It is sufficient that the gas amount for 15 seconds is approximately 1.5 to 4.5 times the space volume of one packed bed + the space volume of the lower chamber, and the temperature may be slightly higher than the gas to be treated. After a predetermined time the valve is switched again and the first
- The process shown in Figure 3 begins, and this time the gas to be treated flows from one packed bed to another, and when the predetermined conditions are reached, the valve is opened so that the process of the treated gas is reversed to that shown in Figures 1 and 2. (7, 7', 8'9
(closed, 8,9' open) desorption and extrusion steps are operated for a predetermined time. Then go back to the first process,
The operation will be repeated. In the above cases,
If a suction blower is installed on the treated gas discharge side, it is convenient because exhaust gas can be discharged and circulated even in the case of three or more packed beds in one blower. In the case of three or more packed beds, the temperature of the treated gas at the time of switching is not necessarily the highest temperature, but it is always higher than the temperature of the lower chamber on the inlet side of the gas to be treated immediately before switching. It can be circulated in the same way as in the case of . Note that if a high-temperature clean gas, such as heated air, having a temperature similar to or higher than the above-mentioned treated gas temperature is separately obtained, the processing efficiency can of course be improved even if this gas is used for desorption and extrusion. The present invention provides a method for dramatically improving the treatment efficiency of a heat storage type hazardous substance treatment furnace through relatively simple operations as described above, and the present invention greatly contributes to pollution prevention. The harmful substances that can be treated by the invention include all odorous components, air polluting components, etc., so the scope of its application is wide. Next, the present invention will be specifically explained using examples. Example: Using a regenerative hazardous substance processing furnace with a processing gas amount of 100Nm 3 /H, the switching cycle is approximately 60 seconds, and the combustion chamber temperature is 1100.
℃, and treated exhaust gas maximum temperature of 140℃, 50℃ odor gas discharged from the printed wiring board manufacturing process was treated. The experiment was carried out in three ways, using ordinary air, heated air, and exhaust gas from a processing furnace as the extrusion gas, as shown in FIG. 1, and the temperature of the extrusion gas was varied. The results are shown in the table below. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の押し出し切換方法の一実施例
の工程図で、切換えた状態を1―1,1―2,1
―3と分けて示す。第2図は第1図のガス温度、
充填物の温度と充填層の位置の関係を示すグラ
フ、第3図は押し出しガス通風時間と除去率の関
係を示すグラフである。 1……蓄熱型有害物質処理炉、2……充填物充
填層、3……燃焼室、4……助燃バーナー、5…
…下部チヤンバー、6……排気ブロワー、7……
被処理ガス入口弁、8……高温処理ガス出口弁、
9……押し出し用ガス入口弁、A……助熱、B…
…助熱用空気、C……被処理ガス、D……排気ガ
ス。
Fig. 1 is a process diagram of an embodiment of the extrusion switching method of the present invention, and the switching states are 1-1, 1-2, 1.
- Shown separately as 3. Figure 2 shows the gas temperature in Figure 1,
A graph showing the relationship between the temperature of the packed material and the position of the packed bed, and FIG. 3 is a graph showing the relationship between the extruded gas ventilation time and the removal rate. DESCRIPTION OF SYMBOLS 1... Heat storage type hazardous substance processing furnace, 2... Filler packed bed, 3... Combustion chamber, 4... Assist burner, 5...
...Lower chamber, 6...Exhaust blower, 7...
Processed gas inlet valve, 8...High temperature processing gas outlet valve,
9... Gas inlet valve for extrusion, A... Heat auxiliary, B...
... Air for auxiliary heating, C... Gas to be treated, D... Exhaust gas.

Claims (1)

【特許請求の範囲】 1 高温燃焼帯を中間に挾んで磁製又は金属製の
蓄熱用充填物を充填した静止充填層を複数個有
し、その充填層に有害物質を含む被処理ガスとそ
の高温処理済ガスを順次切換えて通すことにより
熱回収を計りつつ有害物質を焼却する蓄熱型有害
物質処理炉において、流路の切換え時に該処理炉
内に残留する未処理有害物質を含む被処理ガスを
該未処理ガスより高温度の清浄ガスを用いて高温
燃焼帯に押し出した後、切換えを行なうことを特
徴とする処理効率を改善する方法。 2 清浄ガスが高温処理済の排気ガスである特許
請求の範囲第1項記載の処理効率を改善する方
法。 3 清浄ガスの温度が70〜250℃である特許請求
の範囲第1項又は第2項記載の処理効率を改善す
る方法。
[Claims] 1. It has a plurality of stationary packed beds filled with heat storage fillers made of porcelain or metal with a high-temperature combustion zone in between, and the gas to be treated containing harmful substances and its In a heat storage type hazardous substance treatment furnace that incinerates hazardous substances while recovering heat by passing high-temperature treated gas in sequence, the gas to be treated containing untreated hazardous substances that remains in the treatment furnace when the flow path is switched. A method for improving processing efficiency, characterized in that switching is performed after extruding the untreated gas to a high temperature combustion zone using a clean gas having a higher temperature than the untreated gas. 2. The method for improving treatment efficiency according to claim 1, wherein the clean gas is exhaust gas that has been subjected to high temperature treatment. 3. The method for improving processing efficiency according to claim 1 or 2, wherein the temperature of the clean gas is 70 to 250°C.
JP15930178A 1978-12-26 1978-12-26 Improvement of treatment efficiency for regenerative type harmful-substance treatment furnace Granted JPS5589615A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP15930178A JPS5589615A (en) 1978-12-26 1978-12-26 Improvement of treatment efficiency for regenerative type harmful-substance treatment furnace
DE19792951525 DE2951525A1 (en) 1978-12-26 1979-12-20 METHOD FOR TREATING A GAS TO REMOVE IMPURITIES
GB7944298A GB2044901A (en) 1978-12-26 1979-12-21 Combustion method for removal of impurities from a gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15930178A JPS5589615A (en) 1978-12-26 1978-12-26 Improvement of treatment efficiency for regenerative type harmful-substance treatment furnace

Publications (2)

Publication Number Publication Date
JPS5589615A JPS5589615A (en) 1980-07-07
JPS6139563B2 true JPS6139563B2 (en) 1986-09-04

Family

ID=15690800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15930178A Granted JPS5589615A (en) 1978-12-26 1978-12-26 Improvement of treatment efficiency for regenerative type harmful-substance treatment furnace

Country Status (3)

Country Link
JP (1) JPS5589615A (en)
DE (1) DE2951525A1 (en)
GB (1) GB2044901A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09262436A (en) * 1996-03-29 1997-10-07 Cataler Kogyo Kk Regenerative waste gas purifier

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982001055A1 (en) * 1980-09-23 1982-04-01 Stauffer Chemical Co Apparatus for processing industrial gases
US4454826A (en) * 1982-06-23 1984-06-19 Regenerative Environmental Equipment Co., Inc. Vertical flow incinerator having regenerative heat exchange
US4474118A (en) * 1983-08-05 1984-10-02 Regenerative Environmental Equipment Co., Inc. Vertical, in-line regenerative heat exchange apparatus
AT389459B (en) * 1987-09-09 1989-12-11 Kanzler Walter Thermal purification of waste air
US4961908A (en) * 1987-11-10 1990-10-09 Regenerative Environmental Equip. Co. Compact combustion apparatus
ATA116889A (en) * 1989-05-17 1997-11-15 Kanzler Walter METHOD FOR THERMAL EXHAUST GAS COMBUSTION
US5129332A (en) * 1991-07-10 1992-07-14 Richard Greco Valve actuation mechanism for incinerator
DE4142136C2 (en) * 1991-12-20 1994-07-21 Eisenmann Kg Maschbau Device for cleaning polluted exhaust air from industrial plants by regenerative post-combustion
DE19519868A1 (en) * 1995-05-31 1996-12-05 Duerr Gmbh & Co Device for thermal exhaust air purification
DE19611226C1 (en) * 1996-03-21 1997-10-02 Fhw Brenntechnik Gmbh Device for thermal exhaust gas treatment, in particular of oxidizable carbonization gases
DE19617790A1 (en) * 1996-05-03 1997-11-13 Freimut Joachim Marold Method and device for regenerative afterburning and switchable distributor for fluids
DE19648508C1 (en) * 1996-11-22 1998-06-10 Duerr Systems Gmbh Regenerative thermal oxidation system cleaning industrial waste gases
DE19716877C1 (en) * 1997-04-22 1998-12-10 Schedler Johannes Thermally-efficient incinerator plant for cost-effective destruction of volatile organic compounds contaminating air
NL1008361C2 (en) * 1998-02-19 1999-08-20 Biomass Technology Group B V Method for gasifying biomass-containing material and equipment therefor.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09262436A (en) * 1996-03-29 1997-10-07 Cataler Kogyo Kk Regenerative waste gas purifier

Also Published As

Publication number Publication date
JPS5589615A (en) 1980-07-07
DE2951525A1 (en) 1980-07-17
GB2044901A (en) 1980-10-22

Similar Documents

Publication Publication Date Title
JPS6139563B2 (en)
CN106563428B (en) Solid adsorbent regeneration device and adsorption device using same
CN206500151U (en) The adsorbent equipment of the regenerating unit and application of the solid absorbent regenerating unit
CN106582203B (en) A kind of runner thickening-purification technology device sealing structure and its technique for applying
EP0463113A4 (en) Removal and destruction of volatile organic compounds from gas streams
CN106582263A (en) Rotary wheel adsorption concentration and catalytic oxidation device and process
KR20020032743A (en) Regeneration Process and Facilities of Spent Activated Carbon by Indirect Heating
JPH11114374A (en) Regenerating method of activated carbon used in activated carbon circulation bag filter
WO2014011081A2 (en) Device and method for drying gases
JPH11325443A (en) Exhaust gas waste heat recovery device of heat storage combustor
CN115155308A (en) VOCs exhaust-gas treatment system
CN110624358A (en) Organic waste gas treatment system and method
CN101318098A (en) Phase-change adsorption air dehumidifier
CN203303956U (en) Solid adsorbent regeneration device
CN113351192A (en) Desorption device and desorption method for oil gas recovery active carbon adsorption material
TW200842287A (en) Apparatus and method for bake out of regenerative thermal oxidizer
CN103316645B (en) Regeneration process method and device for solid adsorbent
CN205700032U (en) Exhaust-gas treatment activated carbon adsorption and regenerating unit
CN205367741U (en) Regeneration system is retrieved to useless charcoal with burning furnace is burnt in gyration
JP2005125200A (en) Regeneration method for carbon based adsorbent and exhaust gas treatment device having regeneration function of carbon based adsorbent
CN206771365U (en) Activated carbon regeneration furnace and hot resolution of waste material stove
SU1378900A1 (en) Method of cleaning waste gases
US6622780B1 (en) Method for thermally regenerating the heat exchanger material of a regenerative post-combustion device
CN210874694U (en) Organic waste gas treatment system
KR0175186B1 (en) Coating oven to manufacture enameled wire using catalytic gas heater