JPS6139437B2 - - Google Patents

Info

Publication number
JPS6139437B2
JPS6139437B2 JP58180564A JP18056483A JPS6139437B2 JP S6139437 B2 JPS6139437 B2 JP S6139437B2 JP 58180564 A JP58180564 A JP 58180564A JP 18056483 A JP18056483 A JP 18056483A JP S6139437 B2 JPS6139437 B2 JP S6139437B2
Authority
JP
Japan
Prior art keywords
layer
fibers
superentangled
water
artificial leather
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58180564A
Other languages
Japanese (ja)
Other versions
JPS6075683A (en
Inventor
Kenkichi Yagi
Hiroyasu Kato
Kazuyoshi Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP58180564A priority Critical patent/JPS6075683A/en
Publication of JPS6075683A publication Critical patent/JPS6075683A/en
Publication of JPS6139437B2 publication Critical patent/JPS6139437B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、極細繊維および/またはその束が緻
密に交絡した超交絡層と、その空隙部分に存在す
る樹脂とから主としてなる複合体によつて形成さ
れた銀面層を有し、かつ撥水、撥油性に優れた新
規な人工皮革に関する。 従来、不織布を基体とした人工皮革は良く知ら
れている。かかる人工皮革は不織布をポリウレタ
ン樹脂のような弾性高分子物質で被覆してあるた
め、イージーケア性や防水性があり、取り扱いが
容易である点が特徴であつた。しかし一方ではポ
リウレタンなどの高分子物質は、人工皮革の風合
やタツチをゴムライクにする上、通気性や透湿性
をも低下させるという大きな欠点があつた。反対
に、高分子物質含有量を下げると、機械的強力や
表面摩耗などの特性が低下し、実用にならなかつ
たばかりでなく、透湿性や通気性は大きくても、
撥水、撥油加工などの効果が小さく、水もれが起
つたりすることも回避できなかつた。すなわち従
来は外観品位や風合、機械的強力、表面強度、気
体通過性および防水、防油特性の全てを兼ね備え
た不織布使いの人工皮革は容易に得られなかつた
のである。 本発明はかかる諸性質を兼ね備えた新しい撥
水、撥油性人工皮革を提供することを目的とする
ものである。 かかる目的を達成するため、本発明は特許請求
の範囲に記載のごとき構成を有する。 すなわち、0.2デニール以下の極細繊維が極め
て緻密に交絡すると、撥水、撥油効果が高くな
り、かつ通気や透湿などの特性が保持でき、しか
も少量の樹脂を該超交絡層に含ませることによつ
て、銀面としての優れた外観や機能が付与できる
ものである。本発明の撥水、撥油性人工皮革は、
極細繊維の繊維交絡点間距離が200μ以下という
極めて緻密な交絡からなる超交絡層に、フツ素系
またはシリコン系またはその両方の化合物が付着
しているため、撥水、撥油効果が極めて大きいと
いう特徴を有するとともに、従来のポリウレタン
膜が積層されているような人工皮革に比べると、
極めて透湿性や通気性に優れ、かつ風合や感触に
も優れ、さらに超交絡層が存在するため人工皮革
の機械的強度や表面強度にも優れることを見出し
たものである。 本発明の人工皮革の超交絡層における繊維構造
は極細繊維および/またはその束が相互に緻密に
交絡していることが必要である。すなわち繊維の
交絡密度が高いということである。このようなシ
ートは、銀面形成に際して厚い樹脂層を付与する
必要はなく、少量の樹脂を超交絡層と一体化させ
ることによつて、気体通過性は大きくても、水な
どの液体通過性を小さく維持したまま、撥水、撥
油効果を高めることができる。超交絡層の繊維の
交絡密度は、後述する繊維交絡点間距離で表し
て、200μ以下であることが必要である。この値
が200μより大きい構造のもの、たとえば繊維の
交絡をニードルパンチだけで行なつた絡みの少な
い繊維構造のもの、あるいは極細繊維またはその
束が単に面配列した構造のもの、あるいはまた極
細繊維またはその束が基材表面に毛羽状に密生し
これをねかせて造面した構造のものは、繊維の交
絡がほとんどないかまたは少ないため、高い撥
水、撥油制を付与することが容易でない上、擦
過、揉み、くり返しせん断力などを受けたとき、
表面が毛羽立つたり亀裂が発生したりしやすいた
め銀付人工皮革として好ましくない。繊維交絡点
間距離が100μ以下の場合はより好ましい結果が
得られる。ここで、繊維交絡点間距離とは、つぎ
の方法で求めた値のことであり、その値が小さい
ほど交絡が緻密ということになる。 第1図は銀面層における構成繊維を表面側から
観察したときの構成繊維の拡大模式図である。構
成繊維をf1,f2,f3,……としそのうちの任意の
2本の繊維f1,f2が交絡する点をa1とし、a1で上
になつている繊維f2が他の繊維の下になる形で交
差する点までたどつていきその交差した点をa2
(f2とf3の交絡点)とする。同様にa3,a4,a5……
とする。つぎにこうして求めた交絡点の間の直線
水平距離a1a2,a2a3,a3a4,a4a5,a5a6,a6a7
a7a3,a3a8,a8a7,a7a9,a9a6……を測定し、これ
ら多数の測定値の平均値を求めこれを繊維交絡点
間距離とする。 このような超交絡層をもつ本発明の人工皮革は
透湿性や通気性が大きくても通水度が小さいこと
も特徴の1つであり、撥水、撥油効果が極めて高
くなることと関係があると思われるが、その機構
は必ずしも明確ではない。ここで言う通水度とは
120mmHg圧下で人工皮革1cm2当り1分間に通過す
る水量(ml)を言う。本発明の200μ以下の繊維
交絡点間距離の超交絡層を有する人工皮革は多く
の場合この値が1000ml以下、100μ以下の繊維交
絡点間距離をもつものでは多くの場合500ml以下
になる。しかしかかる値はあくまで目安であり、
樹脂を多量に塗布したり、含浸したりするとこの
値は小さくなるので、あくまで繊維の緻密性をあ
らわす尺度として使用すべきものである。従来の
不織布では透湿性や通気性が大きいものは、必ず
この通水性も大きいものであり、たとえ撥水、撥
油加工しても効果の大きいものは得られなかつた
のである。また、超交絡層の下層は極細繊維束が
主体に交絡しており、超交絡層の極細繊維およ
び/またはその束は該下層の極細繊維束が枝分れ
してさらに緻密に交絡したものであり、超交絡層
と該下層では繊維は実質的に連続しており、かつ
該両層の境界は枝分れの程度が連続的に変化した
繊維構造のものは、一体感のある風合の人工皮革
が得られ超交絡層と下層が剥離することがないこ
とから好ましく用いられる。ここで超交絡層の極
細繊維束の束の太さは全ての束が同じである必要
はなく、該下層の束の太さにくらべできるだけ細
い(束に含まれる繊維の本数が下層の束にくらべ
できるだけ少ない)方が人工皮革の表面に凹凸が
発生しにくく好ましい。 また超交絡層の下層も極細繊維束とそれから枝
分れした極細繊維が交絡した構造をしており、超
交絡層の極細繊維および/またはその束は、該下
層の極細繊維束が枝分れしてできたものや、下層
の極細繊維と連続したものからなつており、これ
らが互いに緻密に交絡しているような繊維構造の
ものも好ましい。 さらに超交絡層の下層は、極細繊維がランダム
に交絡しており、超交絡層は該下層の極細繊維か
ら実質的に連続している極細繊維が主体となつて
いるような繊維構造のものも同様に好ましく用い
られる。しかしこの場合は超交絡層の繊維交絡点
間距離が、前述の極細繊維束を枝分れさせた場合
よりやや大きくなりやすいので、超交絡層の緻密
さや、撥水、撥油効果の点からは、極細繊維束を
枝分れさせる方が特に好ましい。 かかる好ましい態様においては、不織布を構成
する繊維は、一本の極細繊維がある部分では束を
構成しまたある部分では枝分れしているため単繊
維と束と別々には分けられない構造をしているも
のである。これら本発明の好ましい態様を第2図
に例示した。 本発明に使用される極細繊維には、メルトブロ
ーやスーパードローなどの方法で直接製造した極
細繊維を用いてもよい。また極細繊維形成型繊維
を用い加工工程中の適当な時期に極細繊維に変成
して用いることも好ましい。かかる極細繊維形成
型繊維は、たとえば、紡糸直後で極細繊維を集束
し部分的に軽く接着して1本にした繊維、1成分
を他成分間に放射状に介在せしめた菊花状断面の
繊維、多層バイメタル型繊維、ドーナツ状断面の
多層バイメタル型繊維、2成分以上の成分を溶融
混合して紡糸した海島繊維、繊維軸方向に連続し
た極細繊維が多数配列集合し他の成分で結合およ
び/または一部結合され1本の繊維を形成した高
分子相互配列体繊維などであり、これらの2種以
上の繊維を混合あるいは組み合せて用いてもよ
い。複数の芯が他成分により介在的に結合およ
び/または一部結合された横断面を有する極細繊
維形成型繊維は物理的作用を加えるあるいは結合
成分の除去などにより比較的容易に極細繊維が得
られるため好ましく用いられる。第3図に好まし
く用いられる極細繊維形成型繊維の断面形状を例
示した。また、少なくとも1成分を溶解除去した
とき0.2デニール以下好ましくは0.05デニール以
下さらに好ましくは0.005デニール以下の極細繊
維を主体とする繊維の束が得られる多成分からな
る極細繊維形成型繊維は、特に超交絡層の緻密性
が高くなり撥水、撥油効果が高い上、しなやかな
風合、なめらかな表面を有する人工皮革が得られ
るため、さらに好ましく用いられる。また、本発
明における極細繊維は繊維形成能を有する高分子
物質からなり、例えば、ナイロン6、ナイロン
66、ナイロン12、共重合ナイロンなどのポリアミ
ド、ポリエチレンテレフタレート、共重合ポリエ
チレンテレフタレート、ポリブチレンテレフタレ
ート、共重合ポリブチレンテレフタレートなどの
ポリエステル、ポリエチレン、ポリプロピレンな
どのポリオレフイン、ポリウレタン、ポリアクリ
ロニトリルおよびビニル重合体などがあげられ
る。また、該極細繊維形成型繊維の結合成分ある
いは被溶解除去成分としては、例えば、ポリスチ
レン、ポリエチレン、ポリプロピレン、ポリアミ
ド、ポリウレタン、アルカリ溶液に易溶出型の共
重合ポリエチレンテレフタレート、ポリビニルア
ルコール、共重合ポリビニルアルコール、スチレ
ン−アクリロニトリル共重合体、スチレンとアク
リル酸のアルコールエステルおよび/またはメタ
クリル酸の高級アルコールエステルとの共重合体
などが用いられる。紡糸のしやすさ、溶解除去の
容易さの点でポリスチレン、スチレン−アクリロ
ニトリル共重合体、スチレンとアクリル酸の高級
アルコールエステルおよび/またはメタクリル酸
の高級アルコールエステルとの共重合体は好まし
く用いられる。さらに延伸倍率が高くとれ強度の
高い繊維が得られるという点でスチレンとアクリ
ル酸の高級アルコールエステルおよび/またはメ
タクリル酸の高級アルコールエステルとの共重合
体はさらに好ましく用いられる。また、該極細繊
維を枝分れしやすくするという点で、結合成分あ
るいは溶解除去成分にポリエチレングリコールな
どの重合体を0.5〜30重量%混合して用いること
が好ましい。かかる極細繊維形成型繊維の繊度は
特に限定されるものではないが、紡糸における安
定性、シート形成のしやすさなどから0.5〜10デ
ニールのものが好ましい。もちろん結合成分は極
細繊維成分として使用されることも差し支えな
い。 本発明の超交絡層における極細繊維は、繊度が
0.2デニール以下のものが好ましい。0.2デニール
より太い場合は、繊維の剛性が過大で超交絡層の
柔軟性や表面のしわ形態が損われるばかりでな
く、撥水、撥油剤が付着してもその効果が小さく
なり、さらに揉みなどにより亀裂が発生しやすく
表面に凹凸が発生したりして緻密でしなやかな超
交絡層の形成がむつかしい。0.2デニール以下好
ましくは0.05デニール以下さらに好ましくは
0.005デニール以下の極細繊維を用いることによ
つて、はじめて繊維どうしの交絡が緻密にでき、
高い撥水、撥油効果が得られ、さらに平滑性がよ
くしなやかで、亀裂が発生しにくく手になじみの
よい超交絡層を有する人工皮革が得られる。 本発明で使用するフツ素系化合物の代表的なも
のはパーフルオロアルキル、パーフルオロアルケ
ニルアリルエーテル、パーフルオロヘキサセニ
ル、パーフルオロノネニルなどのフルオロカーボ
ン基を側鎖に有し、ポリアクリル酸エステルある
いはメタクリル酸エステル系高分子等を主鎖にも
つ、含フツ素重合体であり、例えば次のような単
量体の重合体や共重合体が一般的である。 (R1は水素あるいはメチル基、R2はメチル基ある
いはエチル基を示す。ηは3〜21の整数) また本発明で使用するシリコン系化合物はジメ
チルポリシロキサンやその共重合体等のシリコン
系樹脂である。 本発明の極細繊維および/またはその束の繊維
交絡点間距離が200ミクロン以下の繊維構造体
と、その空隙部分に存在する樹脂とから主として
なる複合体によつて形成された銀面層を有し、少
なくとも該超交絡層の表面にフツ素系および/ま
たはシリコン系化合物が付着している撥水、撥油
性人工皮革は具体的には以下のような方法で得る
ことができる。 例えば前述した各方法により、直接紡糸した極
細繊維あるいはそれを束ねて一時的に仮接着した
極細繊維束、または極細繊維形成型繊維のフイラ
メントもしくはカツトしたものを用いてウエツブ
を形成し、ニードルパンチを施すなどして絡合構
造を形成した後、柱状水流などの高速流体流を片
面もしくは両面に噴き当てれば、噴出流のエネル
ギーにより、表層部の極細繊維が交絡または枝分
れと交絡を起して超交絡層が形成される。結合成
分により多数の極細繊維成分がとり囲まれた構造
の極細繊維形成型繊維であつても、高速流体流が
結合成分を割裂するので露出した極細繊維を交絡
することができる。もちろん高速流体流噴き当て
前に結合成分を溶解除去して極細繊維束としてお
いても良い。かかる超交絡層はもちろん表裏両面
に形成されても良く、これにポリウレタンなどの
バインダー含浸工程、ポリビニルアルコールなど
の仮固定剤による仮固定処理などの技術を上記の
工程と組み合せることは好ましい方法である。 さらに高速流体流を噴き当てた面に、樹脂の溶
液又は分散液をリバースロールコーテイング、グ
ラビアコーテイング、ナイフコーテイング、スリ
ツトコーテイング、スプレーなどの方法で付与
し、湿式又は乾式によつて凝固させ、ロール面あ
るいはシート面に重ね合わせ加圧必要に応じて加
熱し、繊維と樹脂とを一体化せしめると同時に表
面の平滑化を行なう。ここで樹脂を付与する前に
繊維シートにプレスなどの処理を行ない表面の平
滑化することも好ましい方法である。さらに繊維
と樹脂の一体化を表面にシボ模様のあるエンボス
ロールあるいはシボ賦型シートを使用して行なう
と一体化、平滑化とシボ賦型が同時に行なえるた
め好ましい。 銀面層に用いる樹脂は、たとえば、ポリアミ
ド、ポリエステル、ポリ塩化ビニル、ポリアクリ
ル酸エステル共重合体、ポリウレタン、ネオプレ
ン、スチレンブタジエン共重合体、アクリロニト
リルブタジエン共重合体、ポリアミノ酸、ポリア
ミノ酸ポリウレタン共重合体、シリコン樹脂、な
どの合成樹脂または天然高分子樹脂、またはこれ
ら樹脂の混合物などである。更に必要によつては
可塑剤、充填剤、安定剤、顔料、染料、架橋剤等
を添加してもよい。ポリウレタン樹脂またはこれ
に他の樹脂や添加剤を加えたものは、特に柔軟な
風合や感触をもち耐屈曲性のよい銀面層が得られ
るため好ましく用いられる。 このようにして得られた超交絡層を有する人工
皮革はさらに必要に応じて、仕上げ剤塗布、染
色、揉みなどの処理を行なつてもよい。 本発明ではかかる人工皮革の少なくとも超交絡
層表面に前記のフツ素系化合物またはシリコン系
化合物またはその両方を付与する。付与する時期
は超交絡層の形成以降の何れの時期でも良いが、
結合成分を有する極細繊維形成型繊維の溶解工程
がある場合は、その後の方が好ましい。通常は染
色後などの最終に近い工程が好ましい。付与の仕
方は含浸、パツド法あるいはコーテイング法等で
行ない、引き続き乾燥する。必要ならその後に一
定温度、時間条件での熱処理を行なつても良い
し、カレンダー加工などの加熱プレスを行なつて
も良い。またフツ素系化合物とシリコン系化合物
は単独で用いても良く、混合して用いても良い。
また工程を別にして両方共用いても良い。また双
方の化合物はエマルジヨンの形態で付与すること
もできるし、トリクロルエタン、トリクロルエチ
レン、パークロルエチレンなどの溶液として付与
することもできる。最初にエマルジヨンの形態で
付与し熱処理後、再度付与させる時は溶液の形で
付与すれば、最初の付与による撥水性に影響され
ずに、溶液が内部まで浸透可能となる。帯電防止
剤や浸透剤を併用することも差し支えない。 こうして得られた本発明の撥水、撥油性人工皮
革は、高い撥水、撥油性としなやかな風合、なめ
らかな表面感触を有し、耐屈曲性、耐せん断疲労
性、耐傷性が良好なため衣料用の人工皮革をはじ
め、靴用甲皮、ハンドバツグ、カバン、ベルト、
袋物、手袋、ボールの表革など各種の用途に好ま
しく用いられる。 以下に示す実施例は、本発明をより明確にする
ためのものであつて、本発明はこれに限定される
ものではない。実施例において、部および%とあ
るのは特に記載のないかぎり重量に関するもので
ある。また平均交絡点間距離の値は100個の測定
値の平均値とした。 実施例 1 2−エチルヘキシルアクリレート20部、スチレ
ン80部の割合で共重合させたビニール系ポリマー
(以下AS樹脂という)を結合成分として60部、極
細繊維成分としてナイロン6が40部から成る割合
の第3図トに示した如き形態の混合紡糸繊維の
4.0デニール、51mmのステープルを用いて、カー
ド、クロスラツパーを通して目付480g/m2のウエ
ブを形成した。極細繊維成分の太さにはバラツキ
はあつたが、平均0.002デニールであつた。この
ウエブを用いて実施例1と同様にして2000本/cm2
のニードルパンチと、片面から100Kg/cm2で4回の
水流処理を行なつたところ、表層から約1/5が枝
分れした極細繊維とその束からなる超交絡層にな
つている不織布Aを得た。その繊維交絡点間距離
は約80ミクロンであつた。 一方、メルトブロー法によりナイロン6の約
0.005デニールの極細繊維を紡糸および集積し、
約410g/m2のランダムウエブを形成し、2500本/
cm2のニードルパンチを行なつた。このニードルパ
ンチ不織布を熱水で収縮させた後実施例1と同様
のノズルで、片面から100Kg/cm2で高速水流処理を
4回行ない乾燥したところ、表層は約180ミクロ
ンの繊維交絡点間距離をもつており、内部は表層
から連続した繊維がルーズにランダム絡合してい
る不織布Bを得た。また別に2.4デニール、38mm
長の第3図の如き断面構造を有するポリエチレン
テフタレート50部とナイロン6650部からなる100
層の中空多層バイメタル型繊維を用いて、ランダ
ムウエツバーによりウエブ形成を行なつた。繊維
中の1層の太さは約0.005デニールであつた。該
ウエブを不織布Bを得たと同様の条件でニードル
パンチ、収縮、片面への高速水流処理を行なつた
ところ、表層は約150ミクロンの繊維交絡点間距
離をもつており、内部は表層から連続した繊維が
集束した束となつている太い繊維がランダム結合
している不織布Cを得た。 つぎに、これら3種の不織布A,B,Cのそれ
ぞれの超交絡面に、ポリエチレンアジペート、ポ
リブチレンアジペートおよびポリエチレングリコ
ールの混合ジオール(混合割合60:20:20)と
p・p′−ジフエニルメタンジイソシアネートのプ
レポリマーをエチレングリコールで鎖伸長して得
られたポリウレタンの10%溶液に顔料を添加した
溶液をグラビアコータで付与し乾燥後加熱エンボ
スロールに通してプレスし皮革様シボ模様を型押
しした。さらに不織布Aからのシートはトリクロ
ルエチレン中につけ、浸漬、絞液をくり返し、
AS樹脂をほぼ完全に抽出除去し、ついで乾燥を
行なつて残留トリクロルエチレンを蒸発除去し
た。 不織布Cからのシートは良く揉んでポリエチレ
ンテレフタレートとナイロン66とをできるだけ分
割剥離させた。 さらに1:2型金属錯塩染料を用いて常圧で染
色を行なつて本発明のシートA,BおよびCを得
た。双方のシートの超交絡層はポリウレタン樹脂
が充填され天然皮革と同様の美しい銀面層となつ
ていた。 次にこれらの本発明のシートA,BおよびCに
下記処方1の処理浴にパツド(ピツクアツプ30
%)し、100℃で乾燥後160℃で1分間の熱処理を
行なつた。 処方1 アサヒガードAG−710(旭硝子K.K.製フツ素系
撥水剤エマルジヨン) 5部 AGアクセル700(明成化学K.K.製帯電防止剤
1部 イソプロパノール 2部 水 92部 更に、下記処方2の処理浴にパツド(ピツクア
ツプ35%)し、100℃で乾燥後160℃で1分間の熱
処理を行なつた。 処方2 アサヒガードAG−650(旭硝子製溶剤タイプフツ
素系撥水剤) 2部 ボロンコート(信越化学製溶剤タイプシリコン系
撥水剤 2部 トリクロルエチレン 96部 得られた銀面層を有する本発明の人工皮革は羊
皮調の極めてしなやかでタツチの良い感触をして
おり、また顕微鏡により断面観察を行なつたとこ
ろ超交絡層(銀面層)は極細繊維が緻密に絡合し
ており、さらにA,Cでは内部の極細繊維束、B
では極細繊維のルーズな交絡層へと連なつてい
た。 これらの皮革様シート物に付与されているポリ
ウレタンおよび仕上げ剤を溶剤で抽出除去し、銀
面層表面の構成繊維の繊維交絡点間距離を測定し
た。人工皮革Aの平均繊維交絡点間距離は77μ、
人工皮革Bでは193μ、人工皮革Cでは150μ、で
あつた。 これらの本発明の人工皮革と市販の衣料用人工
皮革(ポリウレタン被覆膜を有しているタイプ)
の性質は第1表の通りであり、本発明の人工皮革
は透湿、通気など気体通過性が良く、かつ撥水性
も優れているのに対し、市販の人工皮革は気体通
過性は実質的にないものであつた。また本発明の
中では極細繊維束を枝分れさせたタイプのAおよ
びCの撥水性がランダム交絡のタイプBより優れ
ていた。
The present invention has a grain layer formed of a composite mainly consisting of a superentangled layer in which ultrafine fibers and/or bundles thereof are densely intertwined, and a resin present in the voids, and is water repellent. , concerning a novel artificial leather with excellent oil repellency. Conventionally, artificial leather based on nonwoven fabric is well known. Since such artificial leather is made of a nonwoven fabric coated with an elastic polymer material such as polyurethane resin, it is characterized by being easy to care for, waterproof, and easy to handle. However, on the other hand, polymeric substances such as polyurethane have the major disadvantage of making the texture and touch of artificial leather rubber-like, and also reducing breathability and moisture permeability. On the other hand, if the content of polymeric substances is lowered, properties such as mechanical strength and surface abrasion will decrease, making it impractical, and even if moisture permeability and air permeability are high,
Water-repellent and oil-repellent treatments have little effect, and water leakage cannot be avoided. In other words, in the past, it has not been possible to easily obtain artificial leather using nonwoven fabric that has all of the appearance quality, texture, mechanical strength, surface strength, gas permeability, and waterproof and oil-proof properties. The object of the present invention is to provide a new water- and oil-repellent artificial leather having all of these properties. In order to achieve this object, the present invention has the configurations as described in the claims. In other words, when ultrafine fibers of 0.2 denier or less are intertwined extremely densely, the water repellent and oil repellent effects are enhanced, and properties such as air permeability and moisture permeability can be maintained, and a small amount of resin can be included in the super entangled layer. This gives it an excellent appearance and function as a silver surface. The water-repellent and oil-repellent artificial leather of the present invention is
Fluorine-based and/or silicon-based compounds are attached to the super-entangled layer, which consists of ultra-fine fibers that are extremely densely intertwined with a distance between fiber entanglements of 200μ or less, resulting in extremely high water and oil repellency. In addition to having the characteristics of
It has been discovered that artificial leather has extremely excellent moisture permeability and air permeability, as well as excellent texture and feel, and also has excellent mechanical strength and surface strength due to the presence of a superentangled layer. The fiber structure in the superentangled layer of the artificial leather of the present invention requires that ultrafine fibers and/or bundles thereof are densely intertwined with each other. In other words, the fiber entanglement density is high. Such sheets do not require a thick resin layer when forming the grain surface, and by integrating a small amount of resin with the superentangled layer, they have high gas permeability but low liquid permeability such as water. Water and oil repellency can be enhanced while keeping the amount small. The intertwining density of the fibers in the superentangled layer needs to be 200μ or less, expressed as the distance between fiber intertwining points, which will be described later. Structures with this value greater than 200 μ, for example, fiber structures with little entanglement in which the fibers are entangled only by needle punching, or structures in which ultra-fine fibers or bundles thereof are simply arranged in a plane, or ultra-fine fibers or Structures in which bundles of these fibers grow densely in a fluff-like manner on the surface of the base material and are left to age to create a surface have little or no entanglement of fibers, making it difficult to impart high water and oil repellency. , when subjected to abrasion, rubbing, repeated shearing force, etc.
It is not preferred as silver-covered artificial leather because the surface tends to become fluffy and cracks occur. More preferable results can be obtained when the distance between fiber entanglement points is 100μ or less. Here, the distance between fiber entanglement points is a value obtained by the following method, and the smaller the value, the denser the intertwining. FIG. 1 is an enlarged schematic diagram of the constituent fibers in the grain layer when observed from the surface side. The constituent fibers are f 1 , f 2 , f 3 , ..., and the point where any two fibers f 1 , f 2 are intertwined is a 1 , and the fiber f 2 on top at a 1 is the other point. Trace the intersection point below the fibers of a 2
(intersection point of f 2 and f 3 ). Similarly, a 3 , a 4 , a 5 ……
shall be. Next, the linear horizontal distances between the intersecting points obtained in this way are a 1 a 2 , a 2 a 3 , a 3 a 4 , a 4 a 5 , a 5 a 6 , a 6 a 7 ,
a 7 a 3 , a 3 a 8 , a 8 a 7 , a 7 a 9 , a 9 a 6 ... is measured, and the average value of these many measured values is determined and this is taken as the distance between fiber entanglement points. One of the characteristics of the artificial leather of the present invention, which has such a superentangled layer, is that even though it has high moisture permeability and air permeability, it has a low water permeability, which is related to its extremely high water and oil repellent effects. It seems that there is a mechanism, but the mechanism is not necessarily clear. What is water permeability referred to here?
It refers to the amount of water (ml) that passes per minute per cm2 of artificial leather under a pressure of 120mmHg. The artificial leather of the present invention having a superentangled layer with a distance between fiber entanglement points of 200μ or less often has this value of 1000ml or less, and for those with a fiber interlacement distance of 100μ or less, this value is often 500ml or less. However, this value is only a guideline,
This value decreases when a large amount of resin is applied or impregnated, so it should only be used as a measure of the denseness of the fiber. In conventional nonwoven fabrics, those with high moisture permeability and air permeability always have high water permeability, so even if they were treated to be water-repellent or oil-repellent, it was not possible to obtain a highly effective non-woven fabric. In addition, the lower layer of the superentangled layer is mainly intertwined with ultrafine fiber bundles, and the ultrafine fibers and/or their bundles in the superentangled layer are the ultrafine fiber bundles in the lower layer that are branched and intertwined more densely. A fiber structure in which the fibers are substantially continuous in the superentangled layer and the lower layer, and the degree of branching changes continuously at the boundary between the two layers has a unified texture. It is preferably used because artificial leather is obtained and the superentangled layer and the lower layer do not peel off. Here, the thickness of the ultrafine fiber bundles in the superentangled layer does not need to be the same for all bundles, but is as thin as possible compared to the thickness of the bundle in the lower layer (the number of fibers included in the bundle is smaller than that in the lower layer). It is preferable to have as little as possible since it is less likely to cause unevenness on the surface of the artificial leather. The lower layer of the superentangled layer also has a structure in which ultrafine fiber bundles and branched ultrafine fibers are intertwined. It is also preferable to have a fiber structure in which the fibers are formed by continuous ultrafine fibers in the lower layer, and these fibers are closely intertwined with each other. Furthermore, the lower layer of the superentangled layer has ultrafine fibers intertwined randomly, and the superentangled layer may have a fiber structure mainly consisting of ultrafine fibers that are substantially continuous from the ultrafine fibers in the lower layer. It is also preferably used. However, in this case, the distance between fiber entanglement points in the superentangled layer tends to be slightly larger than in the case where the ultrafine fiber bundles are branched as described above, so from the viewpoint of the density of the superentangled layer and the water- and oil-repellent effects, It is particularly preferable to branch the ultrafine fiber bundle. In such a preferred embodiment, the fibers constituting the nonwoven fabric have a structure in which single microfibers form bundles in some parts and branch in other parts, so that they cannot be separated into single fibers and bundles. This is what we are doing. These preferred embodiments of the present invention are illustrated in FIG. As the ultrafine fibers used in the present invention, ultrafine fibers directly produced by a method such as melt blowing or super draw may be used. It is also preferable to use ultrafine fiber-forming fibers and convert them into ultrafine fibers at an appropriate time during the processing process. Such ultra-fine fiber-forming fibers include, for example, fibers made by converging ultra-fine fibers immediately after spinning and lightly adhering them into a single fiber, fibers with a chrysanthemum-shaped cross section in which one component is radially interposed between other components, and multilayer fibers. Bimetallic fibers, multilayer bimetallic fibers with a donut-shaped cross section, sea-island fibers made by melt-mixing two or more components and spinning them, a large number of ultrafine fibers that are continuous in the fiber axis direction and assembled in an array and bound and/or unified by other components. These are polymeric mutual array fibers that are partially bonded to form a single fiber, and two or more types of these fibers may be mixed or used in combination. Ultrafine fiber-forming fibers having a cross section in which a plurality of cores are interveningly bonded and/or partially bonded by other components can be relatively easily obtained by applying physical action or removing bonding components. Therefore, it is preferably used. FIG. 3 shows an example of the cross-sectional shape of the microfiber-forming fiber that is preferably used. In addition, ultrafine fiber-forming fibers made of multicomponents that yield fiber bundles mainly composed of ultrafine fibers of 0.2 denier or less, preferably 0.05 denier or less, more preferably 0.005 denier or less when at least one component is dissolved and removed, It is more preferably used because the denseness of the interlaced layer is high, resulting in high water- and oil-repellent effects, as well as artificial leather having a supple texture and smooth surface. Further, the ultrafine fiber in the present invention is made of a polymeric substance having fiber-forming ability, such as nylon 6, nylon
66, nylon 12, polyamides such as copolymerized nylon, polyesters such as polyethylene terephthalate, copolymerized polyethylene terephthalate, polybutylene terephthalate, copolymerized polybutylene terephthalate, polyolefins such as polyethylene and polypropylene, polyurethane, polyacrylonitrile, and vinyl polymers. can give. In addition, examples of the binding component or the component to be dissolved and removed of the microfiber-forming fiber include polystyrene, polyethylene, polypropylene, polyamide, polyurethane, copolymerized polyethylene terephthalate that is easily soluble in alkaline solutions, polyvinyl alcohol, and copolymerized polyvinyl alcohol. , a styrene-acrylonitrile copolymer, a copolymer of styrene and an alcohol ester of acrylic acid and/or a higher alcohol ester of methacrylic acid, and the like. Polystyrene, styrene-acrylonitrile copolymers, and copolymers of styrene and higher alcohol esters of acrylic acid and/or higher alcohol esters of methacrylic acid are preferably used in terms of ease of spinning and ease of dissolution and removal. Furthermore, a copolymer of styrene and a higher alcohol ester of acrylic acid and/or a higher alcohol ester of methacrylic acid is more preferably used because it can obtain a fiber with a high draw ratio and high strength. Furthermore, in order to make the ultrafine fibers more likely to branch, it is preferable to use a mixture of 0.5 to 30% by weight of a polymer such as polyethylene glycol in the binding component or the dissolving and removing component. The fineness of such microfiber-forming fibers is not particularly limited, but is preferably 0.5 to 10 deniers from the viewpoint of stability during spinning and ease of sheet formation. Of course, the binding component may also be used as an ultrafine fiber component. The ultrafine fibers in the superentangled layer of the present invention have a fineness of
It is preferably 0.2 denier or less. If the fiber is thicker than 0.2 denier, the stiffness of the fiber is too high, which not only impairs the flexibility of the superentangled layer and the form of wrinkles on the surface, but also reduces the effectiveness of water and oil repellents even if they are attached to the fibers. This makes it difficult to form a dense and supple superentangled layer because cracks are likely to occur and the surface becomes uneven. 0.2 denier or less, preferably 0.05 denier or less, more preferably 0.05 denier or less
By using ultra-fine fibers of 0.005 denier or less, the fibers can be tightly intertwined,
Artificial leather is obtained which has a highly water- and oil-repellent effect, is smooth and supple, and has a superentangled layer that is hard to crack and feels good in the hand. Typical fluorine-based compounds used in the present invention have a fluorocarbon group in their side chain, such as perfluoroalkyl, perfluoroalkenyl allyl ether, perfluorohexacenyl, perfluorononenyl, etc., and are polyacrylic acid esters. Alternatively, it is a fluorine-containing polymer having a methacrylic acid ester polymer or the like in its main chain, and for example, polymers and copolymers of the following monomers are common. (R 1 is hydrogen or a methyl group, R 2 is a methyl group or an ethyl group. η is an integer from 3 to 21) The silicon-based compound used in the present invention is a silicon-based compound such as dimethylpolysiloxane or its copolymer. It is resin. It has a grain layer formed of a composite mainly consisting of a fiber structure in which the distance between the fiber entanglement points of the ultrafine fibers and/or a bundle thereof of the present invention is 200 microns or less, and a resin existing in the voids of the fiber structure. However, water-repellent and oil-repellent artificial leather in which a fluorine-based and/or silicon-based compound is attached to at least the surface of the superentangled layer can be specifically obtained by the following method. For example, by each of the methods described above, a web is formed using directly spun microfibers, microfine fiber bundles that are bundled and temporarily bonded, or filaments or cut microfiber-forming fibers, and then needle punched. After forming an entangled structure, if a high-speed fluid stream such as a columnar water stream is applied to one or both sides, the energy of the jet stream causes the ultrafine fibers in the surface layer to become entangled or branched. A superentangled layer is formed. Even in the case of ultrafine fiber-forming fibers having a structure in which a large number of ultrafine fiber components are surrounded by a bonding component, the exposed ultrafine fibers can be entangled because the high-speed fluid flow splits the bonding components. Of course, the bonded components may be dissolved and removed to form an ultrafine fiber bundle before the high-speed fluid jet is applied. Such a superentangled layer may of course be formed on both the front and back surfaces, and it is a preferable method to combine the above process with techniques such as impregnation with a binder such as polyurethane and temporary fixing treatment with a temporary fixing agent such as polyvinyl alcohol. be. Furthermore, a resin solution or dispersion is applied to the surface onto which the high-speed fluid stream has been sprayed by a method such as reverse roll coating, gravure coating, knife coating, slit coating, or spraying, and is solidified by a wet or dry method. The fibers and the resin are stacked on the surface or sheet surface, pressed, and heated as necessary to integrate the fibers and resin and at the same time smooth the surface. It is also a preferable method to subject the fiber sheet to a treatment such as pressing to smooth the surface before applying the resin. Furthermore, it is preferable to integrate the fibers and resin using an embossing roll or a textured sheet with a textured surface because integration, smoothing, and texture formation can be performed at the same time. Examples of the resin used for the silver layer include polyamide, polyester, polyvinyl chloride, polyacrylate copolymer, polyurethane, neoprene, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, polyamino acid, and polyamino acid polyurethane copolymer. Synthetic resins such as synthetic resins, silicone resins, natural polymer resins, or mixtures of these resins. Furthermore, if necessary, plasticizers, fillers, stabilizers, pigments, dyes, crosslinking agents, etc. may be added. Polyurethane resins or polyurethane resins to which other resins and additives are added are preferably used because they yield a grain layer that has a particularly soft texture and touch and has good bending resistance. The artificial leather having the superentangled layer thus obtained may be further subjected to treatments such as coating with a finishing agent, dyeing, and rolling, if necessary. In the present invention, the above-mentioned fluorine-based compound, silicon-based compound, or both are applied to at least the surface of the superentangled layer of such artificial leather. It may be applied at any time after the formation of the superentangled layer, but
If there is a step of dissolving the ultrafine fiber-forming fibers having a binding component, the subsequent step is preferred. Usually, a process near the final stage, such as after dyeing, is preferred. The coating is applied by impregnation, padding or coating, followed by drying. If necessary, heat treatment under constant temperature and time conditions may be performed thereafter, or hot pressing such as calendering may be performed. Further, the fluorine-based compound and the silicon-based compound may be used alone or in combination.
Alternatively, both may be used in separate steps. Further, both compounds can be applied in the form of an emulsion or as a solution of trichloroethane, trichlorethylene, perchlorethylene, or the like. If the emulsion is first applied in the form of an emulsion and then applied again after heat treatment in the form of a solution, the solution can penetrate into the interior without being affected by the water repellency caused by the first application. It is also possible to use an antistatic agent or a penetrating agent together. The thus obtained water- and oil-repellent artificial leather of the present invention has high water- and oil-repellency, a supple texture, and a smooth surface feel, and has good bending resistance, shear fatigue resistance, and scratch resistance. In addition to artificial leather for clothing, shoe uppers, handbags, bags, belts,
It is preferably used for various purposes such as bags, gloves, and ball leather. The examples shown below are intended to make the present invention more clear, and the present invention is not limited thereto. In the examples, parts and percentages are by weight unless otherwise specified. Moreover, the value of the average intercrossing point distance was taken as the average value of 100 measured values. Example 1 A vinyl polymer (hereinafter referred to as AS resin) copolymerized with 20 parts of 2-ethylhexyl acrylate and 80 parts of styrene was used as a binding component, and nylon 6 was used as an ultrafine fiber component in a ratio of 60 parts and 40 parts. Mixed spun fibers of the form shown in Figure 3
Using 4.0 denier, 51 mm staples, a web with a basis weight of 480 g/m 2 was formed through a card and a cross wrapper. Although the thickness of the ultrafine fiber component varied, it was 0.002 denier on average. Using this web, 2000 pieces/cm 2 were produced in the same manner as in Example 1.
After needle punching and water treatment four times at 100 kg/cm 2 from one side, nonwoven fabric A was found to have a super entangled layer consisting of branched ultrafine fibers and their bundles, approximately 1/5 from the surface layer. I got it. The distance between the fiber entanglement points was about 80 microns. On the other hand, about nylon 6 was made by the melt blowing method.
Spun and aggregated 0.005 denier ultrafine fibers,
Forms a random web of approximately 410g/ m2 , 2500 pieces/
A cm 2 needle punch was performed. After shrinking this needle-punched nonwoven fabric with hot water, it was subjected to high-speed water jet treatment four times at 100 kg/cm 2 from one side using the same nozzle as in Example 1, and dried. A nonwoven fabric B was obtained in which continuous fibers were loosely and randomly entangled from the surface layer inside. Also 2.4 denier, 38mm
100 parts consisting of 50 parts of polyethylene terephthalate and 6650 parts of nylon having a cross-sectional structure as shown in Figure 3.
Web formation was performed using a random web bar using hollow multilayer bimetallic fibers. The thickness of one layer in the fiber was approximately 0.005 denier. When this web was subjected to needle punching, shrinkage, and high-speed water jet treatment on one side under the same conditions as for obtaining nonwoven fabric B, it was found that the surface layer had a distance between fiber entanglement points of approximately 150 microns, and the interior was continuous from the surface layer. A nonwoven fabric C was obtained in which thick fibers were randomly bonded into bundles of concentrated fibers. Next, a mixed diol of polyethylene adipate, polybutylene adipate, and polyethylene glycol (mixing ratio 60:20:20) and p/p'-diphenyl were applied to the superentangled surfaces of each of these three types of nonwoven fabrics A, B, and C. A 10% solution of polyurethane obtained by chain-extending a methane diisocyanate prepolymer with ethylene glycol is applied with a gravure coater, dried, and then pressed through a heated embossing roll to emboss a leather-like grain pattern. did. Furthermore, the sheet from nonwoven fabric A was soaked in trichlorethylene, and the dipping and squeezing process was repeated.
The AS resin was almost completely extracted and removed, followed by drying and residual trichlorethylene was removed by evaporation. The sheet made from nonwoven fabric C was thoroughly rubbed to separate and peel off the polyethylene terephthalate and nylon 66 as much as possible. Furthermore, sheets A, B and C of the present invention were obtained by dyeing at normal pressure using a 1:2 type metal complex dye. The superentangled layers of both sheets were filled with polyurethane resin and had a beautiful silver surface similar to natural leather. Next, these sheets A, B, and C of the present invention were padded (pickup 30
%), and after drying at 100°C, heat treatment was performed at 160°C for 1 minute. Prescription 1 Asahi Guard AG-710 (fluorine-based water repellent emulsion manufactured by Asahi Glass KK) 5 parts AG Accel 700 (antistatic agent manufactured by Meisei Kagaku KK)
1 part isopropanol 2 parts water 92 parts Furthermore, it was padded (pickup 35%) in a treatment bath of the following formulation 2, dried at 100°C, and then heat-treated at 160°C for 1 minute. Formulation 2 Asahi Guard AG-650 (solvent type fluorine-based water repellent manufactured by Asahi Glass) 2 parts Boron coat (solvent type silicone water repellent manufactured by Shin-Etsu Chemical 2 parts trichlorethylene 96 parts) The artificial leather has an extremely supple and soft feel similar to that of sheepskin, and cross-sectional observation under a microscope reveals that the super entangled layer (silver layer) is made up of fine fibers that are tightly intertwined. , C shows the inner ultrafine fiber bundle, B
It was connected to a loosely intertwined layer of ultra-fine fibers. The polyurethane and finishing agent applied to these leather-like sheets were extracted and removed with a solvent, and the distance between fiber entanglement points of the constituent fibers on the surface of the grain layer was measured. The average distance between fiber entanglement points of artificial leather A is 77μ,
It was 193μ for artificial leather B and 150μ for artificial leather C. These artificial leathers of the present invention and commercially available artificial leathers for clothing (types with polyurethane coating)
The properties of the artificial leather are as shown in Table 1, and the artificial leather of the present invention has good gas permeability such as moisture permeability and air permeability, as well as excellent water repellency, whereas commercially available artificial leather has virtually no gas permeability. It was something that wasn't there. Furthermore, in the present invention, the water repellency of Types A and C, in which ultrafine fiber bundles were branched, was superior to Type B, in which the fibers were randomly intertwined.

【表】 て、傷の状態を判定した。
[Table] The condition of the wound was determined.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は超交絡層における構成繊維を表面側か
ら観察したときの構成繊維の拡大模式図である。
第2図は本発明の人工皮革の繊維構造の好ましい
態様を示すモデル断面図である。図中Bは超交絡
層を示し、Aは極細繊維束の交絡層または極細繊
維の交絡層を示す。第3図は本発明で好ましく用
いられる極細繊維形成型繊維の断面構造を例示し
た。図中1および1′は極細繊維、図中2および
2′は結合成分である。
FIG. 1 is an enlarged schematic diagram of the constituent fibers in the superentangled layer when observed from the surface side.
FIG. 2 is a cross-sectional view of a model showing a preferred embodiment of the fiber structure of the artificial leather of the present invention. In the figure, B indicates a superentangled layer, and A indicates an interlaced layer of ultrafine fiber bundles or an interlaced layer of ultrafine fibers. FIG. 3 illustrates the cross-sectional structure of ultrafine fiber-forming fibers preferably used in the present invention. In the figure, 1 and 1' are ultrafine fibers, and 2 and 2' in the figure are binding components.

Claims (1)

【特許請求の範囲】 1 0.2デニール以下の極細繊維および/または
その束の繊維交絡点間距離が200ミクロン以下で
ある超交絡層と、その空隙部分に存在する樹脂と
から主としてなる複合体によつて形成された銀面
層を少なくとも片面に有し、かつ少なくとも該銀
面層の表面にはフツ素系化合物および/またはシ
リコン系化合物が付着してなることを特徴とする
超交絡層を有する撥水、撥油性人工皮革。 2 超交絡層の下層は極細繊維束が主体に絡合し
ており、超交絡層は該下層の極細繊維束から枝分
れした極細繊維および/またはその束が主体とな
つており、該下層と超交絡層における繊維は実質
的に連続しており、かつ該両層の境界は枝分れの
程度が連続的に変化していることを特徴とする特
許請求の範囲第1項に記載の超交絡層を有する撥
水、撥油性人工皮革。 3 極細繊維束が高分子相互配列体繊維から得ら
れたものであることを特徴とする特許請求の範囲
第1項〜第2項のいずれかに記載の超交絡層を有
する撥水、撥油性人工皮革。 4 極細繊維束が混合紡糸繊維から得られたもの
であることを特徴とする特許請求の範囲第1項〜
第2項のいずれかに記載の超交絡層を有する撥
水、撥油性人工皮革。 5 極細繊維束が化学的もしくは物理的に分割剥
離可能な多成分系繊維から得られたものであるこ
とを特徴とする特許請求の範囲第1項〜第2項に
記載の超交絡層を有する撥水、撥油性人工皮革。 6 極細繊維がメルトブロー法により製造された
ものであることを特徴とする特許請求の範囲第1
項〜第2項に記載の超交絡層を有する撥水、撥油
性人工皮革。
[Claims] 1. A composite material mainly consisting of a super-entangled layer in which the distance between fiber entanglement points of ultrafine fibers of 0.2 denier or less and/or bundles thereof is 200 microns or less, and a resin existing in the voids thereof. A repellent having a superentangled layer, which has a grain layer formed on at least one side thereof, and a fluorine-based compound and/or a silicon-based compound is attached to at least the surface of the grain layer. Water and oil repellent artificial leather. 2 The lower layer of the superentangled layer is mainly composed of ultrafine fiber bundles entangled with each other, and the superentangled layer is mainly composed of ultrafine fibers and/or bundles thereof branched from the ultrafine fiber bundles in the lower layer. The fibers in the superentangled layer and the superentangled layer are substantially continuous, and the degree of branching at the boundary between the two layers continuously changes. Water- and oil-repellent artificial leather with a super-entangled layer. 3. Water repellency and oil repellency having a superentangled layer according to any one of claims 1 to 2, characterized in that the ultrafine fiber bundle is obtained from polymeric mutually arranged fibers. Artificial leather. 4 Claims 1 to 4, characterized in that the ultrafine fiber bundle is obtained from mixed spun fibers.
2. A water- and oil-repellent artificial leather having a superentangled layer according to any one of Item 2. 5. Having a superentangled layer according to claims 1 to 2, wherein the ultrafine fiber bundle is obtained from multicomponent fibers that can be chemically or physically split and peeled. Water and oil repellent artificial leather. 6. Claim 1, characterized in that the ultrafine fibers are produced by a melt blowing method.
A water-repellent and oil-repellent artificial leather having a superentangled layer according to items 1 to 2.
JP58180564A 1983-09-30 1983-09-30 Water-repellent and oil-repellent artificial leather having highly entangled layer Granted JPS6075683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58180564A JPS6075683A (en) 1983-09-30 1983-09-30 Water-repellent and oil-repellent artificial leather having highly entangled layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58180564A JPS6075683A (en) 1983-09-30 1983-09-30 Water-repellent and oil-repellent artificial leather having highly entangled layer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1220586A Division JPS61179378A (en) 1986-01-24 1986-01-24 Water and oil repellent artificial leather having super entangled layer

Publications (2)

Publication Number Publication Date
JPS6075683A JPS6075683A (en) 1985-04-30
JPS6139437B2 true JPS6139437B2 (en) 1986-09-03

Family

ID=16085479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58180564A Granted JPS6075683A (en) 1983-09-30 1983-09-30 Water-repellent and oil-repellent artificial leather having highly entangled layer

Country Status (1)

Country Link
JP (1) JPS6075683A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3545399C1 (en) * 1985-12-20 1987-02-26 Philipp Schaefer Device for dressing split leather or the like.
JPS61179378A (en) * 1986-01-24 1986-08-12 Toray Ind Inc Water and oil repellent artificial leather having super entangled layer
JPH0381392U (en) * 1989-12-11 1991-08-20
JPH06293116A (en) * 1992-05-07 1994-10-21 Asahi Chem Ind Co Ltd Composite material and production thereof

Also Published As

Publication number Publication date
JPS6075683A (en) 1985-04-30

Similar Documents

Publication Publication Date Title
KR101317055B1 (en) Base for synthetic leather and synthetic leathers made by using the same
US4476186A (en) Ultrafine fiber entangled sheet and method of producing the same
WO1999023289A1 (en) Nonwoven fabric, and sheetlike materials and synthetic leathers made by using the same
WO2006040992A1 (en) Nonwoven fabric for artificial leather and process for producing artificial leather substrate
JP2000273769A (en) Filament nonwoven fabric and artificial leather using the same
KR102332017B1 (en) Napped artificial leather and manufacturing method thereof
WO2006085522A1 (en) Artificial leather and base therefor, and processes for production of both
JPS6139437B2 (en)
JP3409554B2 (en) Leather-like sheet and method for producing the same
JPS622075B2 (en)
JP6688593B2 (en) Artificial leather base material, artificial leather and method for manufacturing artificial leather base material
JPS61179378A (en) Water and oil repellent artificial leather having super entangled layer
JPS6045656A (en) Production of artificial leather sheet
JPS6045625A (en) Nonwoven yarn having interlaced layer
JPH02234981A (en) Production of flexible leather-like sheet material
JP6962708B2 (en) Leather-like sheet and its manufacturing method
JP2004100137A (en) Leather like sheet material and method for production the same
JPS607876A (en) Artificial leather glove for golf
JPS6343507B2 (en)
JPH0138917B2 (en)
JPH0138914B2 (en)
JPH0149832B2 (en)
JPS5926579A (en) Production of flexible leather-like sheet
JPS6075680A (en) Manufacture of leathery sheet having silver layer
JPS6075684A (en) Leathery sheet