JPS6139325B2 - - Google Patents

Info

Publication number
JPS6139325B2
JPS6139325B2 JP8880477A JP8880477A JPS6139325B2 JP S6139325 B2 JPS6139325 B2 JP S6139325B2 JP 8880477 A JP8880477 A JP 8880477A JP 8880477 A JP8880477 A JP 8880477A JP S6139325 B2 JPS6139325 B2 JP S6139325B2
Authority
JP
Japan
Prior art keywords
weight
methyl methacrylate
glass fiber
compounds
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8880477A
Other languages
Japanese (ja)
Other versions
JPS5424993A (en
Inventor
Shigenori Togami
Masami Tsuruta
Yasuo Uemoto
Kazuyoshi Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP8880477A priority Critical patent/JPS5424993A/en
Publication of JPS5424993A publication Critical patent/JPS5424993A/en
Publication of JPS6139325B2 publication Critical patent/JPS6139325B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、メチルメタクリレート及びビニル芳
香族炭化水素を主原料とする、耐候性のすぐれた
ガラス繊維強化樹脂の製造方法に関する。さらに
詳しくは、本発明は、(1)脱気性、ガラス繊維への
含浸性がすぐれ且つ、硬化時間が短かい部分重合
液を使用することにより、生産性の高いガラス繊
維強化樹脂の製造方法を提供することを目的とす
る。又、本発明は透明であり、機械的強度がすぐ
れ且つ耐熱変色性、耐候性にすぐれた黄変のない
ガラス繊維強化樹脂の製造方法を提供することを
目的とする。 従来、メチルメタクリレートを主原料とする耐
候性のすぐれたガラス繊維強化樹脂は公知であ
り、主として板状(平板、波板)に成形し、さら
に必要に応じて前記板状物を150〜200℃に加熱し
て成形する、いわゆる加熱成形法によつて、種々
の形状に成形し、主に屋外での使用に供されてい
る。このようなガラス繊維強化樹脂は、通常反応
容器内で、メチルメタクリレート又は、これと共
重合反応可能な単量体を少量加えて、重合開始剤
の存在下又は、不存在下で加熱して製せられる部
分重合液をガラス繊維に含浸せしめ、得られる混
合物(以下含浸物と略称)を加熱して、硬化させ
ることにより得られている。さらに詳しくは、前
記ガラス繊維に含浸せしめる前に、重合反応を阻
害し、又ガラス繊維強化樹脂中の気泡の原因とな
る前記部分重合液中に溶存する酸素を含有する気
体を除くため、減圧下に脱気操作を行なうのが普
通である。したがつて、上記した如きガラス繊維
強化樹脂の製造に使用する部分重合液には、(1)粘
度が低く、すなわち脱気性、ガラス繊維への含浸
性がすぐれ、しかも(2)短時間で硬化し、硬化の過
程で反応による発熱量が少なく又重合収縮率も小
さく、且つ(3)得られたガラス繊維強化樹脂の品質
がすぐれていることが要求される。 前記部分重合液の粘度は、溶解している重合体
の重合度が低い程、又溶解している重合体の含有
量が小さい程、低いことが知られている。一方、
硬化時間は、硬化温度が高い程、重合開始剤量が
多い程、短かく、又、部分重合液中の未反応単量
体が少ない程、換言すれば、溶解している重合体
の量を増やす程、短縮されることが知られてい
る。以上の如き、実験事実に基づき、前記した要
求性能を有する部分重合液としては、得られるガ
ラス繊維強化樹脂の機械的強度等に悪影響を及ぼ
さない範囲内で共重合体の重合度を極力少さく
し、その含有量が多く粘度の低いものが好ましい
と判断される。 上記部分重合液を得る具体的方法としては、例
へば、部分重合液の製造時に使用する重合開始剤
の量や重合温度を調整する方法あるいは、連鎖移
動剤を使用する方法が知られている。しかしなが
ら前2者の方法は、重合反応を制御することが困
難であり、再現性よく、所望の重合体含有量と粘
度を有する部分重合液を得るには不都合である。 一方、連鎖移動剤を使用する方法は比較的低温
で再現性よく、重合体含有量が高く且、低粘度を
有する部分重合液を得ることができる。しかしな
がら、前記部分重合液を用いて、ガラス繊維強化
樹脂を製する場合、部分重合液中に残留した連鎖
移動剤のために、含浸物の硬化時間が遅延するば
かりでなく、得られるガラス繊維強化樹脂も機械
強度等の点で劣るものしか得られない。この問題
を解決する方法の1つとしてエチレン状不飽和基
を2ケ以上有する炭化水素を少量添加する方法が
知られているが、硬化時間の点で充分満足し得る
ものではない。(特開昭49−45972) 一方、他の方法として、連鎖移動剤としてチオ
ール化合物を用い得られた部分重合液に無水マレ
イン酸と塩基性化合物を添加ず、残留チオールを
無水マレイン酸と反応せしめることにより、高分
子含有量が大きく、且つ低粘度で脱気性及びガラ
ス繊維への含浸性がすぐれ且つ前記した如き含浸
物の硬化時間の遅延のない部分重合液を得る方法
が知られている。(特開公50−35278)しかしなが
ら、この方法においては無水マレイン酸とチオー
ル化合物の反応用触媒として使用するアミン化合
物等の塩基性化合物はガラス繊維強化樹脂中に残
留し、このためPB熱成形時の黄変や屋外使用に
おいて紫外線等の作用により黄変するという欠点
を有していた。したがつて、前記の塩基性化合物
の使用量をできるだけ少なく使用して、アクリル
系樹脂のもつ耐候性特に耐変色性を維持しつゝ含
浸物の硬化時間の遅延を解決するのが重要な課題
であつた。このような従来法の問題点に鑑み、本
発明者が鋭意研究した結果、前記した如き、従来
法の欠点をすべて解消した。すなわち、本発明で
得られる部分重合液は、粘度が低いので、脱気
性、ガラス繊維への含浸性がすぐれ、含浸物の硬
化時間も充分に短かく、しかも透明で、気泡もな
く、加熱成形時における熱や屋外使用における紫
外線等による黄変もないガラス繊維強化樹脂の製
造方法に到達したのである。すなわち、本発明
は、(A)メチルメタクリレート85〜60重量%、(B)ビ
ニル芳香族炭化水素15〜40重量%、及び(A)と(B)の
合計量に対して、(C)エチレン状不飽和基を2ケ以
上有する炭化水素5.0重量%以下の混合物に(D)チ
オグリコール酸及びそのエステル化合物の中、少
なくとも1種を(A)と(B)の合計量に対して0.03〜
4.0重量%添加して共重合反応せしめ、該混合液
がゲル化する前に共重合反応を停止せしめ、次い
で(D)に対して無水マレイン酸0.3〜0.6モル倍量、
及び塩基性化合物0.01モル倍未満量添加して得ら
れた部分重合液を含アルカリ繊維に含浸せしめ、
得られた含浸物を加熱し、硬化せしめることを特
徴とするメチルメタクリレートを主成分とするガ
ラス繊維強化樹脂の製造方法である。 本発明で用いるメチルメタクリレートの使用割
合はメチルメタクリレートとビニル芳香族炭化水
素の合計量に対して85〜60重量%であるが80重量
%未満量〜65重量%が特に好ましい。 本発明で用いるビニル芳香族炭化水素は、スチ
レン、ビニルトルエン、ビニルキシレン等が代表
的であり、その使用割合は、メチルメタクリレー
トとビニル芳香族炭化水素の合計量に対して、15
〜40重量%であるが、20重量%を越える量〜35重
量%が好ましい。 本発明で用いるメチルメタクリレート及びビニ
ル芳香族炭化水素と共重合反応可能なエチレン状
不飽和基を2ケ以上有する化合物(以下ポリビニ
ル化合物と略称)は、エチレングリコールジメタ
クリレート、ジエチレングリコールジメタクリレ
ート、トリメチロールプロパントリメタクリレー
ト、テトラメチロールメタンテトラメタクリレー
ト等メタクリレート、エチレングリコールジアク
リレート、トリメチロールエタントリアクリレー
ト、テトラメチロールメタンテトラアクリレート
等アクリレート、ジビニルベンゼン等が代表的で
あり、その使用割合は、メチルメタクリレートと
ビニル芳香族炭化水素の合計量に対して5.0重量
%以下であるが、0.2〜5.0重量%が特に好まし
い。 本発明で用いるチオグリコール酸及びそのエス
テル化合物は、チオグリコール酸及びチオグリコ
ール酸エチル、チオグリコール酸イソプロピル、
チオグリコール酸オクチル等が代表的であり、そ
の使用割合は、メチルメタクリレートとビニル芳
香族炭化水素の合計量に対して0.03〜4.0重量%
であるが0.06〜3.0重量%が特に好ましい。 本発明で用いる無水マレイン酸の使用割合は前
記チオグリコール酸及びそのエステルの中、少な
くとも1種に対して0.3〜6.0モル倍量であるが、
0.5〜5.0モル倍量が特に好ましい。 本発明で用いる塩基性化合物としては、メチル
アミン、エチルアミンの如き第1級アミン、ジメ
チルアミンの如き第2級アミン、トリエチルアミ
ン、トリブチルアミンの如き第3級アミン及びト
リアゾール系化合物が代表的であり、その使用割
合は、チオグリコール酸、及びそのエステル化合
物に対して0.01モル倍未満量以下、好ましくは
0.001〜0.009モル倍量である。 本発明で用いるガラス繊維は、含アルカリ繊維
その屈折率は1.51〜1.53であることが知られてお
りその使用割合は、部分重合液と含アルカリガラ
ス繊維の合計量に対して30重量%以下が普通であ
る。 尚、本発明で用いるメチルメタクリレートと共
重合可能な化合物を少量のポリビニル化合物の他
にビニル芳香族炭化水素に限定したのは以下の理
由に基づく。すなわち、メチルメタクリレートと
共重合反応可能な化合物として、アルチルアクリ
レート、アルキルメタクリレート、アクリロニト
リルを使用したのでは、これらの組合わせにより
得られる共重合体の屈折含が、含アルカリガラス
繊維の屈折率に比べて、その差が大きく、得られ
るガラス繊維強化樹脂の透明性が不良であり、そ
の商品価値を著しく損なうものしか得られない。
又メチルメタクリレートとビニル芳香族炭化水素
の使用割合をメチルメタクリレートとビニル芳香
族炭化水素の使用割合をメチルメタクリレート85
〜60重量%、すなわち、ビニル芳香族炭化水素15
〜40重量%に限定したのは以下の理由に基づく。
すなわち、ビニル芳香族炭化水素の使用割合が15
重量%未満、すなわち、メチルメタクリレートが
85重量%を越える量では、得られるガラス繊維強
化樹脂の透明性が不良である。他方、ビニル芳香
族炭化水素の使用割合が40重量%を越える量、す
なわち、メチルメタクリレートの使用割合が60重
量%未満量では、無水マレイン酸と塩基性化合物
の添加による含浸物の硬化時間の短縮の程度は極
めて少ない上、得られるガラス繊維強化樹脂の透
明性も劣るものしか得られない。 又、分子量調節剤として、チオール化合物の
中、チオグリコール酸及びそのエステル化合物に
限定したのは以下の理由に基づく。すなわち、他
のチオール化合物、例へば、アルキルメルカプタ
ン等に比べて、前記チオール化合物は、分子量の
調節効果が大きく、且つ無水マレイン酸との反応
性も高いので、触媒として使用する塩基性化合物
の使用割合で極めて少量でも部分重合液の硬化時
間の短縮が可能であり、特に、この効果はチオグ
リコール酸において顕著である。又その使用割合
を0.03〜4.0重量%に限定したのは以下の理由に
基づく。すなわち、この範囲外では、前記した部
分重合液に対する要求性能を満足せしめることは
できないからである。又、無水マレイン酸の使用
割合をチオグリコール酸及びそのエステル化合物
の中、少なくとも1種に対して0.3〜6.0モル倍量
に限定したのは以下の理由に基づく。すなわち、
前記チオール化合物に対して0.3モル倍未満量で
は部分重合液中に残留する前記チオール化合物に
よる含浸物の硬化時間の遅延を充分に解消するこ
とはできず、又、前記チオール化合物に対して
6.0モル倍量を越える場合は、得られるガラス繊
維強化樹脂の熱及び紫外線等による黄変が著しい
からである。又、本発明で用いるガラス繊維を含
アルカリガラス繊維(屈折率1.51〜1.53)に限定
したのは以下の理由に基づく。すなわち、屈折率
が1.53を越える場合、透明なガラス繊維強化樹脂
を得るにはビニル芳香族炭化水素の使用量がメチ
ルメタクリレートとビニル芳香族炭化水素の合計
量に対して40重量%を越えることになり、無水マ
レイン酸と塩基性化合物の添加による含浸物の硬
化時間の短縮効果がほとんどない。又、屈折率が
1.51未満の含アルカリガラス繊維は実用上知られ
ていない。 而して、本発明による方法によれば、メチルメ
タクリレートと共重合反応可能な化合物及びその
割合を限定し、且つ、チオール化合物をチオグリ
コール酸およびそのエステル化合物に限定するこ
とにより初めて、極く少量以下の塩基性化合物を
添加することにより、粘度が低く、すなわち、脱
気性及び含アルカリガラス繊維への含浸性がすぐ
れ、得られた含浸物の硬化時間が充分に知かく、
すなわち、ガラス繊維強化樹脂の生産性が高く、
又、得られるガラス繊維強化樹脂は、透明性にす
ぐれ加熱成形時の熱や屋外使用における紫外線等
の作用により黄変しないものである。 本発明において、メチルメタクリレート、ビニ
ル芳香族炭化水素及びポリビニル化合物をチオグ
リコール酸及びチオグリコール酸エステルの中、
少なくとも1種の存在下に芳重合反応させるに
は、50〜120℃で重合開始剤を用いるか熱重合に
よるのが普通である。もちろん、ポリビニル化合
物以外のこれらと共重反応可能な化合物、例へ
ば、ブチルアクリレート、2−エチルヘキシルア
クリレート等を本発明の効果を損なわない程度に
少量併用しても差支えない。本発明において部分
重合液の重合率は、メチルメタクリレート、ビニ
ル芳香族炭化水素、ポリビニル化合物の合計量に
対して、5〜50重量%である。 本発明において、メチルメタクリレート、ビニ
ル芳香族炭化水素、ポリビニル化合物の混合液を
ゲル化しない程度に共重合反応せしめてから、前
記反応を停止する方法は、冷却によるか、重合禁
止剤を添加するのが普通である。本発明におい
て、無水マレイン酸の添加時期は共重合反応の末
期又は、共重合反応終了以降(硬化反応を開始す
る直前でもよい)であり塩基性化合物の添加時期
は、無水マレイン酸の添加の前後いずれでもよ
い。無水マレイン酸とチオグリコール酸及びその
エステル化合物との反応は、室温〜90℃が適当
で、前記反応に要する時間は、数分〜数時間であ
る。 本発明の部分重合液を含アルカリガラス繊維に
含浸させ、この含浸物を硬化させて成形物を得る
には、アゾ化合物、過酸化物の如き重合開始剤に
よる方法、ベンゾインエチルエーテルと紫外線を
用いる方法等が一般的である。又、硬化の際の硬
化温度は120℃以下が好ましい。 本発明の実施に際しては、例へば、メチルメタ
クリレート、ビニル芳香族炭化水素及びポリビニ
ル化合物の混合液に本発明の作用効果を阻害しな
い程度に予じめ種々の重合体、例へばメチルメタ
クリレート−スチレン共重合体を溶解するか、或
いは共重合反応を停止して得た部分重合液に前記
したが如き重合体、ポリビニル化合物及びポリビ
ニル化合物以外の共重合反応可能な化合物を添加
するのは差支えない。本発明において、部分重合
液には、含アルカリガラス繊維の他、紫外線吸収
剤、着色剤など本発明の作用効果損なわない範囲
内で添加して、各種形状の成形物を製することが
できる。以下、本発明の有用性について実施例を
掲げて説明するが、本発明はその要旨を変えない
限り、以下の実施例に限定されるものではない。 尚、以下の実施例で使用する部は重量部を意味
する。 実施例 1 表1に示す量的割合からなるメチルメタクリレ
ート、スチレンビニルトルエントリメチロールプ
ロパントリメタクリレート(以下TMPTと略
称)及びチオグリコール酸(以下TGAと略称)
の混合物に対して、重合開始剤としてアゾビスイ
ソブチロニトリル0.001部を還流冷却器及び撹拌
機付反応容器に仕込み、該反応容器内を窒素で置
換後、窒素雰囲気中で、100℃に加熱し、表1に
示す時間共重合反応せしめ、70℃まで急冷し、表
1に示す重合率及び粘度を有し且つ不溶性ゲルを
含まない部分重合液を得た。前記部分重合液に表
1に示す量の無水マレイン酸(以下MLAと略
称)及びトリブチルアミン(以下TBAと略称)
を添加し、70℃で2時間撹拌下に保持した後室温
まで冷却した。次いで粘度(25℃)が600cpより
高い部分重合液に対しては、これに相当する表1
に示す量的割合からなるメチルメタクリレートス
チレン ビニルトルエンTMPTの混合液を夫々
に添加混合し、600cpの粘度を有する稀釈部分重
合液を得た。この稀釈部分重合液に重合開始剤と
してビス 4−t−ブチルサイクロヘキシルパー
オキシジカーボネート(以下BCHPと略称)を添
加混合した後、減圧脱気し、この混合液をセロフ
アン上に塗布し、この上に、含アルカリガラス繊
維(屈折率1.52、2″チヨツプドストランド)を表
1に示す量、均一に落下分散せしめ、含アルカリ
ガラス繊維が充分に部分重合液で含浸された後、
この含浸物をトラツプされている気泡が残らない
様にしながらセロフアンで被覆した。該セロフア
ンで両面を被覆された含浸物をスチール製の枠に
固定した。これを65℃の熱風加熱炉内で加熱する
ことにより、重合発熱による含浸物の温度にピー
クが観察された。(以下、含浸物の温度が35℃に
なつた時点より前記発熱ピークまでの時間を硬化
時間と定義する)発熱ピークが観察された後、
115℃に3分間保持し、厚さ1.2mmのガラス繊維強
化樹脂板を得た。このようにして得られたガラス
繊維強化樹脂板について透明性、耐熱変色性、耐
候性の評価を行なつた。 尚、 (1) 透明性は肉眼観察により行なつた。 (2) 耐熱変色性は、試験片を180℃の空気浴中に
1時間保持することにより行ない、試験後の変
色の程度を肉眼で観察した。 (3) 耐候性は、試験片をサンシヤインウエガーメ
ータで2000時間暴露することにより、試験後
The present invention relates to a method for producing a glass fiber reinforced resin with excellent weather resistance, which uses methyl methacrylate and vinyl aromatic hydrocarbon as main raw materials. More specifically, the present invention provides a highly productive method for producing glass fiber reinforced resin by (1) using a partial polymerization liquid that has excellent degassing properties, excellent impregnation properties into glass fibers, and short curing time. The purpose is to provide. Another object of the present invention is to provide a method for producing a glass fiber-reinforced resin that is transparent, has excellent mechanical strength, has excellent heat discoloration resistance, weather resistance, and does not yellow. Conventionally, glass fiber-reinforced resins with excellent weather resistance made from methyl methacrylate as the main raw material have been known, and are mainly formed into plate shapes (flat plates, corrugated plates), and if necessary, the plate-shaped products are heated at 150 to 200°C. They are molded into various shapes by a so-called thermoforming method, in which they are heated and molded, and are mainly used outdoors. Such glass fiber reinforced resins are usually produced by adding a small amount of methyl methacrylate or a monomer capable of copolymerizing therewith in a reaction vessel and heating the mixture in the presence or absence of a polymerization initiator. It is obtained by impregnating glass fibers with a partially polymerized liquid and heating and curing the resulting mixture (hereinafter referred to as impregnated material). More specifically, before impregnating the glass fibers, in order to remove oxygen-containing gases dissolved in the partial polymerization solution that inhibit the polymerization reaction and cause bubbles in the glass fiber reinforced resin, It is common to perform a degassing operation. Therefore, the partial polymerization liquid used in the production of glass fiber-reinforced resins as described above must (1) have a low viscosity, that is, have excellent degassing properties and impregnation properties into glass fibers, and (2) harden in a short time. However, it is required that the amount of heat generated by the reaction during the curing process is small, the polymerization shrinkage rate is low, and (3) the quality of the obtained glass fiber reinforced resin is excellent. It is known that the viscosity of the partial polymerization liquid decreases as the degree of polymerization of the dissolved polymer decreases and as the content of the dissolved polymer decreases. on the other hand,
The higher the curing temperature and the greater the amount of polymerization initiator, the shorter the curing time; It is known that the more it increases, the shorter it becomes. Based on the above experimental facts, for a partial polymerization solution having the above-mentioned required performance, the degree of polymerization of the copolymer should be minimized within a range that does not adversely affect the mechanical strength etc. of the resulting glass fiber reinforced resin. It is judged that those with high content and low viscosity are preferable. As specific methods for obtaining the above-mentioned partial polymerization liquid, for example, a method of adjusting the amount of a polymerization initiator and a polymerization temperature used during production of the partial polymerization liquid, or a method of using a chain transfer agent are known. However, in the former two methods, it is difficult to control the polymerization reaction, and it is inconvenient to obtain a partial polymerization solution having a desired polymer content and viscosity with good reproducibility. On the other hand, the method using a chain transfer agent can produce a partially polymerized liquid having high polymer content and low viscosity with good reproducibility at a relatively low temperature. However, when producing a glass fiber reinforced resin using the partial polymerization liquid, the chain transfer agent remaining in the partial polymerization liquid not only delays the curing time of the impregnated product, but also The resins that can be obtained are inferior in terms of mechanical strength and the like. One known method for solving this problem is to add a small amount of a hydrocarbon having two or more ethylenically unsaturated groups, but this method is not fully satisfactory in terms of curing time. (JP 49-45972) On the other hand, as another method, maleic anhydride and a basic compound are not added to the obtained partial polymerization solution using a thiol compound as a chain transfer agent, and residual thiol is allowed to react with maleic anhydride. Thus, a method is known for obtaining a partially polymerized liquid having a high polymer content, low viscosity, excellent degassing properties and impregnating properties into glass fibers, and without delaying the curing time of the impregnated product as described above. (Unexamined Japanese Patent Publication No. 50-35278) However, in this method, basic compounds such as amine compounds used as catalysts for the reaction of maleic anhydride and thiol compounds remain in the glass fiber reinforced resin, and therefore during PB thermoforming. However, when used outdoors, it yellows due to the action of ultraviolet rays, etc. Therefore, it is important to solve the problem of delaying the curing time of the impregnated material while maintaining the weather resistance, especially the discoloration resistance, of the acrylic resin by using as little amount of the basic compound as possible. It was hot. In view of these problems of the conventional method, the inventors of the present invention have conducted intensive research and have solved all the drawbacks of the conventional method as described above. In other words, the partial polymerization liquid obtained by the present invention has a low viscosity, has excellent degassing properties and impregnation properties into glass fibers, has a sufficiently short curing time for the impregnated material, is transparent, has no air bubbles, and is suitable for thermoforming. They have achieved a method for producing glass fiber reinforced resin that does not yellow due to heat during use or ultraviolet rays during outdoor use. That is, the present invention provides (A) 85 to 60% by weight of methyl methacrylate, (B) 15 to 40% by weight of vinyl aromatic hydrocarbon, and (C) ethylene based on the total amount of (A) and (B). Add at least one type of (D) thioglycolic acid and its ester compounds to a mixture of 5.0% by weight or less of hydrocarbons having two or more unsaturated groups, based on the total amount of (A) and (B).
4.0% by weight was added to cause a copolymerization reaction, and the copolymerization reaction was stopped before the mixture gelled, and then 0.3 to 0.6 times the molar amount of maleic anhydride to (D),
and impregnating an alkali-containing fiber with a partial polymerization solution obtained by adding a basic compound in an amount less than 0.01 times by mole,
This is a method for producing a glass fiber reinforced resin containing methyl methacrylate as a main component, which is characterized by heating and curing the impregnated material obtained. The proportion of methyl methacrylate used in the present invention is 85 to 60% by weight, based on the total amount of methyl methacrylate and vinyl aromatic hydrocarbon, but it is particularly preferably less than 80% by weight to 65% by weight. Typical vinyl aromatic hydrocarbons used in the present invention are styrene, vinyltoluene, vinyl xylene, etc., and the usage ratio is 15% to the total amount of methyl methacrylate and vinyl aromatic hydrocarbon.
~40% by weight, but amounts exceeding 20% by weight ~35% by weight are preferred. Compounds having two or more ethylenically unsaturated groups capable of copolymerization with methyl methacrylate and vinyl aromatic hydrocarbons (hereinafter abbreviated as polyvinyl compounds) used in the present invention include ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and trimethylolpropane. Typical examples include methacrylates such as trimethacrylate, tetramethylolmethanetetramethacrylate, acrylates such as ethylene glycol diacrylate, trimethylolethane triacrylate, and tetramethylolmethanetetraacrylate, and divinylbenzene. It is not more than 5.0% by weight, based on the total amount of hydrocarbons, but 0.2 to 5.0% by weight is particularly preferred. Thioglycolic acid and its ester compounds used in the present invention include thioglycolic acid, ethyl thioglycolate, isopropyl thioglycolate,
Typical examples include octyl thioglycolate, and the proportion used is 0.03 to 4.0% by weight based on the total amount of methyl methacrylate and vinyl aromatic hydrocarbon.
However, 0.06 to 3.0% by weight is particularly preferred. The ratio of maleic anhydride used in the present invention is 0.3 to 6.0 times the molar amount of at least one of the thioglycolic acid and its ester,
Particularly preferred is a 0.5 to 5.0 molar amount. Typical basic compounds used in the present invention include primary amines such as methylamine and ethylamine, secondary amines such as dimethylamine, tertiary amines such as triethylamine and tributylamine, and triazole compounds. The usage ratio is less than 0.01 times the mole of thioglycolic acid and its ester compound, preferably
The amount is 0.001 to 0.009 moles. The glass fiber used in the present invention is known to have a refractive index of 1.51 to 1.53, and its usage ratio is 30% by weight or less based on the total amount of the partially polymerized liquid and the alkali-containing glass fiber. It's normal. The reason why the compounds copolymerizable with methyl methacrylate used in the present invention are limited to vinyl aromatic hydrocarbons in addition to a small amount of polyvinyl compounds is based on the following reason. In other words, if alkyl acrylate, alkyl methacrylate, or acrylonitrile is used as a compound that can be copolymerized with methyl methacrylate, the refractive index of the copolymer obtained by combining these will differ from the refractive index of the alkali-containing glass fiber. In comparison, the difference is large, and the transparency of the resulting glass fiber reinforced resin is poor, resulting in a product that significantly impairs its commercial value.
Also, the usage ratio of methyl methacrylate and vinyl aromatic hydrocarbon is 85%.
~60% by weight, i.e. vinyl aromatic hydrocarbons 15
The reason for limiting the amount to 40% by weight is as follows.
In other words, the proportion of vinyl aromatic hydrocarbons used is 15
less than % by weight, i.e. methyl methacrylate
If the amount exceeds 85% by weight, the resulting glass fiber reinforced resin will have poor transparency. On the other hand, when the proportion of vinyl aromatic hydrocarbon used exceeds 40% by weight, that is, the proportion of methyl methacrylate used is less than 60% by weight, the curing time of the impregnated product is shortened by the addition of maleic anhydride and a basic compound. The degree of oxidation is extremely small, and the resulting glass fiber reinforced resin has poor transparency. Furthermore, among the thiol compounds, thioglycolic acid and its ester compounds were selected as molecular weight regulators for the following reason. That is, compared to other thiol compounds, such as alkyl mercaptans, the thiol compounds have a greater effect on controlling the molecular weight and also have higher reactivity with maleic anhydride, so the proportion of basic compounds used as catalysts should be reduced. It is possible to shorten the curing time of the partial polymerization solution even in a very small amount, and this effect is particularly remarkable for thioglycolic acid. Moreover, the reason why the proportion used is limited to 0.03 to 4.0% by weight is based on the following reason. That is, outside this range, the above-mentioned required performance for the partial polymerization solution cannot be satisfied. Furthermore, the reason why the proportion of maleic anhydride used is limited to 0.3 to 6.0 moles per at least one of thioglycolic acid and its ester compounds is based on the following reason. That is,
If the amount is less than 0.3 times the amount by mole of the thiol compound, it will not be possible to sufficiently eliminate the delay in curing time of the impregnated product due to the thiol compound remaining in the partial polymerization solution;
This is because if the amount exceeds 6.0 moles, yellowing of the obtained glass fiber reinforced resin due to heat, ultraviolet rays, etc. will be significant. Furthermore, the glass fibers used in the present invention are limited to alkali-containing glass fibers (refractive index 1.51 to 1.53) for the following reasons. In other words, when the refractive index exceeds 1.53, the amount of vinyl aromatic hydrocarbon used must exceed 40% by weight based on the total amount of methyl methacrylate and vinyl aromatic hydrocarbon to obtain a transparent glass fiber reinforced resin. Therefore, there is almost no effect of shortening the curing time of the impregnated material by adding maleic anhydride and a basic compound. Also, the refractive index
Alkali-containing glass fibers with a ratio of less than 1.51 are not known in practice. According to the method of the present invention, by limiting the compounds that can copolymerize with methyl methacrylate and their proportions, and by limiting the thiol compounds to thioglycolic acid and its ester compounds, it is possible to By adding the following basic compound, the viscosity is low, that is, the deaeration property and the impregnating property to the alkali-containing glass fiber are excellent, and the curing time of the obtained impregnated product is sufficiently shortened.
In other words, the productivity of glass fiber reinforced resin is high;
Furthermore, the resulting glass fiber reinforced resin has excellent transparency and does not yellow due to the effects of heat during hot molding or ultraviolet rays during outdoor use. In the present invention, methyl methacrylate, vinyl aromatic hydrocarbon and polyvinyl compound are used in thioglycolic acid and thioglycolic acid ester,
In order to carry out the aromatic polymerization reaction in the presence of at least one species, it is usual to use a polymerization initiator or carry out thermal polymerization at 50 to 120°C. Of course, compounds other than polyvinyl compounds that can copolymerize with these compounds, such as butyl acrylate, 2-ethylhexyl acrylate, etc., may be used in combination in small amounts to the extent that the effects of the present invention are not impaired. In the present invention, the polymerization rate of the partial polymerization liquid is 5 to 50% by weight based on the total amount of methyl methacrylate, vinyl aromatic hydrocarbon, and polyvinyl compound. In the present invention, after copolymerizing the mixed solution of methyl methacrylate, vinyl aromatic hydrocarbon, and polyvinyl compound to an extent that does not result in gelation, the reaction is stopped by cooling or by adding a polymerization inhibitor. is normal. In the present invention, the time of addition of maleic anhydride is at the end of the copolymerization reaction or after the end of the copolymerization reaction (just before starting the curing reaction), and the time of addition of the basic compound is before or after the addition of maleic anhydride. Either is fine. The reaction between maleic anhydride and thioglycolic acid and its ester compounds is suitably carried out at room temperature to 90°C, and the time required for the reaction is several minutes to several hours. To impregnate alkali-containing glass fibers with the partial polymerization solution of the present invention and cure the impregnated product to obtain a molded article, a method using a polymerization initiator such as an azo compound or a peroxide, benzoin ethyl ether, and ultraviolet rays are used. This method is common. Further, the curing temperature during curing is preferably 120°C or less. When carrying out the present invention, for example, various polymers such as methyl methacrylate-styrene copolymer may be added to the mixed solution of methyl methacrylate, vinyl aromatic hydrocarbon and polyvinyl compound in advance to the extent that the effects of the present invention are not impaired. There is no problem in adding the aforementioned polymers, polyvinyl compounds, and compounds capable of copolymerization reactions other than polyvinyl compounds to the partial polymerization solution obtained by dissolving or stopping the copolymerization reaction. In the present invention, in addition to alkali-containing glass fibers, ultraviolet absorbers, coloring agents, and the like can be added to the partial polymerization solution within a range that does not impair the effects of the present invention, thereby making it possible to produce molded articles of various shapes. Hereinafter, the usefulness of the present invention will be explained with reference to examples, but the present invention is not limited to the following examples unless the gist thereof is changed. Note that parts used in the following examples mean parts by weight. Example 1 Methyl methacrylate, styrene vinyl toluene methylol propane trimethacrylate (hereinafter abbreviated as TMPT) and thioglycolic acid (hereinafter abbreviated as TGA) consisting of quantitative proportions shown in Table 1.
To the mixture, 0.001 part of azobisisobutyronitrile as a polymerization initiator was charged into a reaction vessel equipped with a reflux condenser and a stirrer, and after purging the inside of the reaction vessel with nitrogen, the mixture was heated to 100°C in a nitrogen atmosphere. The copolymerization reaction was carried out for the time shown in Table 1, and the mixture was rapidly cooled to 70°C to obtain a partial polymerization solution having the polymerization rate and viscosity shown in Table 1 and containing no insoluble gel. Maleic anhydride (hereinafter abbreviated as MLA) and tributylamine (hereinafter abbreviated as TBA) in the amounts shown in Table 1 are added to the partial polymerization solution.
was added and kept under stirring at 70°C for 2 hours, then cooled to room temperature. Next, for partial polymerization liquids with a viscosity (25°C) higher than 600 cp, the corresponding Table 1
A mixed solution of methyl methacrylate styrene and vinyl toluene TMPT having the quantitative ratio shown in the following was added and mixed to obtain a diluted partial polymerization solution having a viscosity of 600 cp. After adding and mixing bis-4-t-butylcyclohexyl peroxydicarbonate (hereinafter abbreviated as BCHP) as a polymerization initiator to this diluted partial polymerization solution, it was degassed under reduced pressure, and this mixed solution was applied on cellophane. On top, alkali-containing glass fibers (refractive index 1.52, 2″ chopped strands) were uniformly dropped and dispersed in the amount shown in Table 1, and after the alkali-containing glass fibers were sufficiently impregnated with the partial polymerization liquid,
This impregnated product was covered with cellophane, making sure that no trapped air bubbles remained. The cellophane-coated impregnation on both sides was fixed in a steel frame. By heating this in a hot air heating furnace at 65°C, a peak was observed in the temperature of the impregnated material due to polymerization heat generation. (Hereinafter, the time from when the temperature of the impregnated material reaches 35°C until the exothermic peak is defined as the curing time) After the exothermic peak is observed,
The temperature was maintained at 115° C. for 3 minutes to obtain a glass fiber reinforced resin plate with a thickness of 1.2 mm. The glass fiber reinforced resin plate thus obtained was evaluated for transparency, resistance to heat discoloration, and weather resistance. (1) Transparency was determined by visual observation. (2) Heat resistance to discoloration was determined by holding the test piece in an air bath at 180°C for 1 hour, and observing the degree of discoloration with the naked eye after the test. (3) Weather resistance was determined by exposing the test piece for 2000 hours using a sunshine weather meter.

【表】 の変色の程度は肉眼で判定した。以上の試験で
得られた結果は表1に併記した。 実施例 2 表2に示す量的割合からなるメチルメタクリレ
ート、スチレンテトラメチロールプロパンテトラ
メタクリレート(以下、TMMTと略称)と、チ
オール化合物の混合物に対して、重合開始剤とし
てアゾビスイソブチロニトリル0.001部を還流冷
却器及び撹拌機付反応容器に仕込み、該反応容器
内を窒素で置換後、窒素雰囲気中で、100℃に加
熱し、表2に示す時間共重合反応せしめ、65℃ま
で急冷し表2に示す重合率及び粘度を有し、且つ
不溶性ゲルを含まない部分重合液を得た。前記部
分重合液に表2に示す量のMLA及びTBAを添加
し、65℃で1.5時間撹拌下に保持した後、室温ま
で冷却した。次いで、粘度(25℃)が200cpより
高い部分重合液に対しては、これに相当する表2
に示す量的割合からなるメチルメタクリレート
スチレンTMMTの混合液を夫々に添加混合し、
200cpの粘度を有する稀釈部分重合液を得た。こ
の稀釈部分重合液に重合開始剤としてBCHPを添
加混合した後、減圧脱気しこの混合液をセロフア
ンの上に塗布し、この上に含アルカリガラス繊維
(屈折率1.52、2″チヨツプドストランド)を表2
に示す量、均一に落下分散せしめ、含アルカリガ
ラス繊維が充分に部分重合液で含浸された後、こ
の含浸物をトラツプされている気泡が残らない様
セロフアンで被覆し、以下実施例1と同様の条件
で含浸物を硬化せしめ、厚さ1.2mmのガラス繊維
強化樹脂板を得、実施例1と同じ方法で透明性、
耐熱変色性、耐候性を評価し、得られた結果を表
2に併記した。
[Table] The degree of discoloration was determined visually. The results obtained in the above tests are also listed in Table 1. Example 2 0.001 part of azobisisobutyronitrile was added as a polymerization initiator to a mixture of methyl methacrylate, styrenetetramethylolpropanetetramethacrylate (hereinafter abbreviated as TMMT) and a thiol compound in the quantitative proportions shown in Table 2. was charged into a reaction vessel equipped with a reflux condenser and a stirrer, and after purging the inside of the reaction vessel with nitrogen, it was heated to 100°C in a nitrogen atmosphere, allowed to undergo a copolymerization reaction for the time shown in Table 2, and then rapidly cooled to 65°C. A partially polymerized solution having a polymerization rate and viscosity shown in 2 and containing no insoluble gel was obtained. MLA and TBA in the amounts shown in Table 2 were added to the partial polymerization solution, and the mixture was kept under stirring at 65° C. for 1.5 hours, and then cooled to room temperature. Next, for partial polymerization liquids with a viscosity (25°C) higher than 200 cp, the corresponding Table 2
Methyl methacrylate consisting of the quantitative proportions shown in
Add and mix the styrene TMMT mixture,
A diluted partial polymerization solution with a viscosity of 200 cp was obtained. After adding and mixing BCHP as a polymerization initiator to this diluted partial polymerization solution, it was degassed under reduced pressure, and this mixed solution was applied on cellophane. strand) in Table 2
After the alkali-containing glass fibers were sufficiently impregnated with the partially polymerized liquid, the impregnated product was covered with cellophane so that no trapped air bubbles remained. The impregnated material was cured under the following conditions to obtain a glass fiber reinforced resin plate with a thickness of 1.2 mm.
The heat discoloration resistance and weather resistance were evaluated, and the obtained results are also listed in Table 2.

【表】 実施例 3 メチルメタクリレート77部、スチレン23部、
TMPT2.5部、チオグリコール酸0.45部の混合物
に対して、重合開始剤としてアゾビスイソブチロ
ニトリル0.001部を還流冷却器及び撹拌機付反応
容器に仕込み、実施例1と同様にして5.0時間共
重合反応せしめ70゜に急冷し、重合率25.0%、粘
度(25℃)270cpの部分重合液を得た。前記部分
重合液に対して表3に示す量的割合からなる
MLA及びトリエチルアミン(以下TEAと略称)
を添加し、65℃で1.5時間撹拌下に保持した後、
室温まで冷却した。この部分重合液に関して、実
施例1と同様の硬化処方及び硬化温度条件下で厚
さ1.2mmのガラス繊維強化樹脂を得、実施例1と
同様の評価を行い、その結果を併記した。
[Table] Example 3 77 parts of methyl methacrylate, 23 parts of styrene,
To a mixture of 2.5 parts of TMPT and 0.45 parts of thioglycolic acid, 0.001 part of azobisisobutyronitrile as a polymerization initiator was charged into a reaction vessel equipped with a reflux condenser and a stirrer, and the mixture was heated in the same manner as in Example 1 for 5.0 hours. The copolymerization reaction was carried out and the mixture was rapidly cooled to 70° to obtain a partial polymerization solution with a polymerization rate of 25.0% and a viscosity (25°C) of 270 cp. Consisting of the quantitative proportions shown in Table 3 for the partial polymerization solution.
MLA and triethylamine (hereinafter abbreviated as TEA)
After adding and keeping under stirring for 1.5 h at 65 °C,
Cooled to room temperature. Regarding this partial polymerization liquid, a glass fiber reinforced resin with a thickness of 1.2 mm was obtained under the same curing recipe and curing temperature conditions as in Example 1, and the same evaluation as in Example 1 was performed, and the results are also listed.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 (A)メチルメタクリレート85〜60重量%、(B)ビ
ニル芳香族炭化水素15〜40重量%、及び(A)と(B)の
合計量に対して、(C)エチレン状不飽和基を2個以
上有する化合物5.0重量%以下の混合物に、(D)チ
オグリコール酸及びそのエステル化合物の中の少
なくとも1種を(A)と(B)の合計量に対して、0.03〜
4.0重量%添加し、共重合反応せしめ、該混合液
がゲル化する前に共重合反応を停止せしめ、次い
で(D)に対して、無水マレイン酸0.3〜6.0モル倍
量、及び塩基性化合物0.01モル倍未満量添加し
て、得られた部分重合液を、含アルカリガラス繊
維に含浸せしめ、得られた含浸物を加熱し、硬化
せしめることを特徴とするメチルメタクリレート
を主成分とするガラス繊維強化樹脂の製造方法。
1 (A) 85 to 60% by weight of methyl methacrylate, (B) 15 to 40% by weight of vinyl aromatic hydrocarbon, and (C) ethylenically unsaturated group based on the total amount of (A) and (B). Add at least one of (D) thioglycolic acid and its ester compounds to a mixture containing 2 or more compounds at 5.0% by weight or less, based on the total amount of (A) and (B), from 0.03 to 5.0% by weight.
4.0% by weight was added to cause a copolymerization reaction, and the copolymerization reaction was stopped before the mixed solution gelled. Then, 0.3 to 6.0 molar amount of maleic anhydride and 0.01 molar amount of maleic anhydride to (D) were added. Glass fiber reinforced with methyl methacrylate as the main component, which is characterized by adding less than twice the mole amount, impregnating the obtained partial polymerization liquid into alkali-containing glass fibers, and heating and curing the impregnated product. Method of manufacturing resin.
JP8880477A 1977-07-26 1977-07-26 Production of fiberglass reinforced resin Granted JPS5424993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8880477A JPS5424993A (en) 1977-07-26 1977-07-26 Production of fiberglass reinforced resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8880477A JPS5424993A (en) 1977-07-26 1977-07-26 Production of fiberglass reinforced resin

Publications (2)

Publication Number Publication Date
JPS5424993A JPS5424993A (en) 1979-02-24
JPS6139325B2 true JPS6139325B2 (en) 1986-09-03

Family

ID=13953056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8880477A Granted JPS5424993A (en) 1977-07-26 1977-07-26 Production of fiberglass reinforced resin

Country Status (1)

Country Link
JP (1) JPS5424993A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531822A (en) * 1978-08-24 1980-03-06 Sumitomo Chem Co Ltd Manufacture of glassfiber-reinforced transparent resin plate
US4752397A (en) * 1986-06-30 1988-06-21 Aluminum Company Of America Process for removing heavy metal ions from solutions using adsorbents containing activated hydrotalcite
US4867882A (en) * 1987-11-09 1989-09-19 Aluminum Company Of America Method for reducing the amount of anionic metal ligand complex in a solution
CA1338346C (en) * 1989-08-23 1996-05-28 Chanakya Misra Method for reducing the amount of anionic metal-ligand complex in a solution
US4935146A (en) * 1988-11-15 1990-06-19 Aluminum Company Of America Method for removing arsenic or selenium from an aqueous solution containing a substantial background of another contaminant
KR101295705B1 (en) 2011-04-25 2013-08-16 도레이첨단소재 주식회사 Phenoxy resin composition for transparent plastic substrate and transparent plastic substrate using thereof
CN111978459A (en) * 2019-05-24 2020-11-24 汉能移动能源控股集团有限公司 PMMA/glass fiber composite material and preparation method and application thereof

Also Published As

Publication number Publication date
JPS5424993A (en) 1979-02-24

Similar Documents

Publication Publication Date Title
JPS59221315A (en) Preparation of methacrylic copolymer
JPS6139325B2 (en)
US3968073A (en) Process for producing fiber-glass reinforced plastics
EP0097948A2 (en) Information recording substrate
US3843612A (en) Moldable and/or thermoformable acrylic polymers and processes for the production thereof
JPS60226510A (en) Production of methacrylic resin prepreg
KR100474586B1 (en) Resin compositions, and optical lens prepared by them
US4212697A (en) Process for producing glass fiber-reinforced resin molded sheets
US2534120A (en) Process for polymerizing styrene in contact with benzoyl peroxide and di(tertiary butyl) peroxide
JPS6128513A (en) Optical resin and its production
JP2565697B2 (en) Method for producing transparent heat-resistant resin
JP2707458B2 (en) Acrylic syrup composition
US4806600A (en) Methyl methacrylate syrup composition
CA1098275A (en) Process for producing glass fiber-reinforced resin molded products
KR790001090B1 (en) Process for producing fibre-glass reinforced plastics
JP3004571B2 (en) (Meth) acrylic syrup, method for producing the same, and molding material containing (meth) acrylic syrup
JPH0158204B2 (en)
JPH02117953A (en) Low-shrinkage thermosetting resin composition
KR820000270B1 (en) Method of preparing glars fibre reinforced resin products
JPS5814448B2 (en) Improved method for producing syrup
JP3178927B2 (en) Room temperature curable resin composition
JPH0493306A (en) Optical resin
JPH11199638A (en) Impact-resistant acrylic resin composition, its production and its molded product
JPS6119601A (en) Methyl methacrylate syrup composition
KR950012101B1 (en) Method for manufacturing acrylic bmc