JPS6139079B2 - - Google Patents

Info

Publication number
JPS6139079B2
JPS6139079B2 JP5168078A JP5168078A JPS6139079B2 JP S6139079 B2 JPS6139079 B2 JP S6139079B2 JP 5168078 A JP5168078 A JP 5168078A JP 5168078 A JP5168078 A JP 5168078A JP S6139079 B2 JPS6139079 B2 JP S6139079B2
Authority
JP
Japan
Prior art keywords
light
led
amount
optical path
ptr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5168078A
Other languages
Japanese (ja)
Other versions
JPS54144046A (en
Inventor
Norisuke Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP5168078A priority Critical patent/JPS54144046A/en
Priority to AU46240/79A priority patent/AU523922B2/en
Priority to US06/031,738 priority patent/US4257708A/en
Publication of JPS54144046A publication Critical patent/JPS54144046A/en
Publication of JPS6139079B2 publication Critical patent/JPS6139079B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、洗濯機のすすぎ水の汚れ度を効果的
に検知することのできるすすぎ検知装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rinse detection device that can effectively detect the degree of contamination of rinse water of a washing machine.

洗濯機の自動動作化が進められている昨今、す
すぎ水の汚れ度を検知することは節水等の諸問題
に対して重要な課題である。上記汚れ度を測定す
る装置としては、2組の発光受光素子対を用い、
一方の発光受光素子対で基準となる試料の光透過
度を測定し、他方の発光受光素子対で測定に供す
る試料の光透過度を測定する所謂ダブルビーム方
式によるものがある。しかしながらこの種の装置
では基準用の試料を必要とする上、受光信号の複
雑な演算処理を要する為に装置が大型化し、高価
なものとなつた。これが為に洗濯機の自動化に適
用するには問題があり、現状では予め定められた
時間に基づいて上記自動化を行つている。
Nowadays, automatic operation of washing machines is progressing, and detecting the degree of contamination of rinse water is an important issue for various issues such as water conservation. The device for measuring the degree of contamination uses two pairs of light-emitting and light-receiving elements,
There is a so-called double beam method in which one pair of light-emitting and receiving elements measures the light transmittance of a reference sample, and the other pair of light-emitting and receiving elements measures the light transmittance of the sample to be measured. However, this type of device requires a reference sample and requires complex arithmetic processing of the received light signal, making the device large and expensive. For this reason, there is a problem in applying it to automation of washing machines, and at present, the above automation is performed based on a predetermined time.

本発明は上記事情に鑑みてなされたもので、そ
の目的とするところは、簡易な構成にして洗濯す
すぎ水の汚れ度を効果的に検知することができ、
洗濯機の自動化に効果を奏すると共に、また節水
等の諸問題を解消できるすすぎ検知装置を実現
し、提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to effectively detect the degree of contamination of washing rinse water with a simple configuration.
An object of the present invention is to realize and provide a rinsing detection device that is effective in automating washing machines and can solve various problems such as water conservation.

以下図面を参照して本発明装置の一実施例を説
明する。
An embodiment of the apparatus of the present invention will be described below with reference to the drawings.

第1図は同装置の概略構成図で、aは一部断面
図、bはaのA−A断面図である。図中1は基台
で、透孔1aに発光素子としての発光ダイオード
(LEDと略記する)2を挿入し、保持している。
また基台1の他端部側には透孔1b,1cが穿か
れ、同透孔1b,1cには受光素子としての2つ
のフオトトランジスタ(PTRと略記する)3,
4がそれぞれ挿入され、保持されている。この基
台1の上面、即ちLED2の発光面、及びPTR
3,4の受光面側には、例えばアクリル材からな
る透明板5が固着され、基台1の下部側を水密に
している。この水密にされた状態で本装置は、例
えば洗濯機の洗濯槽(図示せず)に取り付けられ
る。また、前記透明板5には、台形状に形成され
たアクリル材からなる光導波器6が取り付けられ
ている。この光導波器6は、光導入面6a、及び
光導出面6b,6cを除く周面をアルミメツキ等
によりコーテイングされさらに防湿処理を施した
ものである。そして、同光導波器6は、前記光導
入面6aをLED2に、光導出面6b,6cを
PTR3,4にそれぞれ対向して配置されてい
る。しかして、LED2から発せられた光は、図
中一点鎖線で示すように光導波器6内を伝搬し、
台形部7,8によつてそれぞれ直角に反射され、
前記光導出面6b,6cから放出されてPTR
3,4によりそれぞれ受光される。これらの光導
出面6b,6cとPTR3,4の受光面、即ち透
明板5との間に例えばすすぎ水等の試料が介在さ
れる。尚、光導出面6b,6cから透明板5まで
の間隔Lb,Lcは、LcがLbの1/3以下、ここでは
Lc=5mm、Lb=50mmになるように設定されてい
る。
FIG. 1 is a schematic configuration diagram of the same device, in which a is a partial cross-sectional view and b is a cross-sectional view taken along the line A-A of a. In the figure, reference numeral 1 denotes a base, into which a light emitting diode (abbreviated as LED) 2 as a light emitting element is inserted and held in a through hole 1a.
In addition, through holes 1b and 1c are bored at the other end of the base 1, and two phototransistors (abbreviated as PTR) 3, which serve as light receiving elements, are inserted into the through holes 1b and 1c.
4 are each inserted and retained. The upper surface of this base 1, that is, the light emitting surface of the LED 2, and the PTR
A transparent plate 5 made of, for example, an acrylic material is fixed to the light-receiving surface side of 3 and 4 to make the lower side of the base 1 watertight. In this watertight state, the device is attached to, for example, a washing tub (not shown) of a washing machine. Further, an optical waveguide 6 made of acrylic material and formed into a trapezoidal shape is attached to the transparent plate 5. This optical waveguide 6 has its circumferential surface, except for the light introduction surface 6a and the light output surfaces 6b and 6c, coated with aluminum plating or the like, and further subjected to moisture-proofing treatment. The optical waveguide 6 has the light introduction surface 6a connected to the LED 2 and the light output surfaces 6b and 6c connected to the LED 2.
They are arranged facing PTR3 and PTR4, respectively. Therefore, the light emitted from the LED 2 propagates within the optical waveguide 6 as shown by the dashed line in the figure.
reflected at right angles by the trapezoidal parts 7 and 8,
PTR is emitted from the light emitting surfaces 6b and 6c.
The light is received by 3 and 4, respectively. A sample such as rinsing water is interposed between these light emitting surfaces 6b, 6c and the light receiving surfaces of the PTRs 3, 4, that is, the transparent plate 5. Note that the distances Lb and Lc from the light emitting surfaces 6b and 6c to the transparent plate 5 are such that Lc is 1/3 or less of Lb, and here,
It is set so that Lc=5mm and Lb=50mm.

一方、前記LED2、及びPTR3,4は第2図
に示すように回路接続され、作動するようになつ
ている。PTR3はそのコレクタを電源+Vcに接
続し、エミツタに負荷RLを接続している。そし
てLED2からの光を受光し、その受光量に相当
した電流を負荷RLに供給している。従つて負荷
Lには受光量に相当した、つまり前記すすぎ水
のにごり度に相当した電圧が生起され、出力され
る。またPTR4も、コレクタを電源+Vcに接続
し、コレクタに負荷rLを接続しており、この負
荷に生起される電圧信号は誤差増幅器OPの反転
入力端に供給されている。またこの増幅器OPの
非反転入力端には電源+Vcを抵抗R1,R2により
分圧した基準電圧が入力されている。従つて増幅
器OPは前記受光量を負帰還情報として入力し、
トランジスタTRを駆動して前記LED2の通電電
流、つまり発光量を制御している。尚、トランジ
スタTRは、コレクタをLED2を介して電源+Vc
に接続し、エミツタを保護抵抗rを介して接地し
たものである。またPTR3は、測定用受光素子
として、PTR4は比較基準用受光素子として機
能するものである。
On the other hand, the LED 2 and PTRs 3 and 4 are connected in a circuit as shown in FIG. 2 and are activated. PTR3 has its collector connected to the power supply +Vc, and its emitter connected to the load R L. Then, it receives the light from the LED 2 and supplies a current corresponding to the amount of received light to the load R L. Therefore, a voltage corresponding to the amount of light received, that is, a voltage corresponding to the degree of turbidity of the rinsing water is generated in the load R L and output. PTR4 also has its collector connected to the power supply +Vc, and a load r L connected to the collector, and the voltage signal generated at this load is supplied to the inverting input terminal of the error amplifier OP. Further, a reference voltage obtained by dividing the power supply +Vc by resistors R 1 and R 2 is input to the non-inverting input terminal of this amplifier OP. Therefore, the amplifier OP inputs the amount of received light as negative feedback information,
The transistor TR is driven to control the current flowing through the LED 2, that is, the amount of light emitted. In addition, the collector of the transistor TR is connected to the power supply +Vc via LED2.
, and the emitter is grounded via a protective resistor r. Further, PTR3 functions as a light receiving element for measurement, and PTR4 functions as a light receiving element for comparison reference.

このように構成された本装置によれば、LED
2から発せられた光は試料としてのすすぎ水が介
在する測定用光路(光路長Lb)を介してPTR3
に受光されると共に、他方において、同じくすす
ぎ水が介在する比較基準用光路(光路長Lc)を
介してPTR4に受光される。そして、このPTR
4による受光情報に基づいてLED2の発光量が
負帰還制御され、一定に保たれる。このときの
PTR3による受光量がすすぎ水のにごり度とし
て測定され出力されることになる。またこのよう
な構成であれば、LED2が1つである為に光導
波器6における光導出面6b,6cでの光強度が
等しく、例えば発光素子を2つ用いる場合のよう
なばらつきを生じることがない。しかも、比較基
準として用いるPTR4の光も、測定用の光と共
に試料としてのすすぎ水中を透過してくるので、
発光・受光面でのすすぎ水による汚れ等の受光条
件が均一化される。従つて、光透過面の汚れや
LED2の温度変化による発光量(発光強度)の
変化が極めて効果的に相殺される。またPTR
3,4の温度変化による特性変化も、同PTR
3,4を近接して配置しておくことにより均一化
がはかれ、その情報を以つてLED2の発光量を
制御する為、常に均一化された条件の基で測定を
行うことができる。しかもLED2の経年変化に
よる特性劣化に対しても同様に作用するので、そ
の悪影響が生じることはない。
According to this device configured in this way, the LED
The light emitted from PTR 3 passes through a measurement optical path (optical path length Lb) that includes rinsing water as a sample.
On the other hand, the light is received by the PTR 4 via a comparison reference optical path (optical path length Lc) in which rinsing water is also present. And this PTR
The amount of light emitted from the LED 2 is controlled by negative feedback based on the light reception information obtained by the LED 4, and is kept constant. At this time
The amount of light received by the PTR 3 is measured and output as the degree of turbidity of the rinse water. In addition, with this configuration, since there is only one LED 2, the light intensities at the light emitting surfaces 6b and 6c of the optical waveguide 6 are equal, and variations that occur when two light emitting elements are used, for example, are avoided. do not have. Furthermore, the PTR4 light used as a comparison standard also passes through the rinse water as a sample along with the measurement light.
Light-receiving conditions such as dirt caused by rinsing water on the light-emitting and light-receiving surfaces are made uniform. Therefore, dirt on the light transmitting surface and
Changes in the amount of light emitted (emission intensity) due to temperature changes of the LED 2 are offset extremely effectively. Also PTR
The characteristics change due to temperature change in 3 and 4 are also the same PTR.
By arranging LEDs 3 and 4 close to each other, uniformity is achieved, and this information is used to control the amount of light emitted from the LED 2, so measurements can always be performed under uniform conditions. Furthermore, since the same effect is applied to the deterioration of characteristics of the LED 2 due to aging, no adverse effects thereof will occur.

また前記の如くすすぎ水中の光路長Lb,Lcを
(Lb>Lc)に設定したことは次のような理由によ
る。即ち測定に用いる光を単色光とし、Lbを介
した洗濯すすぎ水の透過率をTsとすると、Lcを
介した洗濯すすぎ水の透過率TRはランバートベ
ールの法則により次のように示される。
The reason why the optical path lengths Lb and Lc in the rinsing water are set to (Lb>Lc) as described above is as follows. That is, if the light used for measurement is monochromatic light and the transmittance of washing and rinsing water through Lb is Ts, the transmittance of washing and rinsing water through Lc is expressed as follows according to Lambert-Beer's law.

この式に示されるようにLe/Lbを適宜設定す
れば測定基準用としての受光量の変化(透過率の
変化)を極めて小さくすることができる。本発明
者らの実験によれば、Lbを介した透過率が10%
T変動しても、Lcを介した透過率は略80%T程
度で極めて安定であることが確認された。従つて
Lcを介して受光された光量が一定となるように
LED2の光量を制御し、このときにLbを介して
受光された光量から洗濯すすぎ水の汚れ度(透過
率)を極めて良好に検知することができる。
If Le/Lb is appropriately set as shown in this equation, the change in the amount of light received for measurement reference (change in transmittance) can be made extremely small. According to experiments conducted by the inventors, the transmittance through Lb is 10%.
It was confirmed that even when T fluctuates, the transmittance through Lc is approximately 80% T and is extremely stable. accordingly
So that the amount of light received through Lc is constant
By controlling the amount of light from the LED 2, the degree of contamination (transmittance) of the washing rinse water can be detected extremely well from the amount of light received via Lb at this time.

かくしてここに、極めて簡易な構成にて、汚れ
度を効果的に、且つ正確に測定することができ
た。
Thus, it was possible to effectively and accurately measure the degree of contamination with an extremely simple configuration.

なお本発明は上記実施例に限定されるものでは
ない。例えば光導波器6の形状、大きさ、その材
質等は仕様に応じて適宜定めればよいものであり
オプチカルフアイバを用いて構成してもよい。ま
たLED2の駆動や、PTR4による帰還制御も仕
様に応じて適宜行えばよい。また発光素子、及び
受光素子もLEDやPTRに限定されず、ランプや
太陽電池(CdS)等を用いるようにしてもよい。
以上要するに本発明はその要旨を逸脱しない範囲
で種々変形して実施することができる。
Note that the present invention is not limited to the above embodiments. For example, the shape, size, material, etc. of the optical waveguide 6 may be determined as appropriate according to specifications, and may be constructed using optical fiber. Further, driving of the LED 2 and feedback control using the PTR 4 may be performed as appropriate according to the specifications. Further, the light emitting element and the light receiving element are not limited to LEDs or PTRs, and lamps, solar cells (CdS), or the like may be used.
In summary, the present invention can be implemented with various modifications without departing from the gist thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一実施例を示す概略構成
照、第2図は同装置の駆動電気回路構成図であ
る。 1……基台、2……発光素子(LED)、3……
受光素子(PTR:測定用)、4……受光素子
(PTR:比較基準用)、5……透明板、6……光
導波器。
FIG. 1 is a schematic diagram showing an embodiment of the device of the present invention, and FIG. 2 is a diagram showing the configuration of the driving electric circuit of the device. 1...Base, 2...Light emitting element (LED), 3...
Photo-receiving element (PTR: for measurement), 4... Photo-receiving element (PTR: for comparison reference), 5... Transparent plate, 6... Optical waveguide.

Claims (1)

【特許請求の範囲】[Claims] 1 1つの発光素子と、この発光素子から発光さ
れた光を洗濯すすぎ水中に設けた光路長の短い第
1の光路を介して受光する第1の受光素子および
上記第1の光路より長い光路長の光路を介して受
光する第2の受光素子と、前記第1の受光素子の
受光量が一定になるように前記発光素子の発光量
を制御する手段とを具備し、前記第2の受光素子
の受光量から前記すすぎ水の汚れ度を検知するよ
うにしたことを特徴とするすすぎ検知装置。
1. One light-emitting element, a first light-receiving element that receives light emitted from this light-emitting element through a first optical path with a short optical path length provided in washing and rinsing water, and an optical path length longer than the first optical path. a second light-receiving element that receives light through an optical path; and means for controlling the amount of light emitted by the light-emitting element so that the amount of light received by the first light-receiving element is constant; A rinsing detection device characterized in that the degree of contamination of the rinsing water is detected from the amount of light received.
JP5168078A 1978-04-28 1978-04-28 Washing water turbidity detector Granted JPS54144046A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5168078A JPS54144046A (en) 1978-04-28 1978-04-28 Washing water turbidity detector
AU46240/79A AU523922B2 (en) 1978-04-28 1979-04-19 Apparatus for measuring the degree of rinsing
US06/031,738 US4257708A (en) 1978-04-28 1979-04-20 Apparatus for measuring the degree of rinsing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5168078A JPS54144046A (en) 1978-04-28 1978-04-28 Washing water turbidity detector

Publications (2)

Publication Number Publication Date
JPS54144046A JPS54144046A (en) 1979-11-09
JPS6139079B2 true JPS6139079B2 (en) 1986-09-02

Family

ID=12893588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5168078A Granted JPS54144046A (en) 1978-04-28 1978-04-28 Washing water turbidity detector

Country Status (1)

Country Link
JP (1) JPS54144046A (en)

Also Published As

Publication number Publication date
JPS54144046A (en) 1979-11-09

Similar Documents

Publication Publication Date Title
US4257708A (en) Apparatus for measuring the degree of rinsing
KR100391939B1 (en) Temperature correction treatment according to measurement value of sediment sensor of automatic washing machine or dishwasher
KR20100033526A (en) Sensor device and method for detecting the turbidity of wash liquor
DE60127673D1 (en) THICKNESS MEASURING DEVICE, THICKNESS MEASUREMENT METHOD AND NUTRITIONING APPARATUS AND WET ASSAY PROCESS THEREWITH
JPH01145548A (en) Photoelectric apparatus for deciding material that absorbs light at spectrally different state in sample
DE3429541C2 (en)
JPS6139079B2 (en)
SU574631A1 (en) Device for measuring temperature in electric apparatus
UST102104I4 (en) Scanning optical system adapted for linewidth measurement in semiconductor devices
KR100991604B1 (en) Turbidity sensor with matched transfer characteristic and method for producing the same
JPS63184040A (en) Apparatus for detecting pollution of liquid
JPS645644B2 (en)
ATE20497T1 (en) DEVICE FOR MEASURING PHYSICAL QUANTITIES WITH AN OPTICAL SENSOR.
JP2005049131A (en) Led chip optical characteristic measuring instrument and led chip optical characteristic measuring method
US3572947A (en) Apparatus for measuring uniformity of sheet material by light transmission
SU144316A1 (en) Device for checking thread irregularities
JPS6224125A (en) Optical semiconductor measuring apparatus
SU96541A1 (en) Photometer
JPS626524Y2 (en)
KR200144344Y1 (en) Laser diode output control circuit of internal pipe inspection device
KR840001565B1 (en) Film blackening area measuring equipment
SU1434275A1 (en) Photometric device
SU634093A1 (en) Fibrous material linear density measuring method
JPH0143635Y2 (en)
SU1062802A1 (en) Method of determining operating supply voltage of photoelectronic device