JPS6138848B2 - - Google Patents

Info

Publication number
JPS6138848B2
JPS6138848B2 JP54022931A JP2293179A JPS6138848B2 JP S6138848 B2 JPS6138848 B2 JP S6138848B2 JP 54022931 A JP54022931 A JP 54022931A JP 2293179 A JP2293179 A JP 2293179A JP S6138848 B2 JPS6138848 B2 JP S6138848B2
Authority
JP
Japan
Prior art keywords
substrate
radioactive substance
item
wafer
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54022931A
Other languages
Japanese (ja)
Other versions
JPS55115325A (en
Inventor
Takashi Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Original Assignee
CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHO ERU ESU AI GIJUTSU KENKYU KUMIAI filed Critical CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Priority to JP2293179A priority Critical patent/JPS55115325A/en
Publication of JPS55115325A publication Critical patent/JPS55115325A/en
Publication of JPS6138848B2 publication Critical patent/JPS6138848B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54493Peripheral marks on wafers, e.g. orientation flats, notches, lot number

Landscapes

  • Element Separation (AREA)
  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】 本発明は半導体ウエハの番号付け方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for numbering semiconductor wafers.

半導体ウエハ上に半導体装置を形成するに際し
て製造工程の管理等のために、ウエハ識別用の番
号が付与される。
When semiconductor devices are formed on a semiconductor wafer, a wafer identification number is assigned for management of the manufacturing process and the like.

このために従来はダイヤモンドツールを用いて
ウエハを堀り番号を書込んでいたが、このような
方法ではウエハからシリコン粉末が飛散したり、
書込んだ部分がウエハ上に形成される半導体装置
の製造過程において熱処理を施こすとウエハの結
晶欠陥の核となつたり、亀裂が入つたりする欠点
があつた。
For this purpose, conventionally a diamond tool was used to drill the wafer and write the number, but this method could cause silicon powder to scatter from the wafer.
When heat treatment is applied during the manufacturing process of a semiconductor device in which written portions are formed on a wafer, there is a drawback that they become the nucleus of crystal defects in the wafer or cause cracks.

本発明は従来のこのような欠点を解決し、容易
にしかも半導体ウエハに何ら影響を及ぼすことの
ない番号付け方法を提供することを目的とし、そ
の特徴は、半導体ウエハ周縁部の所定領域に放射
性物質を選択的に注入して番号付けを行なうこと
にある。
The purpose of the present invention is to solve these conventional drawbacks and provide a numbering method that is easy and does not affect the semiconductor wafer in any way. The purpose is to selectively inject substances and number them.

以下、図面を参照して本発明を説明する。 The present invention will be described below with reference to the drawings.

図は本発明の一実施例を示す図である。 The figure shows an embodiment of the present invention.

即ち、図aに示すようにステージ1上に番号付
けを行うべき半導体ウエハ2を載置しイオン注入
装置3によりアメリシウム(241Am、半減期458
年)等の放射性物質を注入する。
That is, as shown in Figure a, a semiconductor wafer 2 to be numbered is placed on a stage 1, and americium ( 241 Am, half-life 458
Inject radioactive substances such as

この際、例えば241Amを強度200KeVで注入す
るとシリコンウエハには30Å程度の深さまで達す
るがウエハ及びそこに形成される半導体装置には
何ら影響はない。
At this time, for example, if 241 Am is implanted at an intensity of 200 KeV, it will reach a depth of about 30 Å into the silicon wafer, but will not have any effect on the wafer or the semiconductor devices formed there.

ステージ1には駆動装置4が設けられており、
ステージ1を間欠的に矢印方向に回転させる。
The stage 1 is provided with a drive device 4,
Stage 1 is intermittently rotated in the direction of the arrow.

このようにして図bに示すようにウエハの所定
領域a1〜a8に対して放射性物質を選択的に注入す
る。
In this way, radioactive material is selectively injected into predetermined areas a1 to a8 of the wafer, as shown in FIG. b.

ここで例えば注入した領域を“1”、注入しな
かつた領域を“0”とすることにより2進8ビツ
トの番号情報が書込まれる。
For example, 8-bit binary number information is written by setting the implanted area to "1" and the non-injected area to "0".

従つて図の斜線を施こした領域a5、a8のみに放
射性物質を注入することにより番号情報
00001001、即ち番号“9”が番号付けされたこと
になる。
Therefore, number information can be obtained by injecting radioactive material only into the shaded areas a5 and a8 in the figure.
00001001, that is, the number "9" is assigned.

一方このようにして番号付けされた半導体ウエ
ハから番号を読取る場合には、半導体ウエハ周縁
部上にガイカーカウンタやシンチレーシヨンカウ
ンタ等の放射線検知器を設けておき、半導体ウエ
ハを図bの矢印方向に回転させて放射線の検知位
置を知ることによつて電気的に読取ることができ
るし、またウエハ上に螢光塗料を設けておくこと
により、放射性元素が存在する部分では発光する
ので目視することもできる。
On the other hand, when reading the number from a semiconductor wafer numbered in this way, a radiation detector such as a guyker counter or a scintillation counter is provided on the periphery of the semiconductor wafer, and the semiconductor wafer is moved in the direction of the arrow in Figure b. It can be read electrically by rotating the wafer to determine the radiation detection position, and by providing fluorescent paint on the wafer, it emits light in areas where radioactive elements are present, so it can be visually observed. You can also do it.

尚、上記実施例ではシリコンウエハについて説
明したが本発明はこれに限らずサフアイア等の場
合にも適用される。
In the above embodiments, a silicon wafer has been described, but the present invention is not limited to this, but can also be applied to saphire and the like.

以上説明したように本発明によれば、容易に、
しかも半導体ウエハに何ら影響を及ぼさずに番号
付けが行なわれ、歩留りよく適確に半導体装置が
製造できる。
As explained above, according to the present invention, it is easy to
Furthermore, numbering is performed without affecting the semiconductor wafer in any way, and semiconductor devices can be manufactured accurately with high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示す図で、図aは番号
付けを行なうための装置を説明するための図、図
bは番号付けがされた半導体ウエハを示す図であ
る。 図において2は半導体ウエハ、3はイオン注入
装置、4はステージ駆動器、a1〜a8はウエハ上の
所定領域を示す。
The figures show one embodiment of the present invention, in which Figure a is a diagram for explaining a numbering device, and Figure b is a diagram showing numbered semiconductor wafers. In the figure, 2 is a semiconductor wafer, 3 is an ion implanter, 4 is a stage driver, and a 1 to a 8 are predetermined areas on the wafer.

Claims (1)

【特許請求の範囲】 1 イオン注入装置内に設置され、間欠的駆動を
可能とする駆動装置を備えたステージ上に番号付
けを行うべき基板を載置し、 該イオン注入装置により該基板の所定領域に放
射性物質を選択的にイオン注入する第1の工程
と、 該ステージを該駆動装置で間欠的に所定間隔駆
動する第2の工程とを有し、 上記第1及び第2の工程を繰り返し、 該基板周縁部の分離された複数の所定領域に放
射性物質を選択的に注入して放射性物質有無のビ
ツト情報による番号付けをなすことを特徴とする
基板の番号付け方法。 2 上記駆動が回転駆動である第1項記載の方
法。 3 上記放射性物質がアメリシウムである第1項
記載の方法。 4 上記基板が半導体ウエハもしくはサフアイア
である第1項記載の方法。 5 基板周縁部で分離された複数の所定領域に選
択的にイオン注入された放射性物質によりビツト
情報番号付けされた基板の読取り方法であつて、
該基板周縁部上に設けられた放射線検知器と該基
板との相対的移動により前記イオン注入された放
射性物質有無のビツト情報を検知し、電気的読取
りをなすことを特徴とする基板の番号読取方法。
[Claims] 1. A substrate to be numbered is placed on a stage installed in an ion implantation device and equipped with a drive device that enables intermittent driving, and the ion implantation device moves the substrate to a predetermined position. A first step of selectively ion-implanting a radioactive substance into a region, and a second step of intermittently driving the stage at predetermined intervals with the drive device, and repeating the first and second steps. A method for numbering a substrate, comprising selectively injecting a radioactive substance into a plurality of separated predetermined areas on the peripheral edge of the substrate, and numbering the areas based on bit information indicating the presence or absence of the radioactive substance. 2. The method according to item 1, wherein the drive is rotational drive. 3. The method according to item 1, wherein the radioactive substance is americium. 4. The method according to item 1, wherein the substrate is a semiconductor wafer or sapphire. 5. A method for reading a substrate numbered with bit information using a radioactive substance selectively implanted into a plurality of predetermined regions separated at the periphery of the substrate, comprising:
Reading the number of the board, characterized in that bit information indicating the presence or absence of the ion-implanted radioactive substance is detected by relative movement of the radiation detector provided on the periphery of the board and the board, and the information is electrically read. Method.
JP2293179A 1979-02-28 1979-02-28 Numbering method of semiconductor wafer Granted JPS55115325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2293179A JPS55115325A (en) 1979-02-28 1979-02-28 Numbering method of semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2293179A JPS55115325A (en) 1979-02-28 1979-02-28 Numbering method of semiconductor wafer

Publications (2)

Publication Number Publication Date
JPS55115325A JPS55115325A (en) 1980-09-05
JPS6138848B2 true JPS6138848B2 (en) 1986-09-01

Family

ID=12096368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2293179A Granted JPS55115325A (en) 1979-02-28 1979-02-28 Numbering method of semiconductor wafer

Country Status (1)

Country Link
JP (1) JPS55115325A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121521A (en) * 1991-10-29 1993-05-18 Komatsu Electron Metals Co Ltd Apparatus and method for manufacture of semiconductor wafer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227351A (en) * 1975-08-27 1977-03-01 Hitachi Ltd Wafer process control system
JPS5339060A (en) * 1976-09-22 1978-04-10 Hitachi Ltd Lot number marking method to wafers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227351A (en) * 1975-08-27 1977-03-01 Hitachi Ltd Wafer process control system
JPS5339060A (en) * 1976-09-22 1978-04-10 Hitachi Ltd Lot number marking method to wafers

Also Published As

Publication number Publication date
JPS55115325A (en) 1980-09-05

Similar Documents

Publication Publication Date Title
Yaney et al. Alpha-particle tracks in silicon and their effect on dynamic MOS RAM reliability
IT7926071A0 (en) PROGRAMMING METHOD FOR AN ELECTRICALLY ALTERABLE NONVOLATILE SEMICONDUCTOR MEMORY.
JPS577162A (en) Nonvolatile semiconductor memory and manufacture therefor
CN103941173B (en) Method and apparatus for measuring alpha particle induced soft errors in semiconductor devices
DE102012214668B4 (en) Background of a radiation dosimeter on a chip
JPS6138848B2 (en)
CN104160488A (en) Method for reducing variations in forward voltage of semiconductor wafer
Bouldin The measurement of alpha particle emissions from semiconductor memory materials
JPH06334032A (en) Semiconductor device and its manufacture
KR880003194A (en) Method for Permanently Recording High Time-Integrated Neutron Flux
US4393479A (en) Method for erasing data of a non-volatile semiconductor memory integrated circuit
ES418367A1 (en) Method and apparatus for making disc records
JPH043061B2 (en)
US3925767A (en) Radiation set thermally reset read-only-memory
GB1450966A (en) Magnetic-domain storage system
JPS6061670A (en) Radiation source detector
JP4578165B2 (en) Light quantity calculation device and light quantity calculation method
JPS6254963A (en) Data writing method for memory
JPH02123656A (en) Ion implantation device
Lagowski et al. Present status of the surface photovoltage method (SPV) for measuring minority carrier diffusion length and related parameters
Fulcher Radiation effects in electronics for the CMS tracking detector
JPH02266277A (en) Alpha-ray resistance test jig
Gentry et al. Reinvestigation of the α-activity of Conway granite
KR0161420B1 (en) Monitoring method of high energy ion implantation
Asoka-Kumar Chemical identity of atoms using core electron annihilations