JPS6138820B2 - - Google Patents

Info

Publication number
JPS6138820B2
JPS6138820B2 JP11632080A JP11632080A JPS6138820B2 JP S6138820 B2 JPS6138820 B2 JP S6138820B2 JP 11632080 A JP11632080 A JP 11632080A JP 11632080 A JP11632080 A JP 11632080A JP S6138820 B2 JPS6138820 B2 JP S6138820B2
Authority
JP
Japan
Prior art keywords
humidity
sensing element
temperature
resistance
changes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11632080A
Other languages
Japanese (ja)
Other versions
JPS5740640A (en
Inventor
Hajime Kano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11632080A priority Critical patent/JPS5740640A/en
Publication of JPS5740640A publication Critical patent/JPS5740640A/en
Publication of JPS6138820B2 publication Critical patent/JPS6138820B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/045Circuits
    • G01N27/046Circuits provided with temperature compensation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】 本発明は金属酸化物半導体を感湿素子とし、該
素子を定温度状態に加熱して相対湿度を測定する
装置に改良に係り、特に測定時の雰囲気温度の変
化に対し、これを補償する補償回路に特徴を有す
る湿度測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a device that uses a metal oxide semiconductor as a humidity sensing element and measures relative humidity by heating the element to a constant temperature state. On the other hand, the present invention relates to a humidity measuring device having a feature of a compensation circuit that compensates for this.

この種測定に使用される感湿素子の概略を例示
すると第1図の如くであつて、1は抵抗線を示
し、例えば白金等の抵抗温度係数の大きな金属を
用い、その線径は例えば20〜50μmφ程度のもの
である。2は前記抵抗線1を被覆する耐熱絶縁材
である。4は前記抵抗線1及びその被覆2を芯と
してその上に焼結形成された金属酸化物の多孔質
感湿体であつて、例えばその両端には端子3a及
び3bが埋設される。1a及び1bは前記抵抗線
1の端子を示す。
An example of an outline of a humidity sensing element used in this type of measurement is shown in Fig. 1, where 1 indicates a resistance wire, for example, a metal with a large resistance temperature coefficient such as platinum is used, and the wire diameter is, for example, 20. It is about 50 μmφ. 2 is a heat-resistant insulating material that covers the resistance wire 1. 4 is a porous wet body of metal oxide formed by sintering the resistance wire 1 and its coating 2 as a core, and terminals 3a and 3b are embedded at both ends thereof, for example. 1a and 1b indicate terminals of the resistance wire 1.

尚、感湿体4は抵抗線1と熱結合され、後述す
る所定の温度に保たれるものとする。
It is assumed that the moisture sensitive element 4 is thermally coupled to the resistance wire 1 and maintained at a predetermined temperature, which will be described later.

斯かる感湿素子の湿度−抵抗特性の代表例を示
すと第2図の如くであつて、前記感湿体4が吸湿
することによつて、その端子3a,3b間の抵抗
値が低下するものである。
A typical example of the humidity-resistance characteristics of such a moisture sensing element is shown in FIG. 2, and as the moisture sensing element 4 absorbs moisture, the resistance value between its terminals 3a and 3b decreases. It is something.

第3図はこの種測定装置の回路例で、前記詳述
した感湿素子は点線で画したる部分4′であつ
て、前記抵抗線1は抵抗R1にて、又感湿体4は
抵抗rなる記号にてそれぞれ置き替えられ図示さ
れている。
FIG. 3 shows a circuit example of this type of measuring device, in which the moisture sensing element described in detail is a portion 4' marked by a dotted line, the resistance wire 1 is connected to a resistor R1, and the moisture sensing element 4 is connected to a resistor. They are each shown replaced by the symbol r.

而して前記抵抗R1及び固定抵抗R2′,R
3,R4によつてブリツジ回路が構成され、(a)点
及び(b)点の電位変化は増巾回路5に入力され、そ
の出力からはブリツジ回路が平衡を保つよう、該
ブリツジ回路に電流Iが帰還される。
Therefore, the resistor R1 and the fixed resistors R2', R
3 and R4 constitute a bridge circuit, and the potential changes at points (a) and (b) are input to the amplifier circuit 5, and from its output, a current is applied to the bridge circuit so that the bridge circuit maintains balance. I will be returned.

一方湿度によつて変化する抵抗rはその両端子
が抵抗値検出回路6に接続され、その値を指示計
7によつて湿度表示するよう構成されている。斯
くの如き構成に於いて、0℃に於ける抵抗R1の
抵抗値をR0、その抵抗温度係数をα、その温度
をTとすれば R1=R0(1+αT) (1) が成り立つ。
On the other hand, both terminals of the resistor r, which changes depending on the humidity, are connected to a resistance value detection circuit 6, and the resistor r is configured so that the value thereof is displayed by an indicator 7 as a humidity display. In such a configuration, if the resistance value of the resistor R1 at 0° C. is R0, its temperature coefficient of resistance is α, and its temperature is T, then R1=R0 (1+αT) (1) holds true.

又、抵抗R1,R2′,R3,R4で構成され
るブリツジの平衡条件は R1・R3=R2′・R4 (2) である。
Further, the equilibrium condition of the bridge composed of resistors R1, R2', R3, and R4 is R1.R3=R2'.R4 (2).

いま抵抗R1が加熱されておらず、その抵抗値
が低く R1・R3<R2′・R4 (3) なる場合、第3図のa点の電位がb点より低くな
る。
If the resistor R1 is not heated and its resistance value is low such that R1.R3<R2'.R4 (3), the potential at point a in FIG. 3 will be lower than point b.

(a)点には増巾器5の反転入力端子が、(b)点には
非反転入力端子がそれぞれ接続されているから、
(a)点の電位が低くなると増巾器5の出力電流Iが
増加し、抵抗R1が加熱されることになる。
Since the inverting input terminal of the amplifier 5 is connected to point (a) and the non-inverting input terminal to point (b),
When the potential at point (a) becomes lower, the output current I of the amplifier 5 increases, and the resistor R1 is heated.

逆に抵抗R1が加熱され過ぎると R1・R3>R2′・R4 (4) となり、斯かる場合(a)点の電位は(b)点より高くな
り、電流Iが減少する。
Conversely, if the resistor R1 is heated too much, R1.R3>R2'.R4 (4), and in this case, the potential at point (a) becomes higher than at point (b), and the current I decreases.

斯かる作動によつてブリツジの平衡条件、(2)式
が自動的に満足され、R1の抵抗値が一定とな
る。その結果、(1)式によつて示される如く、抵抗
R1の温度が一定に保たれるものである。
Through this operation, the bridge equilibrium condition, equation (2), is automatically satisfied, and the resistance value of R1 becomes constant. As a result, as shown by equation (1), the temperature of the resistor R1 is kept constant.

第3図に例示した構成の装置は以上の如く作動
し、感湿素子が所定の温度に加熱され、これによ
つて湿度と抵抗値との関係の特性上の欠点を補正
することが出来るものである。
The device having the configuration illustrated in FIG. 3 operates as described above, and the humidity sensing element is heated to a predetermined temperature, thereby making it possible to correct defects in the characteristics of the relationship between humidity and resistance value. It is.

然しながら測定時の雰囲気温度の変化に対して
は、それを補償する機能を有しておらず、この点
で充分なものとは言えなかつた。
However, it does not have a function to compensate for changes in ambient temperature during measurement, and in this respect it cannot be said to be sufficient.

第5図は雰囲気温度が変化した場合の感湿素子
の特性変化を例示したもので、温度が10℃・40℃
及び60℃の時の湿度−抵抗特性であつて、該図か
らも明らかなように温度の変化によつて、その特
性は大きく変化するものである。
Figure 5 shows an example of how the characteristics of a moisture-sensitive element change when the ambient temperature changes.
and humidity-resistance characteristics at 60°C, and as is clear from the figure, the characteristics change greatly with changes in temperature.

本発明は、前記した雰囲気温度の変化によつて
相対湿度の指示値が変化すると言う欠点を改善す
るため、新規な手段によつて感湿素子の作動点を
雰囲気温度の変化に応じて自動的に移動せしめ、
これによつて温度変化に影響されることの少な
い、正確な測定結果を得ようとするものである。
In order to improve the above-mentioned disadvantage that the indicated value of relative humidity changes due to changes in ambient temperature, the present invention automatically adjusts the operating point of a humidity sensing element according to changes in ambient temperature using a novel means. move it to
This aims to obtain accurate measurement results that are less affected by temperature changes.

以下本発明の実施例を説明すると、第4図に於
いてR2は温度補償用抵抗であつて、該抵抗によ
つて雰囲気温度を検出し、その検出結果である抵
抗値の変化によつて、ブリツジの平衡条件を変え
るようにするものである。
An embodiment of the present invention will be described below. In FIG. 4, R2 is a temperature compensation resistor, and the ambient temperature is detected by this resistor, and based on the change in resistance value that is the detection result, This changes the equilibrium conditions of the bridge.

その結果、R1の加熱温度が変えられ、該抵抗
に熱結合されている感湿体rの温度が共に変化さ
れ、以下に説明する如く雰囲気温度の変化に拘ら
ず、正確な相対湿度を指示させることが出来るも
のである。
As a result, the heating temperature of R1 is changed, and the temperature of the humidity sensitive element r, which is thermally coupled to the resistor, is changed together, resulting in an accurate relative humidity indication regardless of changes in ambient temperature, as explained below. It is something that can be done.

第4図に例示した実施例に於いて R0=R4=20Ω R3=200Ω α=0.003 とする。 In the embodiment illustrated in FIG. R0=R4=20Ω R3=200Ω α=0.003 shall be.

R2は雰囲気温度の変化に伴つてその抵抗値が
変化する温度補償用抵抗で R2=R02(1+βTa) (5) と表わすことが出来る。
R2 is a temperature compensation resistor whose resistance value changes as the ambient temperature changes, and can be expressed as R2=R02 (1+βTa) (5).

こゝでR02はR2の0℃に於ける抵抗値で、Ta
は雰囲気温度、βはR2の抵抗温度係数である。
Here, R02 is the resistance value of R2 at 0℃, and Ta
is the ambient temperature, and β is the resistance temperature coefficient of R2.

一例として、R02=200.5Ω β=0.00389と
し、雰囲気温度が7℃から45.5℃まで変化した場
合について説明する。
As an example, a case where R02=200.5Ω β=0.00389 and the ambient temperature changes from 7° C. to 45.5° C. will be described.

第1表は雰囲気温度Taが変わつた時のR2,
R1,Tのそれぞれの値を示したものである。而
してR2の値は前(5)式と同様に、またR1,Tの
値はそれぞれ前(2)式及び(1)式によつて求めたもの
である。以上の如くして各値を定めると雰囲気温
度Taが7℃・30℃・45.5℃と変化した場合に、
感湿素子の温度がそれぞれ10℃・40℃・60℃とな
るように回路が作動する。
Table 1 shows R2 when the ambient temperature Ta changes,
The values of R1 and T are shown. The value of R2 was determined in the same manner as in equation (5) above, and the values of R1 and T were obtained in accordance with equations (2) and (1), respectively. By determining each value as described above, when the ambient temperature Ta changes from 7℃ to 30℃ to 45.5℃,
The circuit operates so that the temperature of the humidity sensing element becomes 10°C, 40°C, and 60°C, respectively.

次に感湿素子の抵抗値の変化特性を第5図及び
第2表によつて説明する。
Next, the change characteristics of the resistance value of the humidity sensing element will be explained with reference to FIG. 5 and Table 2.

第5図は感湿素子の特性を示すもので、温度が
変化した場合の相対湿度と抵抗値との関係を表わ
している。
FIG. 5 shows the characteristics of the humidity sensing element, and shows the relationship between relative humidity and resistance value when the temperature changes.

第2表は雰囲気湿度が98%と70%及び40%の場
合について、雰囲気温度が7℃から45.5℃まで変
化した場合に感湿素子が等価的に感じる相対湿度
と、その抵抗値とを記載している。例えば雰囲気
温度30℃の場合について考えると、感湿素子の温
度は前記説明より40℃に保たれる。30℃に於ける
飽和水蒸気圧は31.83mmHgであるから、相対湿度
が98%であると 31.83×0.98=31.19 (6) の如く蒸気圧が31.19mmHgとなる。
Table 2 lists the relative humidity equivalently felt by the humidity sensing element and its resistance value when the ambient temperature changes from 7°C to 45.5°C when the atmospheric humidity is 98%, 70%, and 40%. are doing. For example, considering the case where the ambient temperature is 30°C, the temperature of the humidity sensing element is maintained at 40°C as explained above. The saturated water vapor pressure at 30°C is 31.83mmHg, so if the relative humidity is 98%, the vapor pressure will be 31.19mmHg as 31.83×0.98=31.19 (6).

40℃に於ける飽和水蒸気圧は55.34mmHgで、感
湿素子が40℃に保たれているから、該素子に感じ
る等価的な相対湿度は 31.19/55.34×100=56.36… (7) となり、その抵抗値は8.3×104Ωとなる。第2表
は相対湿度が98%・70%及び40%について、また
雰囲気温度が7℃・30℃・45.5℃の場合につい
て、同様の計算に基づいて求めた感湿素子の抵抗
値である。
The saturated water vapor pressure at 40℃ is 55.34mmHg, and since the humidity sensing element is kept at 40℃, the equivalent relative humidity felt by the element is 31.19/55.34×100=56.36… (7 ), and its resistance value is 8.3×10 4 Ω. Table 2 shows the resistance values of the humidity-sensitive element obtained based on similar calculations for relative humidity of 98%, 70%, and 40%, and for atmospheric temperatures of 7°C, 30°C, and 45.5°C.

第6図a,b及びcはそれぞれ第2表の抵抗値
をグラフにて示したもので、雰囲気温度が変化し
てもその温度を検出し、感湿素子の加熱温度を自
動的に変えることにより、雰囲気温度の変化の影
響を程んど受けることなく相対湿度の測定が出来
ることを示している。
Figures 6a, b, and c are graphs showing the resistance values in Table 2, respectively. Even if the ambient temperature changes, the temperature can be detected and the heating temperature of the humidity sensing element can be automatically changed. This shows that relative humidity can be measured without being affected by changes in ambient temperature.

尚、第6図aは雰囲気湿度が98%の時を、同図
bは70%の時を、更に同図cは40%の時をそれぞ
れ示したものである。
6A shows the atmospheric humidity when it is 98%, FIG. 6B when it is 70%, and FIG. 6C when it is 40%.

以上に詳述した如く、本発明は測定時の雰囲気
温度の変化に対して、その補償作動が極めて効果
的に働いて高い測定精度が得られるものであつ
て、極めて有効な発明である。
As described in detail above, the present invention is extremely effective in that the compensation operation works extremely effectively against changes in ambient temperature during measurement, resulting in high measurement accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による湿度測定装置
に用いる感湿素子の一例を示す一部切欠断面図、
第2図はこの感湿素子の湿度に対する抵抗値の変
化を示すグラフ、第3図は本発明の前提となつた
湿度測定装置の構成を示す回路図、第4図は本発
明の一実施例による湿度測定装置を示す回路図、
第5図は本実施例による感湿素子の異なる温度に
対する相対湿度と抵抗値との変化を示すグラフ、
第6図aは雰囲気湿度が98%、第6図bは雰囲気
湿度が70%、第6図cは雰囲気湿度が40%のとき
の夫々異なる雰囲気温度に対する相対湿度と抵抗
値の変化を示すグラフである。 1……抵抗線、1a,1b……端子、2……耐
熱絶縁材、3a,3b……端子、4……多孔質感
湿体、R1,R2′,R3,R4,r……抵抗、
R2……温度補償用抵抗、4′……感湿素子、5
……増幅器、6……抵抗検出回路、7……指示
計。
FIG. 1 is a partially cutaway sectional view showing an example of a humidity sensing element used in a humidity measuring device according to an embodiment of the present invention;
Fig. 2 is a graph showing the change in resistance value of this humidity sensing element with respect to humidity, Fig. 3 is a circuit diagram showing the configuration of the humidity measuring device which is the premise of the present invention, and Fig. 4 is an embodiment of the present invention. A circuit diagram showing a humidity measuring device by
FIG. 5 is a graph showing changes in relative humidity and resistance value with respect to different temperatures of the humidity sensing element according to the present example;
Figure 6a is a graph showing changes in relative humidity and resistance value for different atmospheric temperatures when the atmospheric humidity is 98%, Figure 6b is 70%, and Figure 6c is 40%. It is. 1...Resistance wire, 1a, 1b...Terminal, 2...Heat-resistant insulating material, 3a, 3b...Terminal, 4...Porous moisture material, R1, R2', R3, R4, r...Resistance,
R2...Temperature compensation resistor, 4'...Moisture sensing element, 5
...Amplifier, 6...Resistance detection circuit, 7...Indicator.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 温度に応じた抵抗値を有する被覆された抵抗
線を感湿体で包み込んで熱結合し、該感湿体の両
端に端子を設けて構成された感湿素子と、 前記感湿素子内の抵抗線が一辺に接続され他辺
に温度に応じた抵抗値を有する温度補償用の抵抗
が接続されたブリツジ回路と、 前記ブリツジ回路の一対の端子が入力端に接続
され前記ブリツジ回路に帰還電流を供給すること
によりブリツジを平衡に保つ帰還増幅器と、 前記ブリツジの平衡により周囲温度に基づいて
定まる温度を有する前記感湿素子の感湿体の抵抗
値の変化により湿度を検出する湿度検出回路と、
を具備することを特徴とする湿度測定装置。 2 前記感湿素子は、被覆された抵抗線を芯とし
てその周囲に多孔質感湿体を焼結して形成したも
のであることを特徴とする特許請求の範囲第1項
記載の湿度測定装置。 3 前記感湿素子の抵抗線は、温度抵抗係数の大
きい金属線であることを特徴とする特許請求の範
囲第1項記載の湿度測定装置。
[Scope of Claims] 1. A moisture sensing element configured by wrapping and thermally bonding a coated resistance wire having a resistance value depending on temperature with a moisture sensing element, and providing terminals at both ends of the humidity sensing element; a bridge circuit in which a resistance wire in the humidity sensing element is connected to one side and a temperature compensation resistor having a resistance value depending on the temperature is connected to the other side; and a pair of terminals of the bridge circuit are connected to an input end. a feedback amplifier that balances the bridge by supplying a feedback current to the bridge circuit; and a feedback amplifier that balances the bridge by supplying a feedback current to the bridge circuit; A humidity detection circuit to detect,
A humidity measuring device comprising: 2. The humidity measuring device according to claim 1, wherein the humidity sensing element is formed by sintering a porous moisture material around a coated resistance wire as a core. 3. The humidity measuring device according to claim 1, wherein the resistance wire of the humidity sensing element is a metal wire having a large temperature resistance coefficient.
JP11632080A 1980-08-22 1980-08-22 Temperature compensating method in humidity measuring device Granted JPS5740640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11632080A JPS5740640A (en) 1980-08-22 1980-08-22 Temperature compensating method in humidity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11632080A JPS5740640A (en) 1980-08-22 1980-08-22 Temperature compensating method in humidity measuring device

Publications (2)

Publication Number Publication Date
JPS5740640A JPS5740640A (en) 1982-03-06
JPS6138820B2 true JPS6138820B2 (en) 1986-09-01

Family

ID=14684060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11632080A Granted JPS5740640A (en) 1980-08-22 1980-08-22 Temperature compensating method in humidity measuring device

Country Status (1)

Country Link
JP (1) JPS5740640A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63127228U (en) * 1987-02-06 1988-08-19
JPS63149124U (en) * 1987-03-18 1988-09-30
JPS63149122U (en) * 1987-03-18 1988-09-30

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106290487A (en) * 2016-08-18 2017-01-04 卢志旭 A kind of semiconductor gas sensor temperature compensation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63127228U (en) * 1987-02-06 1988-08-19
JPS63149124U (en) * 1987-03-18 1988-09-30
JPS63149122U (en) * 1987-03-18 1988-09-30

Also Published As

Publication number Publication date
JPS5740640A (en) 1982-03-06

Similar Documents

Publication Publication Date Title
US4419888A (en) Humidity measuring method
JP2758458B2 (en) Measuring method and sensor for measuring relative concentration of gas or vapor
US4396899A (en) Platinum thin film resistance element and production method therefor
US3932807A (en) Gas sensitive devices
US2583930A (en) Gas analyzer and smoke detector
US11467110B2 (en) Method for operating a sensor device
US4723439A (en) Humidity detector
US5265459A (en) Single-element thermal conductivity detector
JPH04254716A (en) Air-flow detecting element
US3783692A (en) Resistance bulb compensation circuits
JPS6138820B2 (en)
US3007333A (en) Gas analyzer apparatus
US2334843A (en) Strain gauge with thermal current control
JPH0210445Y2 (en)
JPS6138819B2 (en)
JPS6156956B2 (en)
JPS6136619B2 (en)
JP2823936B2 (en) Dew point detector
JPH0712771A (en) Gas detector
JP2642460B2 (en) Heat dissipation type level sensor
JPS631237Y2 (en)
JP3118667B2 (en) Absolute humidity sensor
US3053093A (en) Extended range pirani gauge
JPS61112953A (en) Apparatus for detecting external atmosphere
JPH06242048A (en) Thermal conduction type absolute humidity sensor