JPS6138505A - Optical measuring instrument - Google Patents

Optical measuring instrument

Info

Publication number
JPS6138505A
JPS6138505A JP15901284A JP15901284A JPS6138505A JP S6138505 A JPS6138505 A JP S6138505A JP 15901284 A JP15901284 A JP 15901284A JP 15901284 A JP15901284 A JP 15901284A JP S6138505 A JPS6138505 A JP S6138505A
Authority
JP
Japan
Prior art keywords
optical path
intensity
light
variation
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15901284A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamazaki
洋 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP15901284A priority Critical patent/JPS6138505A/en
Publication of JPS6138505A publication Critical patent/JPS6138505A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35303Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using a reference fibre, e.g. interferometric devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

PURPOSE:To measure variation in physical quantity to be measured accurately by removing intensity variation as a noise and extracting only a phase shift by the measuring device which utilizes a Mach-Zehnder interferometer using an optical fiber as an optical path. CONSTITUTION:A branch means 12 branches coherent light from a light source 10 into two pieces of luminous flux, which are distributed to a sensor optical path 14 and a reference optical path 16. The center part of the sensor optical path 14 is placed as a measurement part in an atmosphere to be measured and converts variation in physical value to be measured into variation of propagation characteristics. A detector 26 performs square-law detection by superposing light beams which are passed through the optical paths 14 and 16 and reflected by half-mirrors 18 and 20 respectively to output an interference signal S1. The detectors 24 and 28 perform square-law detection as to transmitted light beams from the mirrors 18 and 20 and output intensity signals S2 and S3 respectively. An arithmetic device 30 performs specific arithmetic on the basis of output signals of those detectors and remove intensity variation elements except intensity variation due to interference from an interference signal.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、各種の物理量を計測するための装置に関する
ものであり、特にマツハツエンダ干渉計を利用した光学
式計測装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a device for measuring various physical quantities, and particularly to an optical measuring device using a Matsuhatsu Enda interferometer.

〔従来技術〕[Prior art]

物理量の変化を精密に測定する方法の一つとして光学干
渉計を用いる方法が知られている。
A method using an optical interferometer is known as one method for precisely measuring changes in physical quantities.

このような光学干渉計の中でもマツハツエンダ干渉計は
典型的なものであり、光路として空間伝搬光路はもとよ
り光学結晶や光ファイバを用いたものが数多く提案され
ている。
Among such optical interferometers, the Matsuhatsu Enda interferometer is typical, and many others have been proposed that use optical crystals or optical fibers as well as spatial propagation optical paths.

光ファイバを用いたマツハツエンダ干渉計を用いた計測
装置は、2つの光路のうちの一方の光路(センサ光路)
を測定部に位置せしめ、このセンサ光路と他方の光路(
リファレンス光路)とを通過するそれぞれの光束の出射
光を互いに干渉させるものであり、センサ光路周囲の物
理的条件(温度、圧力等)が変化すると、その変化に応
じてセンサ光路の伝搬特性が変化し、干渉の様子が変化
することを利用したものである。
A measurement device using a Matsuhatsu Enda interferometer using an optical fiber uses one of two optical paths (sensor optical path).
is located in the measuring section, and this sensor optical path and the other optical path (
This causes the output light of each light beam passing through the reference optical path) to interfere with each other, and when the physical conditions (temperature, pressure, etc.) around the sensor optical path change, the propagation characteristics of the sensor optical path change accordingly. This method takes advantage of the fact that the state of interference changes.

すなわち、2つの光路を通過するそれぞれの光束の出射
光を合致させて観測すると、センサ光路周囲の物理的条
件の変化により空間的に明暗の縞が移動するので、この
移動型を測定することにより測定対象である物理量の変
化を知ることが出来るものである。なお、明暗の縞の移
動を観測する代わりに一点における明暗の時間的変化を
観測しても同様に物理量の変化を測定できる。
In other words, when the output lights of the respective light fluxes passing through the two optical paths are matched and observed, the bright and dark stripes move spatially due to changes in the physical conditions around the sensor optical path. It is possible to know changes in the physical quantity that is the object of measurement. Note that changes in physical quantities can be similarly measured by observing temporal changes in brightness and darkness at one point instead of observing the movement of bright and dark stripes.

ところで、この種装置において、測定対象である物理量
の変化が干渉の様子を変化せしめるのは、物理量の変化
がセンサ光路である光ファイバの屈折率および光路長に
影響を与えセンサ光路の位相に関する伝搬特性の変化を
誘起させるからであるが、実際には、電磁界振動面の変
化、伝搬モードのモード変換およびこれ°らに基づく強
度変化等、他の伝搬特性の変化を伴うことが多い。
By the way, in this type of device, changes in the physical quantity to be measured change the state of interference because changes in the physical quantity affect the refractive index and optical path length of the optical fiber that is the sensor optical path, and the propagation related to the phase of the sensor optical path. This is because it induces a change in the characteristics, but in reality, it is often accompanied by other changes in the propagation characteristics, such as changes in the electromagnetic field vibration plane, mode conversion of the propagation mode, and intensity changes based on these changes.

この種装置において干渉以外の要因によって強度変化が
起こるということは、明暗の干渉縞のコントラストが変
化することを意味し、雑音として作用する。特に、一点
における明暗の時間的変化を観測する場合には、明暗の
変化が干渉の影響によるものか干渉以外の要因の影響に
よるものかの識別は困難であり、物理量変化の厳密な測
定をすることができるというこの種装置の特徴を十分に
生かすことができなかった。
In this type of device, the occurrence of a change in intensity due to a factor other than interference means that the contrast of bright and dark interference fringes changes, which acts as noise. In particular, when observing temporal changes in brightness and darkness at one point, it is difficult to distinguish whether the change in brightness is due to the influence of interference or to factors other than interference, and it is difficult to strictly measure changes in physical quantities. It was not possible to take full advantage of the characteristics of this type of device, which is the ability to

〔発明の概要〕[Summary of the invention]

本発明は、上記問題点に鑑みてなされたものであり、そ
の目的とするところは、光ファイバを光路とするマツハ
ツエンダ干渉計を利用した計測装置において、雑音とし
ての強度変化を除去して位相変化のみを抽出し、測定対
象である物理量の変化を正確に知ることができる装置を
提供することにある。
The present invention has been made in view of the above-mentioned problems, and its purpose is to remove intensity changes as noise and change the phase in a measurement device using a Matsuhatsu Enda interferometer with an optical fiber as the optical path. The object of the present invention is to provide a device that can accurately detect changes in physical quantities to be measured.

かかる目的を達成するために本発明は、光ファイバを光
路とするマツハツエンダ干渉計において、センサ光路お
よびリファレンス光路を通過するそれぞれの光の強度を
それぞれ第1の強度信号および第2の強度信号として取
り出し、センサ光路およびリファレンス光路を通過する
光を互いに干渉させた光の強度を干渉信号として取り出
し、干渉信号と第1.第2の強度信号とに基づいて所定
の演算を行なうことにより干渉信号から干渉による強度
変化以外の強度変化要素を除去するものである。
In order to achieve such an object, the present invention uses a Matsuhatsu Enda interferometer that uses an optical fiber as an optical path, and extracts the intensity of each light passing through a sensor optical path and a reference optical path as a first intensity signal and a second intensity signal, respectively. , the intensity of the light passing through the sensor optical path and the reference optical path is made to interfere with each other, and the intensity of the light is extracted as an interference signal, and the interference signal and the first . By performing a predetermined calculation based on the second intensity signal, intensity change elements other than the intensity change due to interference are removed from the interference signal.

以下、実施例と共に本発明の詳細な説明する。Hereinafter, the present invention will be described in detail along with examples.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示すブロック図である。 FIG. 1 is a block diagram showing one embodiment of the present invention.

光源10はコヒーレント光を照射する。分岐手段12は
、光源10からのコヒーレント光を2つの光束に分岐し
、それぞれをセンサ光路14とリファレンス光路16に
振り分ける。
A light source 10 emits coherent light. The branching means 12 branches the coherent light from the light source 10 into two beams, and distributes them into a sensor optical path 14 and a reference optical path 16, respectively.

センサ光路14およびリファレンス光路16はいずれも
光ファイバにより構成されており、他方の端部はハーフ
ミラ−18および20と対向している。
Both the sensor optical path 14 and the reference optical path 16 are constructed of optical fibers, and the other end faces half mirrors 18 and 20.

セ/ザ光路i4の中央部は、測定部22として被測定雰
囲気中に置かれ、測定対象である物理量の変化を光路の
伝搬特性の変化に変換する。
The central portion of the sensor/sample optical path i4 is placed in the atmosphere to be measured as the measurement unit 22, and converts changes in the physical quantity to be measured into changes in the propagation characteristics of the optical path.

一方、リファレンス光路16はセンサ光路14と同一の
光路長にされると共に安定した雰囲気の中に置かれてい
る。
On the other hand, the reference optical path 16 has the same optical path length as the sensor optical path 14 and is placed in a stable atmosphere.

ハーフミラ−18は、センサ光路14から射出された光
を受けて透過光と反射光に分割し、透過光を検出器24
に投光し、反射光を検出器26に投光する。
The half mirror 18 receives the light emitted from the sensor optical path 14 and divides it into transmitted light and reflected light, and sends the transmitted light to the detector 24.
The reflected light is projected onto the detector 26.

同様に、ハーフミラ−20は、リファレンス光路16か
ら射出された光を受けて透過光と反射光に分割し、透過
光を検出器28に投光し、反射光を検出器26に投光す
る。
Similarly, the half mirror 20 receives the light emitted from the reference optical path 16 and divides it into transmitted light and reflected light, projects the transmitted light to the detector 28 , and projects the reflected light to the detector 26 .

検出器26では、ハーフミラ−18からの反射光とハー
フミラ−20からの反射光とが重ね合わせられ、検出器
26はこの重畳された光を二乗検波してこの光の強度を
検出し、干渉信号S1として出力する。ただし、この干
渉信号には、干渉に基づく強度変化すなわち2つの光束
の位相差に基づく強度変化だけでなく、測定部22での
直接的な影響による強度変化も含まれている。
In the detector 26, the reflected light from the half mirror 18 and the reflected light from the half mirror 20 are superimposed, and the detector 26 performs square law detection of this superimposed light to detect the intensity of this light and generate an interference signal. Output as S1. However, this interference signal includes not only an intensity change based on interference, that is, an intensity change based on the phase difference between the two light beams, but also an intensity change due to a direct influence in the measurement unit 22.

検出器24および28は、それぞれハーフミラ−1Bお
よび20からの透過光を受光して二乗検波し、その強度
を検出してそれぞれ強度信号52゜S3として出力する
The detectors 24 and 28 receive the transmitted light from the half mirrors 1B and 20, perform square law detection, detect the intensity thereof, and output the detected light as an intensity signal 52°S3.

検出器24.26および28の出力信号線はいずれも演
算装置30に接続されており、演算装置30ではこれら
の検出器の出力信号に基づいて後述する所定の演算を行
ない、異なる光路を通過した2つの光束の位相差変化の
みを示す信号を出力する。
The output signal lines of the detectors 24, 26 and 28 are all connected to an arithmetic unit 30, and the arithmetic unit 30 performs a predetermined operation described below based on the output signals of these detectors, and determines whether the light passes through different optical paths. A signal indicating only a change in the phase difference between the two light beams is output.

つぎに、本実施例の動作を演算装置30における演算過
程を中心に説明する。
Next, the operation of this embodiment will be explained focusing on the calculation process in the calculation device 30.

リファレンス光路16のハーフミラ−20側端部におけ
る光の複素振幅をAexp(jφ「)とすると、センサ
光路I4のハーフミラ−18側端部における光の複素振
幅は、測定部22を通過するため位相および強度の変化
を受けてKAexp(jφS)となる、ここで、Aは光
源により定まる定数、φrおよびφSは位相、には測定
部22における強度変化要素である。
If the complex amplitude of the light at the end of the reference optical path 16 on the half mirror 20 side is Aexp(jφ''), the complex amplitude of the light at the end of the sensor optical path I4 on the half mirror 18 side is different from the phase and In response to a change in intensity, KAexp(jφS) is obtained, where A is a constant determined by the light source, φr and φS are phases, and are intensity change factors in the measuring section 22.

検出器26には、ハーフミラ−18および20双方から
の反射光が入射するため、ここでの入射光の複素振幅は (’A Aexp(jφr) + ’A K Aexp
(jφs))となる。
Since reflected light from both the half mirrors 18 and 20 enters the detector 26, the complex amplitude of the incident light here is ('A Aexp (jφr) + 'A K Aexp
(jφs)).

複素振幅Δexp(jφ)なる光の強度を求めることは
、Aexp(jφ)とその複素共役Aexp(−jφ)
との積をとることにほかならない。
To find the intensity of light with a complex amplitude Δexp(jφ), Aexp(jφ) and its complex conjugate Aexp(−jφ)
It is nothing but taking the product of .

したがって、複素振幅 (HAexp(jφr) + ’A K Aexp(j
φs))の強度■1は次のようになる。
Therefore, the complex amplitude (HAexp(jφr) + 'A K Aexp(j
The strength ■1 of φs)) is as follows.

1+= ((%Aexp(jφr) + ’A K A
exp(jφ5))X (’A Aexp(−jφr)
 + ’A K Aexp(−jφS))〕= (!4
A)”X−(exp(jφr) + Kexp(jφ5
))x (cxp(−jφr) + Kexp(−jφ
、))= (HA)”X (1+K” +K (exp
(j(φr−φS)+exp(−j (φr−φ5))
) =(〃AνX (1+K” + 2 Kcos(φr−
φs))・ ・ ・ ・(1) 一方、検出器24が入射する光の複素振幅は、’A K
 Aexp(jφS)であるから、その強度I2は、I
z=1/4 A”  −K”       ・・・・(
2)となり、検出器28が入射する光の複素振幅は、%
Aexp(jφr)であるから、その強度■、は、I、
=174 Az             ・ ・ ・
 ・(3)となる。
1+= ((%Aexp(jφr) + 'A K A
exp(jφ5))X ('A Aexp(-jφr)
+ 'A K Aexp (-jφS)] = (!4
A)"X-(exp(jφr) + Kexp(jφ5
)) x (cxp(-jφr) + Kexp(-jφ
, )) = (HA)”X (1+K” +K (exp
(j(φr-φS)+exp(-j(φr-φ5))
) = (〃AνX (1+K” + 2 Kcos(φr−
φs))・・・・・(1) On the other hand, the complex amplitude of the light incident on the detector 24 is 'AK
Since Aexp(jφS), its intensity I2 is I
z=1/4 A"-K"...(
2), and the complex amplitude of the light incident on the detector 28 is %
Since Aexp(jφr), its strength ■, is I,
=174 Az ・ ・ ・
・(3) becomes.

演算装置30に人力される干渉信号St、強度信号S2
. S3は、それぞれ強度T、、 It、 13を示す
信号であるから ■S3を4倍してその平方根をとれば、Aを算出でき、 ■S2を33で除してその平方根をとれば、Kを算出で
き、 ■S1からS2およびS3を滅じた後、■■の結果を利
用して!4A”Kで除すればcos (φr−φS)を
算出できる。
Interference signal St and intensity signal S2 manually input to the calculation device 30
.. Since S3 is a signal that indicates the strength T, It, and 13, respectively, ■ If we multiply S3 by 4 and take its square root, we can calculate A. ■ If we divide S2 by 33 and take its square root, we can calculate K. can be calculated, and after destroying S2 and S3 from S1, use the results of ■■! By dividing by 4A''K, cos (φr−φS) can be calculated.

cos (φr−φS)は、センサ光路14とリファレ
ンス光路16を通った光の位1目差の余弦であり、この
値の変化から干渉による強度変化のみを知ることができ
、したがって、測定部22における物理量変化を正確に
検出することができる。
cos (φr−φS) is the cosine of the one-order difference between the light passing through the sensor optical path 14 and the reference optical path 16, and only the intensity change due to interference can be known from the change in this value. It is possible to accurately detect changes in physical quantities in .

第2図は本実施例装置を温度検出用として用いた場合の
概略構成図であり、第1図と同一部分に同一符号を何し
である。
FIG. 2 is a schematic configuration diagram when the device of this embodiment is used for temperature detection, and the same parts as in FIG. 1 are denoted by the same reference numerals.

センサ光路としての光ファイバ14をコイル状に巻いて
、測定部22に挿入している状態をしめしている。この
ようにセンサ光路をコイル状に巻くのは、被測定雰囲気
の中に置かれる光路長を長くするためであり、このよう
にすることによって、検出力を高めることができる。
The optical fiber 14 serving as the sensor optical path is shown wound into a coil and inserted into the measuring section 22. The purpose of winding the sensor optical path into a coil in this way is to increase the length of the optical path placed in the atmosphere to be measured, and by doing so, the detection power can be increased.

リファレンス光路としての光ファイバ16がコイル状に
巻かれているのは、センサ光路とその光路長を等しくす
るために他ならない。
The reason why the optical fiber 16 serving as the reference optical path is wound into a coil is to make the optical path length equal to that of the sensor optical path.

第3図は本実施例装置を圧力検出用として用いた場合の
部分構成図である。
FIG. 3 is a partial configuration diagram when the device of this embodiment is used for pressure detection.

測定部22において、測定対象である圧力によリセンサ
光路である光ファイバ14にマイクロベントラ与え、マ
イクロベントによる伝搬特性の変化を検出すれば圧力変
化を計測することができる。
In the measurement unit 22, a pressure change can be measured by applying a microventure to the optical fiber 14, which is a resensor optical path, according to the pressure to be measured, and detecting a change in propagation characteristics due to the microvent.

第4図は本発明の他の実施例を示すブロック図である。FIG. 4 is a block diagram showing another embodiment of the present invention.

同図において、第1図と同一もしくは相当部分には同一
の符号をふしてその詳細な説明は省略する。
In this figure, the same or corresponding parts as in FIG. 1 are designated by the same reference numerals, and detailed explanation thereof will be omitted.

本実施(;iでは、センサ光路14およびリファレンス
光路16に光シャッタ40および42を設けると共に、
この光シャッタ40./12を切り換えて干渉信号St
および強度信号S2. S3を時分割に検出するもので
ある。
In this implementation (i), optical shutters 40 and 42 are provided in the sensor optical path 14 and the reference optical path 16, and
This optical shutter 40. /12 to generate the interference signal St.
and intensity signal S2. This is to detect S3 in a time-division manner.

制御演算部44はシャッタドライバ441.タイミング
制御手段442.バッファ443および演算装置444
を具備する。
The control calculation unit 44 includes a shutter driver 441. Timing control means 442. Buffer 443 and arithmetic unit 444
Equipped with.

シャッタドライバ441はタイミング制御手段442か
らの信号によって、光シャッタ40.42を駆動するわ
けであるが、まず、双方の光シャッタ40.42を開放
すると、検出器26で2光束が干渉し、検出器26は干
渉信号Stをバッファ443に対して出力する。
The shutter driver 441 drives the optical shutters 40.42 in response to a signal from the timing control means 442. First, when both optical shutters 40.42 are opened, the two beams of light interfere with each other on the detector 26, and are detected. The receiver 26 outputs the interference signal St to the buffer 443.

つぎに、光シャッタ40をそのまま開放しておき、光シ
ャッタ42のみを閉じる。すると、検出器26の受光部
にはセンサ光路14を通過した光だけが照射されるため
、検出器26の出力信号はセンサ光路14を通過した光
の強度信号S2としてバッファ443に入力される。
Next, the optical shutter 40 is left open and only the optical shutter 42 is closed. Then, since only the light that has passed through the sensor optical path 14 is irradiated onto the light receiving section of the detector 26, the output signal of the detector 26 is input to the buffer 443 as the intensity signal S2 of the light that has passed through the sensor optical path 14.

つぎに、光シャッタ40を閉じξ光シャッタ42を開く
と検出器26の出力信号はリファレンス光路16を通過
した光の強度信号S3としてバッファ443に人力され
る。
Next, when the optical shutter 40 is closed and the ξ optical shutter 42 is opened, the output signal of the detector 26 is input to the buffer 443 as the intensity signal S3 of the light passing through the reference optical path 16.

以上で、1サイクル−の光検出動作が終了し、バッファ
443から干渉信号S12強度信号S2. S3が演算
装置444に入力されて上述した第1実施例の演算装置
30における演算と同様の演算を行なうことにより、c
os(φr−φS)の値を算出することができる。ただ
し、本実施例における干渉信号SL、強度信号S2. 
S3は前述の第1実施例における干渉信号S1.強度信
号S2.33のそれぞれ22倍すなわち4倍となってい
る。
With this, one cycle of photodetection operation is completed, and the interference signal S12 intensity signal S2. By inputting S3 to the arithmetic unit 444 and performing the same arithmetic operation as the arithmetic operation in the arithmetic unit 30 of the first embodiment described above, c
The value of os(φr−φS) can be calculated. However, in this embodiment, the interference signal SL, the intensity signal S2.
S3 is the interference signal S1.S3 in the first embodiment described above. Each of the intensity signals is 22 times, or 4 times, the intensity signal S2.33.

この値から測定部22における物理量変化を知ることが
できることは第1実施例と同様である。
Similar to the first embodiment, it is possible to know the change in the physical quantity in the measuring section 22 from this value.

なお、光シャフタにメカニカルシャッタを用いれば数m
sのスイッチングは容易にでき、通常の物理量変化を知
るには十分であるが、さらに高速な減少を測定するには
光シャックに光スイフチまたは光変調器等を用いればよ
く、たとえば音響光学変調器によれば1μs程度のスイ
ッチングが可能ある。
In addition, if a mechanical shutter is used as the optical shutter, the distance will be several meters.
Switching of s is easy and is sufficient to detect changes in normal physical quantities, but to measure even faster decreases, an optical switch or optical modulator can be used in the optical shack. For example, an acousto-optic modulator can be used to According to the method, switching time of about 1 μs is possible.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の光学式計測装置によれば
、センサ光路およびリファレンス光路を通過するそれぞ
れの光の強度を強度信号として取り出し、センサ光路お
よびリファレンス光路を通過する光を互いに干渉させた
光の強度を干渉信号として取り出し、干渉信号と強度信
号とに基づいて所定の演算を行なうことに−より干渉信
号から干渉による強度変化以外の強度変化要素を除去す
るので、センサ光路を通過する光とリファレンス光路を
通過する光の位相差の余弦を抽出することができ、種々
の物理量変化を極めて正確に検出することができる。
As explained above, according to the optical measuring device of the present invention, the intensity of each light passing through the sensor optical path and the reference optical path is extracted as an intensity signal, and the lights passing through the sensor optical path and the reference optical path are caused to interfere with each other. By extracting the intensity of the light as an interference signal and performing a predetermined calculation based on the interference signal and the intensity signal, intensity change elements other than the intensity change due to interference are removed from the interference signal, so the light passing through the sensor optical path is It is possible to extract the cosine of the phase difference between the light passing through the reference optical path and the reference optical path, and it is possible to detect changes in various physical quantities extremely accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
本実施例装置を温度検出用として用いた場合の概略構成
図、第3図は本実施例装置を圧力−検出用として用いた
場合の部分構成図、第4図は本発明の他の実施例を示す
プロ、り図である。 10・・・光源、12・・・分岐手段、14・・・セン
サ光路、16・・・リファレンス光路、18.20・・
・ハーフミラ−122・・・測定部、24,26.28
・・・検出器、30,444・・・演算装置、40.4
2・・・光シャッタ。
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a schematic configuration diagram when the device of this embodiment is used for temperature detection, and Fig. 3 is a block diagram of the device of this embodiment used for pressure detection. FIG. 4 is a partial block diagram showing another embodiment of the present invention. DESCRIPTION OF SYMBOLS 10... Light source, 12... Branching means, 14... Sensor optical path, 16... Reference optical path, 18.20...
・Half mirror 122...measuring part, 24, 26.28
...Detector, 30,444...Arithmetic device, 40.4
2... Optical shutter.

Claims (2)

【特許請求の範囲】[Claims] (1)光ファイバを光路とするマッハツェンダ干渉計に
おいて、センサ光路およびリファレンス光路を通過する
それぞれの光の強度をそれぞれ第1の強度信号および第
2の強度信号として取り出し、センサ光路およびリファ
レンス光路を通過する光を互いに干渉させた光の強度を
干渉信号として取り出し、干渉信号と第1、第2の強度
信号とに基づいて所定の演算を行なうことにより干渉信
号から干渉による強度変化以外の強度変化要素を除去す
ることを特徴とする光学式計測装置。
(1) In a Mach-Zehnder interferometer with an optical fiber as the optical path, the intensity of each light passing through the sensor optical path and the reference optical path is extracted as a first intensity signal and a second intensity signal, respectively, and the light passes through the sensor optical path and the reference optical path. The intensity of the light produced by interfering with each other is extracted as an interference signal, and by performing a predetermined calculation based on the interference signal and the first and second intensity signals, intensity change factors other than the intensity change due to interference are extracted from the interference signal. An optical measuring device characterized by removing.
(2)干渉信号と第1、第2の強度信号とを同一の検出
器により時分割に取り出す特許請求の範囲第1項記載の
光学式計測装置。
(2) The optical measuring device according to claim 1, wherein the interference signal and the first and second intensity signals are extracted in a time-division manner by the same detector.
JP15901284A 1984-07-31 1984-07-31 Optical measuring instrument Pending JPS6138505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15901284A JPS6138505A (en) 1984-07-31 1984-07-31 Optical measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15901284A JPS6138505A (en) 1984-07-31 1984-07-31 Optical measuring instrument

Publications (1)

Publication Number Publication Date
JPS6138505A true JPS6138505A (en) 1986-02-24

Family

ID=15684312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15901284A Pending JPS6138505A (en) 1984-07-31 1984-07-31 Optical measuring instrument

Country Status (1)

Country Link
JP (1) JPS6138505A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272905A (en) * 1988-04-25 1989-10-31 Agency Of Ind Science & Technol Intensity correction type interferometer
JPH06160045A (en) * 1992-11-25 1994-06-07 Egawa:Kk Elimination method for unnecessary light in electromagnetic wave interference fringe and measuring method using the electromagnetic interference fringe
JPH0726802B2 (en) * 1988-02-24 1995-03-29 ヒューズ・エアクラフト・カンパニー Pressure / temperature detection system using comb filter
US6081335A (en) * 1997-06-25 2000-06-27 Nec Corporation Phase difference measuring device with visible light source for providing easy alignment of optical axes and method therefor
EP1065539A2 (en) * 1999-06-23 2001-01-03 Thomas & Betts International, Inc. Optical fiber mach-zehnder interferometer employing miniature bends
CN105424219A (en) * 2015-12-08 2016-03-23 北京无线电计量测试研究所 Optical fiber taper sensor based on Mach-Zehnder interferometer, and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726802B2 (en) * 1988-02-24 1995-03-29 ヒューズ・エアクラフト・カンパニー Pressure / temperature detection system using comb filter
JPH01272905A (en) * 1988-04-25 1989-10-31 Agency Of Ind Science & Technol Intensity correction type interferometer
JPH06160045A (en) * 1992-11-25 1994-06-07 Egawa:Kk Elimination method for unnecessary light in electromagnetic wave interference fringe and measuring method using the electromagnetic interference fringe
US6081335A (en) * 1997-06-25 2000-06-27 Nec Corporation Phase difference measuring device with visible light source for providing easy alignment of optical axes and method therefor
EP1065539A2 (en) * 1999-06-23 2001-01-03 Thomas & Betts International, Inc. Optical fiber mach-zehnder interferometer employing miniature bends
EP1065539A3 (en) * 1999-06-23 2004-02-25 Thomas & Betts International, Inc. Optical fiber mach-zehnder interferometer employing miniature bends
CN105424219A (en) * 2015-12-08 2016-03-23 北京无线电计量测试研究所 Optical fiber taper sensor based on Mach-Zehnder interferometer, and preparation method thereof

Similar Documents

Publication Publication Date Title
US4887899A (en) Apparatus and method for electronic analysis of test objects
US6943870B2 (en) Deformation measuring method and apparatus using electronic speckle pattern interferometry
JP3722533B2 (en) Distance measuring device
US11725965B2 (en) Method and device for reconstructing a backscattered electromagnetic vector wave
JPH0663867B2 (en) Interfering device for wavefront condition detection
EP0260894A1 (en) Optical fibre measuring system
JPS6138505A (en) Optical measuring instrument
JPH03504047A (en) Detection and measurement method and device for physical quantities
JP2596998B2 (en) Interferometer for wavelength independent optical signal processing
RU2624594C1 (en) Method of estimation of vibration or acoustic signals along the expansion of objects on the basis of the fiber optic coherent reflectometer with the amplitude and phase modulation of the probing radiation
EP0501559B1 (en) Process and apparatus for absolute interferometric measurements of physical magnitudes
JPS63118624A (en) Optical fiber measuring device and method
US6654124B2 (en) Signal modulation compensation for wavelength meter
JP3287441B2 (en) Optical component for optical line identification and remote measuring method and device therefor
JP2767000B2 (en) Waveguide dispersion measurement method and apparatus
JP3858056B2 (en) Two-direction deformation simultaneous measurement device using speckle
CN204679089U (en) A kind of Young optical fiber white light interference (FBG) demodulator with light path adjustable function
JPH0376845B2 (en)
JPH09133585A (en) Optical pulse train measuring method
Spagnolo et al. Automated slope measurement by digital speckle shearography
CN104535089B (en) A kind of Young optical fiber white light interference (FBG) demodulator with light path adjustable function
JPH01313703A (en) Disturbance elimination type heterodyne interference method optical fiber sensor
Shaheen et al. ɸgOTDR utilizing geometric phase
CN117607761A (en) Multi-point optical fiber magnetic field sensing system and method with temperature and light intensity fluctuation interference resistance
JPS6191537A (en) Method and apparatus for measuring dispersion of optical fiber wavelength