JPS6138494B2 - - Google Patents

Info

Publication number
JPS6138494B2
JPS6138494B2 JP56134058A JP13405881A JPS6138494B2 JP S6138494 B2 JPS6138494 B2 JP S6138494B2 JP 56134058 A JP56134058 A JP 56134058A JP 13405881 A JP13405881 A JP 13405881A JP S6138494 B2 JPS6138494 B2 JP S6138494B2
Authority
JP
Japan
Prior art keywords
register
bit
adder
digital differential
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56134058A
Other languages
Japanese (ja)
Other versions
JPS5837742A (en
Inventor
Yukiro Tsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56134058A priority Critical patent/JPS5837742A/en
Publication of JPS5837742A publication Critical patent/JPS5837742A/en
Publication of JPS6138494B2 publication Critical patent/JPS6138494B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/64Digital differential analysers, i.e. computing devices for differentiation, integration or solving differential or integral equations, using pulses representing increments; Other incremental computing devices for solving difference equations

Description

【発明の詳細な説明】 本発明はデイジタル微分解析器に関する。[Detailed description of the invention] The present invention relates to a digital differential analyzer.

既知のデイジタル微分解析器における基本演算
は積分である。積分はx、yの2つの入力が与え
られたとき Z=∫ydx を満足する。これは微分形を用いて dz=ydx となる。デイジタル微分解析器における積分器で
はdx,dzとして量子化を行つた有限の微小量△
z,△zについて △z=y△x の演算を行う。デイジタル微分解析器における積
分器の基本構成を第1図に示す。Yレジスタ1に
は、初期値y0がセツトされ、Yレジスタ増分パル
スIPが入力線5に入力するたびに、加算器4aを
介して、加算され、Yレジスタ1の内容は、変化
分△yにより yi=yi−+△y となる。Yレジスタ1の出力は、ANDゲート3
を介して加算器4bの入力線8に接続される。S
レジスタ2の出力は加算器4bの入力線9に接続
される。ANDゲート3の入力線7に演算パルス
APが入力されるとYレジスタ1の内容とSレジ
スタ2の内容が加算器4bを介して加算され、加
算結果は接続線10を経由してSレジスタ2に格
能される。OVPはオーバフローパルスである。
Yレジスタ1の場合は、ANDゲート3への演算
パルスAPと演算パルスAPの入力する間になされ
る。
The basic operation in known digital differential analyzers is integration. Integration satisfies Z=∫ydx when two inputs, x and y, are given. This becomes dz=ydx using the differential form. The integrator in the digital differential analyzer uses finite minute quantities △ which are quantized as dx and dz.
For z and △z, perform the calculation △z=y△x. FIG. 1 shows the basic configuration of an integrator in a digital differential analyzer. An initial value y 0 is set in the Y register 1, and each time the Y register increment pulse IP is input to the input line 5, it is added via the adder 4a, and the contents of the Y register 1 are equal to the change Δy. Therefore, yi=yi− 1 +△y. The output of Y register 1 is AND gate 3
The input line 8 of the adder 4b is connected to the input line 8 of the adder 4b. S
The output of register 2 is connected to input line 9 of adder 4b. Operation pulse on input line 7 of AND gate 3
When AP is input, the contents of Y register 1 and S register 2 are added via adder 4b, and the addition result is output to S register 2 via connection line 10. OVP is an overflow pulse.
In the case of the Y register 1, this is done between the input of the calculation pulse AP and the calculation pulse AP to the AND gate 3.

第2図にnビツト直列演算方式のデイジタル微
分解析器の構成図を示す。Yレジスタ1、Sレジ
スタ2は各々nビツトであり、Yレジスタ1は接
続線13を介して加算器4bに接続され、Sレジ
スタ2は接続線14を介して加算器4bに接続さ
れ、加算結果は接続線15を経由しとSレジスタ
2に格納される。加算器4bの出力はキヤリーフ
リツプフロツプ12に接続され、各ビツトごとの
加算演算にともなうキヤリー信号を保持し、次ビ
ツトの加算演算の入力として接線16を介して、
加算器4bの入力となる。キヤリーフロツプフロ
ツプ12の出力は、ANDゲート3により、加算
タイミングtnのときのキヤリーをオーバフローパ
ルスOVPとして取り出す。なお、この図におい
てYレジスタ1の増分回路部分は省略して示して
ある。
FIG. 2 shows a configuration diagram of an n-bit serial calculation type digital differential analyzer. Y register 1 and S register 2 each have n bits, Y register 1 is connected to adder 4b via connection line 13, S register 2 is connected to adder 4b via connection line 14, and the addition result is is stored in the S register 2 via the connection line 15. The output of the adder 4b is connected to a carry flip-flop 12, which holds the carry signal associated with the addition operation for each bit, and is used as an input for the addition operation of the next bit via the tangent line 16.
It becomes an input to adder 4b. The output of the carry flop flop 12 is taken out by the AND gate 3 as the carry at the addition timing tn as an overflow pulse OVP. In this figure, the increment circuit portion of the Y register 1 is omitted.

第3図に実用に共する直列演算方式のデイジタ
ル微分解析器の構成図を示す。YMレジスタ19
は(n×m)ビツトで構成され、nビツトのレジ
スタがm個直列に接続された構成となる。SMレ
ジスタ20は(n×m)ビツトで構成され、nビ
ツトのレジスタがm個直列に接続された構成とな
る。YMレジスタ19の内容とSMレジスタ20
の内容は加算器4bを介して加算され、加算結果
はSMレジスタ20に格納され、オーバフローは
オーバフローレジスタ21に格納される。加算は
S1+Y1、S2+Y2、………と順次実行され(Si+
Yi)の加算演算には(Si−+Yi−)以前に実
行されたオーバフローが反映される。本構成の直
列演算方式による演算時間は、1ビツトの加算に
要する時間を△t時間とするとnビツトの演算時
間は n×△t となり、m個の積分演算に要する時間は m×n×△t となる。直列演算方式によるデイジタル微分解析
器はハードウエア規模が小さいという利点はある
が、演算速度がおそいという欠点をもつ。演算を
高速化する手段として第2図の構成から成る積分
器をデイジタル微分解析器の1演算単位として、
m個の積分単位を構成し並列に演算を実行せしめ
る方法がある。本方式は一般に並列演算方式と呼
ばれており、演算時間は、 n×△t と高速になる。しかし、並列演算方式はデイジタ
ル微分解析器の構成要素として、n個の加算器と
nビツトのレジスタが2m個必要となる。
FIG. 3 shows a block diagram of a digital differential analyzer using a serial calculation method that is suitable for practical use. YM register 19
is composed of (n×m) bits, and has a configuration in which m n-bit registers are connected in series. The SM register 20 is composed of (n×m) bits, and has a configuration in which m registers of n bits are connected in series. Contents of YM register 19 and SM register 20
The contents of are added via the adder 4b, the addition result is stored in the SM register 20, and the overflow is stored in the overflow register 21. The addition is
S 1 +Y 1 , S 2 +Y 2 , etc. are executed sequentially (Si +
The addition operation of Yi) reflects the overflow executed before (Si- 1 +Yi- 1 ). The calculation time using the serial calculation method of this configuration is: If the time required to add one bit is △t time, the calculation time for n bits is n×△t, and the time required for m integral calculations is m×n×△. It becomes t. Digital differential analyzers using a serial calculation method have the advantage of small hardware scale, but have the disadvantage of slow calculation speed. As a means of speeding up calculations, an integrator with the configuration shown in Figure 2 is used as one calculation unit of a digital differential analyzer.
There is a method of constructing m integral units and performing calculations in parallel. This method is generally called a parallel calculation method, and the calculation time is as fast as n×Δt. However, the parallel operation method requires n adders and 2m n-bit registers as components of the digital differential analyzer.

本発明の目的は、直列演算方式と並列演算方式
の欠点を補い、利点をとりいれた構成のデイジタ
ル微分解析器を供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a digital differential analyzer having a structure that compensates for the drawbacks of the serial calculation method and the parallel calculation method and takes advantage of the advantages.

以下、第4図に示す本発明の一実施例について
説明する。本デイジタル微分解析器の基本構成要
素はmビツトのレジスタn個から成るYレジスタ
群とmビツトのレジスタn個から成るSレジスタ
群とnビツト加算器とオーバフローレジスタから
成る。なお、増分回路部分は省略して示してあ
る。すなわち、本発明によれば図に示す如く、m
ビツトのレジスタn個を並列に配置し、各レジス
タの1ビツト目を集合したレジスタをY1レジス
タ、2ビツト目を集合したレジスタをY2レジス
タ、以下同様にしてmビツト目を集合したレジス
タをYmレジスタとなし、m個のYレジスタ群を
構成する。
An embodiment of the present invention shown in FIG. 4 will be described below. The basic components of this digital differential analyzer are a Y register group consisting of n m-bit registers, an S register group consisting of n m-bit registers, an n-bit adder, and an overflow register. Note that the incremental circuit portion is omitted from illustration. That is, according to the present invention, as shown in the figure, m
N bit registers are arranged in parallel, and the register that collects the first bit of each register is the Y1 register, the register that collects the second bit is the Y2 register, and so on. The Ym register constitutes a group of m Y registers.

同様に、mビツトのレジスタn個を並列に配置
し、各レジスタの1ビツト目を集合したレジスタ
をS1レジスタ、2ビツト目を集合したレジスタを
S2レジスタ、以下同様にしてmビツト目を集合し
たレジスタをSmレジスタとなし、m個のSレジ
スタ群を構成する。YM1レジスタ22とSM1レ
ジスタ25は接続線29と接続線32を介して、
加算器28に接続する。YM1レジスタ22の内
容とSM1レジスタ25の内容は加算器28によつ
て加算演算が実行され、その加算結果はSM1レジ
スタ25に接続線35を経由して格納される。以
下同様にして、YM2+SM2、……、YMn+SMn
の演算が並行して実行される。1ビツトの加算に
要する時間を△t′とすると本構成になるnビツト
m個の積分演算に要する時間は m×△t′ となり、直列演算に比し、演算時間は1/nに短
縮される。
Similarly, n registers of m bits are arranged in parallel, and the register that collects the 1st bit of each register is the S1 register, and the register that collects the 2nd bit of each register is the S1 register.
The S2 register, and the like, the register in which the m-th bit is collected is defined as the Sm register, forming a group of m S registers. YM1 register 22 and SM1 register 25 are connected via connection line 29 and connection line 32,
Connect to adder 28. An adder 28 performs an addition operation on the contents of the YM1 register 22 and the contents of the SM1 register 25, and the result of the addition is stored in the SM1 register 25 via a connection line 35. Similarly, YM2+SM2, ..., YMn+SMn
operations are executed in parallel. If the time required for addition of 1 bit is △t', the time required for integral operation of m pieces of n bits in this configuration is m×△t', and compared to serial operation, the operation time is reduced to 1/n. Ru.

以上説明した如く、本発明によれば、直列演算
方式と並列演算方式の各々の欠点をなくし、それ
らの利点を有する高速、安価なデイジタル微分解
析器を得ることができる。
As described above, according to the present invention, it is possible to eliminate the drawbacks of the serial calculation method and the parallel calculation method, and to obtain a high-speed, inexpensive digital differential analyzer that has the advantages thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、デイジタル微分解析器を説明するた
めのブロツク結線図、第2図は従来のnビツト直
列演算方式のデイジタル微分解析器を示すブロツ
ク結線図、第3図は従来のm個の積分要素をもつ
直列演算方式のデイジタル微分解析器を示すブロ
ツク結線図、第4図は本発明の直並列デイジタル
微分解析器の一実施例を示すブロツク結線図であ
る。 22,23,24:Yレジスタ群、25,2
6,27:Sレジスタ群、28:nビツトの加算
器。
Figure 1 is a block wiring diagram for explaining a digital differential analyzer, Figure 2 is a block wiring diagram showing a conventional n-bit serial calculation type digital differential analyzer, and Figure 3 is a conventional digital differential analyzer for m integrals. FIG. 4 is a block diagram showing an embodiment of the serial-parallel digital differential analyzer of the present invention. 22, 23, 24: Y register group, 25, 2
6, 27: S register group, 28: n-bit adder.

Claims (1)

【特許請求の範囲】[Claims] 1 nビツトの加算器と対応する各ビツトを各々
集合して構成したmビツトのレジスタをn個並列
に配置して成るYレジスタ群と、対応する各ビツ
トを各々集合して構成したmビツトのレジスタを
n個並列に配置して成るSレジスタ群とを具備
し、加算演算をなすことを特徴とするデイジタル
微分解析器。
1 A Y register group consisting of n m-bit registers arranged in parallel, each consisting of an n-bit adder and each corresponding bit set, and an m-bit register group consisting of n m-bit registers arranged in parallel, each consisting of a set of corresponding bits. A digital differential analyzer characterized in that it is equipped with an S register group consisting of n registers arranged in parallel, and performs addition operations.
JP56134058A 1981-08-28 1981-08-28 Digital differential analyzer Granted JPS5837742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56134058A JPS5837742A (en) 1981-08-28 1981-08-28 Digital differential analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56134058A JPS5837742A (en) 1981-08-28 1981-08-28 Digital differential analyzer

Publications (2)

Publication Number Publication Date
JPS5837742A JPS5837742A (en) 1983-03-05
JPS6138494B2 true JPS6138494B2 (en) 1986-08-29

Family

ID=15119376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56134058A Granted JPS5837742A (en) 1981-08-28 1981-08-28 Digital differential analyzer

Country Status (1)

Country Link
JP (1) JPS5837742A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327030Y2 (en) * 1986-10-27 1991-06-11

Also Published As

Publication number Publication date
JPS5837742A (en) 1983-03-05

Similar Documents

Publication Publication Date Title
US3947670A (en) Signed multiplication logic
JPS6138494B2 (en)
US4658239A (en) Differential pulse code modulation coder
JPS5841532B2 (en) Sekiwa Keisan Cairo
US4291387A (en) Analog to digital conversion weighting apparatus
JP2674810B2 (en) Multiplexed N-unit coincidence protection circuit
SU1156069A1 (en) Device for scaling digital differential analyser
JPS5966214A (en) Digital filter unit
JP2629737B2 (en) accumulator
JP2550597B2 (en) Squarer
EP0213854A2 (en) Fixed-Coefficient serial multiplication and digital circuits therefor
JP2820701B2 (en) Conversion method to binary
SU1179542A1 (en) Number-to-frequency converter with variable conversion factor
SU1272310A1 (en) Linear interpolator
JPS60173915A (en) Digital filter
SU1283756A1 (en) Device for calculating value of square root
JPH0523013Y2 (en)
SU918952A1 (en) Device for walsh function conversion
JPH0226408A (en) Digital filter
SU1179322A1 (en) Device for multiplying two numbers
SU782155A1 (en) Series binary-to-decimal code converter
SU857976A1 (en) Binary adder
JPS61177492A (en) Multiplier for reverberator
JPH039661B2 (en)
JP2710626B2 (en) Block synchronization circuit