JPS6138492B2 - - Google Patents

Info

Publication number
JPS6138492B2
JPS6138492B2 JP55106103A JP10610380A JPS6138492B2 JP S6138492 B2 JPS6138492 B2 JP S6138492B2 JP 55106103 A JP55106103 A JP 55106103A JP 10610380 A JP10610380 A JP 10610380A JP S6138492 B2 JPS6138492 B2 JP S6138492B2
Authority
JP
Japan
Prior art keywords
circuit
temperature
zero
load
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55106103A
Other languages
Japanese (ja)
Other versions
JPS5731010A (en
Inventor
Yasukyo Ueda
Hirokuni Murakami
Takashi Iwasa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10610380A priority Critical patent/JPS5731010A/en
Publication of JPS5731010A publication Critical patent/JPS5731010A/en
Publication of JPS6138492B2 publication Critical patent/JPS6138492B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1906Control of temperature characterised by the use of electric means using an analogue comparing device
    • G05D23/1909Control of temperature characterised by the use of electric means using an analogue comparing device whose output amplitude can only take two discrete values

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Temperature (AREA)
  • Power Conversion In General (AREA)

Description

【発明の詳細な説明】 本発明は、電気毛布、電気フロアヒータ等の電
気暖房器具の温度制御装置に関するものであり、
電力制御素子の観実なゼロクロストリガを行うこ
とによつて雑音発生を低く抑えた電子制御装置の
提供を目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature control device for electric heating appliances such as electric blankets and electric floor heaters.
The object of the present invention is to provide an electronic control device in which noise generation is suppressed by performing visual zero-cross triggering of a power control element.

従来の電気毛布の温度制御装置を例にとり、第
1図〜第3図に従つて説明する。
Taking a conventional electric blanket temperature control device as an example, it will be explained with reference to FIGS. 1 to 3.

第1図は温度制御装置の従来回路図例を示す。
ACは交流電圧である。2はヒータとセンサが一
体型になつた感温ヒータであり、3がヒータ、4
がプラスチツクサーミスタなどによるセンサ、5
が温度検知電極線である。前記ヒータ3は電力制
御素子6の導通によつて前記交流電圧VACの正の
半サイクル期間中給電される。また、前記ヒータ
3の温度によつて前記センサ4の抵抗値が変化す
るが、前記交流電圧VACの負の半サイクル期間
中、前記温度検知電極線5から前記ヒータ3へ向
つて流れるセンサを電流を、トランジスタ7で構
成した信号検出回路8によつて検出し、コレクタ
電流ICとして取り出す。従つて前記コレクタ電
流ICは半波波形となり、ヒータ温度が高くなる
と前記センサ4の抵抗値が小さくなるので、前記
コレクタ電流ICの値は大きくなる。また、セン
サ4は容量性のインピーダンスを示すので、前記
コレクタ電流ICは前記交流電圧VACの負の半サ
イクルから90゜進んだ波形になる。9はトランジ
スタ7の保護用ダイオードである。ダイオード1
0と抵抗11とコンデンサ12によつて、前記交
流電圧VACから制御回路用低圧直流電圧VCCを得
ている。前記コレクタ電流ICはコンデンサ13
と抵抗14とからなる積分回路15に積分され、
直流の温度信号電圧VTとして比較回路16に入
力される。17は前記交流電圧VACと同期してゼ
ロクロスパルスVZを発生するゼロクロスパルス
発生回路である。18は温度設定回路であり、抵
抗19と温度設定ボリユーム19′とで構成さ
れ、温度設定電圧VSを得ている。20は抵抗、
21はトランジスタであり、前記ゼロクロスパル
ス発生回路17からゼロクロスパルスVZを発生
していない時は前記トランジスタ21がONして
おり、前記比較回路16の出力VOをLowにして
いる。ゼロクロスパルスVZが発生すると前記ト
ランジスタ21がOFFし、その期間前記比較回
路16は温度設定電位VSと温度信号電圧VTとを
比較する。従つて前記ヒータ3の温度が設定温度
に達していない場合にはVT>VSになり、ゼロク
ロスパルスと同型のパルスVOが比較回路16か
ら出力され、電力制御素子6をゼロクロストリガ
して前記ヒータ3に給電を行い、設定温度に引き
上げるものである。22は制限抵抗、23はゲー
ト抵抗である。
FIG. 1 shows an example of a conventional circuit diagram of a temperature control device.
V AC is an alternating voltage. 2 is a temperature-sensitive heater in which the heater and sensor are integrated; 3 is the heater; 4 is the temperature-sensitive heater;
is a sensor such as a plastic thermistor, 5
is the temperature sensing electrode wire. The heater 3 is powered during the positive half cycle of the alternating current voltage V AC by the conduction of the power control element 6 . Further, the resistance value of the sensor 4 changes depending on the temperature of the heater 3, and during the negative half cycle period of the AC voltage VAC, the sensor 4 flows from the temperature detection electrode wire 5 toward the heater 3. The current is detected by a signal detection circuit 8 made up of a transistor 7 and taken out as a collector current I.sub.C. Therefore, the collector current I C has a half wave waveform, and as the heater temperature increases, the resistance value of the sensor 4 decreases, so the value of the collector current I C increases. Furthermore, since the sensor 4 exhibits capacitive impedance, the collector current I C has a waveform that is advanced by 90 degrees from the negative half cycle of the AC voltage V AC . 9 is a protection diode for the transistor 7. diode 1
0, a resistor 11, and a capacitor 12, a low voltage DC voltage V CC for the control circuit is obtained from the AC voltage V AC . The collector current I C is the capacitor 13
and is integrated by an integrating circuit 15 consisting of a resistor 14,
It is input to the comparator circuit 16 as a DC temperature signal voltage V T . Reference numeral 17 denotes a zero-cross pulse generation circuit that generates a zero-cross pulse V Z in synchronization with the AC voltage V AC . Reference numeral 18 denotes a temperature setting circuit, which is composed of a resistor 19 and a temperature setting volume 19', and obtains a temperature setting voltage V S . 20 is resistance,
Reference numeral 21 denotes a transistor, and when the zero-crossing pulse generation circuit 17 is not generating the zero-crossing pulse V Z , the transistor 21 is turned on, and the output V O of the comparing circuit 16 is kept low. When the zero cross pulse V Z is generated, the transistor 21 is turned off, and during that period, the comparison circuit 16 compares the temperature setting potential V S and the temperature signal voltage V T . Therefore, when the temperature of the heater 3 has not reached the set temperature, V T >V S and a pulse V O of the same type as the zero cross pulse is output from the comparison circuit 16, triggering the power control element 6 at the zero cross. Electric power is supplied to the heater 3 to raise the temperature to a set temperature. 22 is a limiting resistor, and 23 is a gate resistor.

上記構成における各部の動作波形図を第2図に
示す。時間t1〜t5の期間はヒータ温度が設定温度
に達していない期間であり、交流電圧VACが正の
半サイクル期間中電力制御素子がトリガされてヒ
ータへ給電を行つている。時間t6〜の期間はヒー
タ温度が設定温度に到達しており、電力制御素子
はトリガされない。
FIG. 2 shows an operational waveform diagram of each part in the above configuration. The period from time t 1 to time t 5 is a period in which the heater temperature does not reach the set temperature, and the power control element is triggered to supply power to the heater during the half cycle period in which the AC voltage V AC is positive. During the period starting from time t 6 , the heater temperature has reached the set temperature and the power control element is not triggered.

上記従来の構成ではゼロクロス期間、温度信号
電圧VTと温度設定電圧VSとをそのまま比較回路
16で比較する構成であるため、ヒータ温度が設
定温度近傍にある時、位相制御をする欠点があつ
た。
In the above conventional configuration, the temperature signal voltage V T and the temperature set voltage V S are directly compared in the comparator circuit 16 during the zero-crossing period, so there is a drawback that phase control is required when the heater temperature is near the set temperature. Ta.

第2図の時間t4でのA部の波形拡大図を第3図
に示し、上記欠点の説明を行う。温度設定電圧V
Sは図示のようにゼロクロスパルス期間に立ち下
がる矩形波状になるが、温度信号電圧VTはその
時、前記積分回路15のコンデンサ13に蓄積し
た電荷を抵抗14を介して徐々に放電しながら保
持しているため、わずかながら右上りのカーブを
描く。従つてVSとVTが近接すると期間Bに示す
ように必ず右側にVT>VSの期間が発生するの
で、前記比較回路16の出力パルスVOは交流電
圧VACの正側で立上る細いパルスを発生し、位相
制御を行つてしまう。
FIG. 3 shows an enlarged view of the waveform of section A at time t4 in FIG. 2, and the above-mentioned drawbacks will be explained. Temperature setting voltage V
As shown in the figure, S has a rectangular waveform that falls during the zero-cross pulse period, but at that time, the temperature signal voltage V T is held while gradually discharging the charge accumulated in the capacitor 13 of the integrating circuit 15 through the resistor 14. Because of this, it draws a slight upward curve to the right. Therefore, when V S and V T are close to each other, a period where V T >V S always occurs on the right side as shown in period B, so the output pulse V O of the comparator circuit 16 rises on the positive side of the AC voltage V AC . It generates a thin rising pulse and performs phase control.

この応用例で示すような電気毛布などでは、寝
ながらFM放送を聞いたりすることが多いため、
微少であつても雑音の発生は重大な欠点になる。
With electric blankets like the one shown in this application example, you often listen to FM broadcasts while sleeping, so
The generation of noise, even if it is minute, is a serious drawback.

本発明はゼロクロスパルス発生期間、積分回路
の放電を停止させることにより、上記欠点を解消
したものである。以下、本発明の一実施例につい
て、第4図〜第7図に従つて説明する。
The present invention solves the above-mentioned drawbacks by stopping the discharging of the integrating circuit during the zero-crossing pulse generation period. An embodiment of the present invention will be described below with reference to FIGS. 4 to 7.

第4図は本発明による温度制御装置の一実施例
である。第1図と異る点は、トランジスタ24か
らなる放電停止回路25を設けた点である。トラ
ンジスタ24はゼロクロスパルスVZが発生して
いない時には、抵抗26を介してONしており、
第1図と同一の動作をしているが、ゼロクロスパ
ルスVZが発生して温度設定電圧VSと温度信号電
圧VTとを比較回路16で比較する期間中は、ト
ランジスタ24がOFFになり、コンデンサ13
の放電を停止する。従つて第5図に示すように、
前記期間中温度信号電圧VTの電圧が変化せず、
従つてVSとVTが近接しても右側にVT>VSの期
間が発生せず、位相制御になることはない。
FIG. 4 shows an embodiment of the temperature control device according to the present invention. The difference from FIG. 1 is that a discharge stop circuit 25 consisting of a transistor 24 is provided. The transistor 24 is turned on via the resistor 26 when the zero cross pulse V Z is not generated.
The operation is the same as that shown in FIG. 1, but the transistor 24 is turned off during the period when the zero cross pulse V Z occurs and the temperature setting voltage V S and the temperature signal voltage V T are compared in the comparator circuit 16. , capacitor 13
stop discharging. Therefore, as shown in Figure 5,
During the period, the temperature signal voltage V T does not change;
Therefore, even if V S and V T are close to each other, a period of V T >V S will not occur on the right side, and phase control will not occur.

第6図に更に改良を加えた本発明による温度制
御装置の他の実施例を示す。第4図と異る点は、
抵抗27からなる積分付勢回路28を設けた点で
ある。ゼロクロスパルスVZが発生してない時に
は、トランジスタ24がONし第4図と同様にコ
ンデンサ13の電荷は抵抗14を介して徐々に放
電しているが、ゼロクロスパルスVZが発生する
とトランジスタ24がOFFし、従つてコレクタ
電流ICが流れていなくても抵抗14と抵抗27
とを介してコンデンサ13に積分を行うので、第
7図に示すように前記期間中温度信号電圧VT
右下りのカーブを描く。従つてVSとVTが近接す
ると必ず左側からVT>VSになるので、少々の雑
音にも左右されない確実なゼロクロストリガを行
うことが可能になるものである。また前記積分付
勢回路の動作時間は極めて短いので、その間の若
干の積分によつて温度信号電圧VTが大幅にずれ
る心配はない。
FIG. 6 shows another embodiment of the temperature control device according to the present invention, which is further improved. The difference from Figure 4 is that
The point is that an integral energizing circuit 28 consisting of a resistor 27 is provided. When the zero-cross pulse V Z is not generated, the transistor 24 is turned on and the charge in the capacitor 13 is gradually discharged through the resistor 14 as in FIG. 4, but when the zero-cross pulse V Z is generated, the transistor 24 is turned on. OFF, so even if collector current I C is not flowing, resistor 14 and resistor 27
Since integration is performed on the capacitor 13 via the voltage V T , the temperature signal voltage V T during the period draws a downward-sloping curve as shown in FIG. Therefore, when V S and V T are close to each other, V T >V S from the left side will always hold, so it is possible to perform a reliable zero cross trigger that is not affected by even a small amount of noise. Furthermore, since the operating time of the integral energizing circuit is extremely short, there is no fear that the temperature signal voltage V T will be significantly shifted due to some integration during that time.

以上に述べたように本発明は、温度信号電圧と
温度設定電圧とを比較するゼロクロスパルス発生
期間中、放電停止回路によつて前記温度信号電圧
を得る積分回路の放電を停止させる構成あるの
で、温度信号電圧と温度設定電圧とを正確に比較
することができ、従つて比較出力として安定した
ゼロクロストリガパルスが得られるものである。
更に、前記放電停止回路の作動期間中、積分付勢
回路によつて積分回路に積分を行わせることによ
りゼロクロス点手前から確実に比較出力を発生さ
せることができるため、少々の雑音にも左右され
ない確実なゼロクロストリガを行うことができる
ものである。
As described above, the present invention has a configuration in which the discharge stop circuit stops the discharge of the integrating circuit that obtains the temperature signal voltage during the zero-cross pulse generation period in which the temperature signal voltage and the temperature setting voltage are compared. The temperature signal voltage and the temperature setting voltage can be accurately compared, and therefore a stable zero cross trigger pulse can be obtained as a comparison output.
Furthermore, during the operation period of the discharge stop circuit, the integral energizing circuit causes the integrating circuit to perform integration, so that the comparative output can be reliably generated from before the zero cross point, so that it is not affected by even slight noise. This allows reliable zero cross triggering.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の温度制御装置の回路図、第2図
は第1図における各部の動作波形図、第3図は第
2図におけるA部の波形拡大図、第4図は本発明
による温度制御装置の一実施例の回路図、第5図
は第4図の構成における第3図のA部に該当する
波形拡大図、第6図は本発明の温度制御装置の他
の実施例の回路図、第7図は第6図の構成におけ
る第3図のA部に該当する波形拡大図である。 2……感温ヒータ、3……ヒータ、4……セン
サ、5……温度検知電極線、6……電力制御素
子、8……信号検出回路、15……積分回路、1
6……比較回路、17……ゼロクロスパルス発生
回路、18……温度設定回路、21……トランジ
スタ、25……放電停止回路、28……積分付勢
回路、VAC……交流電圧、VCC……制御回路用直
流電圧、IC……コレクタ電流、VH……電力制御
素子6のアノード電圧、VT……温度信号電圧、
Z……ゼロクロスパルス、VS……温度設定電
圧、VO……ゼロクロストリガパルス。
Fig. 1 is a circuit diagram of a conventional temperature control device, Fig. 2 is an operation waveform diagram of each part in Fig. 1, Fig. 3 is an enlarged waveform diagram of section A in Fig. 2, and Fig. 4 is a temperature control device according to the present invention. A circuit diagram of one embodiment of the control device, FIG. 5 is an enlarged waveform diagram corresponding to part A of FIG. 3 in the configuration of FIG. 4, and FIG. 6 is a circuit diagram of another embodiment of the temperature control device of the present invention. 7 are enlarged waveform diagrams corresponding to section A of FIG. 3 in the configuration of FIG. 6. 2...Temperature sensitive heater, 3...Heater, 4...Sensor, 5...Temperature detection electrode wire, 6...Power control element, 8...Signal detection circuit, 15...Integrator circuit, 1
6... Comparison circuit, 17... Zero cross pulse generation circuit, 18... Temperature setting circuit, 21... Transistor, 25... Discharge stop circuit, 28... Integral activation circuit, V AC ... AC voltage, V CC ...DC voltage for control circuit, I C ...Collector current, V H ...Anode voltage of power control element 6, V T ...Temperature signal voltage,
V Z ...Zero cross pulse, V S ...Temperature setting voltage, V O ...Zero cross trigger pulse.

Claims (1)

【特許請求の範囲】 1 ヒータ等の負荷と、前記負荷への給電を交流
の半サイクルにおいて制御する電力制御素子と、
前記負荷温度を検出するセンサと、前記負荷への
給電を行う半サイクルの他方の半サイクルにおい
て前記センサの信号を検出する信号検出回路と、
前記信号検出回路の出力を積分保持する積分回路
と、前記負荷の動作温度を設定する温度設定回路
と、前記交流電圧のゼロクロス点でパルスを発生
させるゼロクロスパルス発生回路と、前記積分回
路と前記温度設定回路の出力とを比較し、前記ゼ
ロクロスパルスと同期して前記電力制御素子を付
勢、消勢する比較回路と、前記ゼロクロスパルス
と同期して前記積分回路の放電を停止させる放電
停止回路とで構成したことを特徴とする温度制御
装置。 2 放電停止回路の作動期間、積分回路に積分を
行わせる積分付勢回路を設けたことを特徴とする
特許請求の範囲第1項記載の温度制御装置。
[Claims] 1. A load such as a heater, and a power control element that controls power supply to the load in a half cycle of alternating current;
a sensor that detects the load temperature; a signal detection circuit that detects a signal of the sensor in the other half cycle of the half cycle in which power is supplied to the load;
an integrating circuit that integrates and holds the output of the signal detection circuit; a temperature setting circuit that sets the operating temperature of the load; a zero-crossing pulse generation circuit that generates a pulse at a zero-crossing point of the AC voltage; and the integrating circuit and the temperature. a comparison circuit that compares the output of a setting circuit and energizes or deenergizes the power control element in synchronization with the zero-cross pulse; and a discharge stop circuit that stops discharging the integrating circuit in synchronization with the zero-cross pulse. A temperature control device characterized by comprising: 2. The temperature control device according to claim 1, further comprising an integration energizing circuit that causes the integration circuit to perform integration during the operation period of the discharge stop circuit.
JP10610380A 1980-07-31 1980-07-31 Temperature control device Granted JPS5731010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10610380A JPS5731010A (en) 1980-07-31 1980-07-31 Temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10610380A JPS5731010A (en) 1980-07-31 1980-07-31 Temperature control device

Publications (2)

Publication Number Publication Date
JPS5731010A JPS5731010A (en) 1982-02-19
JPS6138492B2 true JPS6138492B2 (en) 1986-08-29

Family

ID=14425168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10610380A Granted JPS5731010A (en) 1980-07-31 1980-07-31 Temperature control device

Country Status (1)

Country Link
JP (1) JPS5731010A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59231618A (en) * 1983-06-15 1984-12-26 Matsushita Electric Ind Co Ltd Temperature controller
KR101036989B1 (en) 2009-12-23 2011-05-26 엘에스산전 주식회사 Interlock apparatus of ground switch for vacuum circuit breaker

Also Published As

Publication number Publication date
JPS5731010A (en) 1982-02-19

Similar Documents

Publication Publication Date Title
JPS6138492B2 (en)
JPS6131503Y2 (en)
JPS6355754B2 (en)
JPS6122804B2 (en)
JPH0213327B2 (en)
JPS5934411Y2 (en) Hot water temperature control device
JP3189458B2 (en) Phase control circuit of electric water heater
JPH05159862A (en) Temperature controller
JPS5888619A (en) Annunciating device for amount of water in heat insulating pot
JPH0320767B2 (en)
JPH0616458Y2 (en) Electric heater
JPS5934412Y2 (en) Hot water temperature control device
JPS6326885B2 (en)
JPS6138487B2 (en)
JPS63181285A (en) Electric heater
JPS6324311A (en) Temperature controller
JPS59182721U (en) temperature control device
JPS6343827Y2 (en)
JPH025388A (en) Temperature controller for electric heater
JPS6155234B2 (en)
JPS6120516A (en) Electric pot
JPH0216595U (en)
JPS62256114A (en) Temperature controller
JPH02196312A (en) Temperature controller
JPS6226157B2 (en)