JP3189458B2 - Phase control circuit of electric water heater - Google Patents
Phase control circuit of electric water heaterInfo
- Publication number
- JP3189458B2 JP3189458B2 JP01718393A JP1718393A JP3189458B2 JP 3189458 B2 JP3189458 B2 JP 3189458B2 JP 01718393 A JP01718393 A JP 01718393A JP 1718393 A JP1718393 A JP 1718393A JP 3189458 B2 JP3189458 B2 JP 3189458B2
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- power supply
- voltage
- output
- heater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Control Of Resistance Heating (AREA)
- Control Of Temperature (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、電気湯沸かし器の位相
制御回路に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phase control circuit for an electric water heater.
【0002】[0002]
【従来の技術】電気湯沸かし器の構成を図4に示す。図
において、給水口1からシャワーヘッド2の間に設けた
タンク3に、ヒータ4、及び、サーミスタ5が設けられ
ている。そしてこのサーミスタ5で湯温を検出しなが
ら、ボリューム6で設定した温度になるように、ヒータ
4の通電量を制御器7で位相制御して流水を加熱し、シ
ャワーヘッド2から出湯させていた。次にこの従来の電
気湯沸かし器を制御する位相制御回路を図5、図6に基
づいて説明する。2. Description of the Related Art The structure of an electric water heater is shown in FIG. In the figure, a heater 4 and a thermistor 5 are provided in a tank 3 provided between a water supply port 1 and a shower head 2. Then, while detecting the hot water temperature with the thermistor 5, the amount of electricity supplied to the heater 4 is phase-controlled by the controller 7 so that the flowing water is heated so as to reach the temperature set by the volume 6, and the hot water is discharged from the shower head 2. . Next, a conventional phase control circuit for controlling the electric water heater will be described with reference to FIGS.
【0003】電源回路11は交流電源10から直流電圧
Vccを作り、各回路へ供給する。パルス発生回路12
は交流電源10に同期したゼロクロスパルスを発生し
て、CR充放電回路13の放電部14を駆動する。ゼロ
クロスパルス発生期間以外の期間は、放電部14のトラ
ンジスタ15がオフであるので充電部16のコンデンサ
17は充電されCR充放電回路13の出力Vsである比
較器18の非反転入力端子(+)の電位Vsが除除に上
昇する。そして、ゼロクロスパルス発生期間においてト
ランジスタ15がオンとなり、コンデンサ17の電荷が
急速に放電して、比較器18の非反転入力端子(+)の
電位Vsは、ほぼトランジスタ15のエミッタ電位とな
る。従って、比較器18の非反転入力端子(+)の電圧
Vsは図6のように鋸状の波形となる。A power supply circuit 11 generates a DC voltage Vcc from an AC power supply 10 and supplies it to each circuit. Pulse generation circuit 12
Generates a zero-cross pulse synchronized with the AC power supply 10 to drive the discharge unit 14 of the CR charge / discharge circuit 13. During periods other than the zero-cross pulse generation period, since the transistor 15 of the discharging unit 14 is off, the capacitor 17 of the charging unit 16 is charged and the non-inverting input terminal (+) of the comparator 18 which is the output Vs of the CR charging / discharging circuit 13 Potential Vs rises. Then, during the zero-cross pulse generation period, the transistor 15 is turned on, the charge of the capacitor 17 is rapidly discharged, and the potential Vs of the non-inverting input terminal (+) of the comparator 18 becomes almost the emitter potential of the transistor 15. Therefore, the voltage Vs of the non-inverting input terminal (+) of the comparator 18 has a saw-like waveform as shown in FIG.
【0004】一方、比較器18の反転入力端子(−)に
は、温度検出回路19と温度設定回路20の電位差を増
幅回路21で増幅した直流電圧Vtを入力する。比較器
18の反転入力端子(−)の電圧Vtは、高温出湯側ほ
ど低くなる。例えば、ボリューム22の抵抗値を小さく
して高温側に設定すると比較器18の反転入力端子
(−)の電圧Vtは低くなり100%通電に近づく。比
較器18はCR充放電回路13の出力Vsと増幅回路2
1の出力Vtを比較してVs>Vtの電位関係になると
Hiを出力して、トリガ回路23を駆動、トライアック
24を導通させてヒータ25へ通電し流水を加熱する。
そして、温度検出回路19のサーミスタ26で、入水温
や流量の変化による湯温の変化を検出し、トライアック
24のオン位相を制御してヒータ25の通電量を決め、
温度設定回路20で設定した温度にコントロールする。On the other hand, a DC voltage Vt obtained by amplifying a potential difference between a temperature detecting circuit 19 and a temperature setting circuit 20 by an amplifier circuit 21 is input to an inverting input terminal (−) of the comparator 18. The voltage Vt of the inverting input terminal (-) of the comparator 18 becomes lower as the temperature rises. For example, when the resistance value of the potentiometer 22 is reduced and set to the high temperature side, the voltage Vt of the inverting input terminal (-) of the comparator 18 decreases and approaches 100% conduction. The comparator 18 outputs the output Vs of the CR charge / discharge circuit 13 and the amplifier circuit 2
The output Vt is compared with the output Vt, and when the potential relationship of Vs> Vt is established, Hi is output, the trigger circuit 23 is driven, the triac 24 is turned on, the heater 25 is energized, and the flowing water is heated.
Then, the thermistor 26 of the temperature detection circuit 19 detects a change in the hot water temperature due to a change in the incoming water temperature or the flow rate, and controls the ON phase of the triac 24 to determine the amount of power to the heater 25.
The temperature is controlled to the temperature set by the temperature setting circuit 20.
【0005】ダイオード27は増幅回路の出力電圧Vt
が、必ずCR充放電回路13の出力電圧Vsよりも高い
所があるようにするためで、ダイオード27がないと、
ゼロクロスパルス発生期間において、Vsはトランジス
タ15のVCE(sat)電圧と抵抗28での発生電圧
の和となり約0.3V程度発生するが、Vtはオペアンプ
出力であるので最低Vccまで下がり、Vtが常にVs
よりも低くなってしまって、比較器18の出力がLoと
なり100%通電が必要にもかかわらずトライアック2
4がオフしてしまう。この100%通電側においてトラ
イアック24がオフしてしまうのをダイオード27で防
止する構成となっていた。The diode 27 has an output voltage Vt of the amplifier circuit.
However, in order to make sure that there is a place higher than the output voltage Vs of the CR charge / discharge circuit 13, without the diode 27,
In the zero-cross pulse generation period, Vs is the sum of the VCE (sat) voltage of the transistor 15 and the voltage generated at the resistor 28, and is generated at about 0.3 V. However, since Vt is an operational amplifier output, it falls to the minimum Vcc, and Vt is always Vs
And the output of the comparator 18 becomes Lo, and the triac 2 is required even though 100% current is required.
4 turns off. The diode 27 prevents the triac 24 from being turned off on the 100% conducting side.
【0006】[0006]
【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、100%通電側におけるCR充放電回路
13の出力Vsと増幅回路21の出力Vtの関係が、交
流電源10が定格値においては図7のように出力Vsと
出力Vtの交差する位相Taが交流電源10の0Vに近
い所となり、ヒータ25はほぼ100%通電状態とな
る。しかし、交流電源10が低下し電源回路11が安定
化しなくなった場合においては、図8のように出力Vt
が定電圧素子であるダイオード27によって、負の直流
電圧Vccからの電圧Vaが交流電源10の定格値の時
と同じであるため、及び、CR充放電回路13の出力V
sの充電波形が緩やかとなるため、出力Vsと出力Vt
の交差する位相Tbが交流電源10の0Vからかなり離
れた所となって、100%通電状態が得られなくなり、
所定の湯温がでなくなってしまう。もちろん、電源回路
11の抵抗29を交流電源10が低下しても安定化が得
られるような小さな値に設定すれば、前記のような問題
点は発生しないが、今度は抵抗29の消費電力が大きく
なり、特にマレーシアなどの交流電源10の電圧が24
0V等と高い国においては非常に抵抗29の消費電力が
大きくなり、抵抗29の消費電力が大きくなると、抵抗
29の形状を大きくしなければならず、また、放熱スペ
ースも必要となり大きな実装容量が必要でコスト高とも
なり実現が非常に難しかった。However, in the configuration described above, the relationship between the output Vs of the CR charge / discharge circuit 13 and the output Vt of the amplifier circuit 21 on the 100% energized side is not shown when the AC power supply 10 is rated. 7, the phase Ta at which the output Vs and the output Vt intersect is close to 0 V of the AC power supply 10, and the heater 25 is almost 100% energized. However, when the AC power supply 10 drops and the power supply circuit 11 does not stabilize, as shown in FIG.
Is a constant voltage element, the voltage Va from the negative DC voltage Vcc is the same as at the rated value of the AC power supply 10, and the output V of the CR charge / discharge circuit 13
s, the output waveform Vs and the output Vt
Becomes significantly distant from 0 V of the AC power supply 10, so that a 100% energized state cannot be obtained.
The predetermined hot water temperature is lost. Of course, if the resistance 29 of the power supply circuit 11 is set to such a small value that stabilization can be obtained even if the AC power supply 10 is lowered, the above-mentioned problem does not occur, but the power consumption of the resistance 29 is reduced this time. In particular, the voltage of the AC power supply 10 in Malaysia or the like becomes 24
In a country where the resistance is as high as 0 V, the power consumption of the resistor 29 becomes extremely large. If the power consumption of the resistor 29 becomes large, the shape of the resistor 29 must be increased, and a heat radiation space is required. It was necessary and costly, and it was very difficult to realize.
【0007】本発明はかかる従来の課題を解決するもの
で、実装容量が小さく、交流電源が低下した場合でも1
00%の通電状態が得られ十分な湯温が出湯する電気湯
沸かし器の位相制御回路を提供することを目的とする。The present invention solves the above-mentioned conventional problem. Even if the mounting capacity is small and the AC power supply is reduced, the present invention is not limited to this.
It is an object of the present invention to provide a phase control circuit of an electric water heater that can obtain a sufficient hot water temperature by obtaining a power supply state of 00%.
【0008】[0008]
【課題を解決するための手段】上記課題を解決するた
め、本発明の電気湯沸かし器の位相制御回路は、交流電
源から負の直流電圧を発生する第一の電源回路と、第一
の電源回路から分圧して直流電圧を発生する第二の電源
回路を構成して、比較器の電源とCR充放電回路の放電
部は第一の電源回路に接続し、増幅回路とCR充放電回
路の充電部は第二の電源回路に接続した位相制御回路と
したものである。To solve the above-mentioned problems, a phase control circuit of an electric water heater according to the present invention comprises a first power supply circuit for generating a negative DC voltage from an AC power supply, and a first power supply circuit for generating a negative DC voltage. A second power supply circuit for generating a DC voltage by dividing the voltage is constituted, a power supply of the comparator and a discharging unit of the CR charging / discharging circuit are connected to the first power supply circuit, and a charging unit of the amplifying circuit and the CR charging / discharging circuit are connected. Is a phase control circuit connected to the second power supply circuit.
【0009】[0009]
【作用】本発明は上記した構成により、交流電源の低下
時において負の直流電圧を発生する第一の電源回路、及
び、第二の電源回路が安定化しなくなっても、CR充放
電回路の最低電圧と増幅回路の出力電圧の最低値の電圧
差が、第二の電源回路を構成する分圧抵抗で発生する電
圧で決まり、この分圧抵抗で発生する電圧は第二の電源
回路の負荷電流によってきまる。従って、交流電源が低
下して第一の電源回路、及び、第二の電源回路が安定化
しなくなって低下すると第二の電源回路の負荷電流が減
少して第二の電源回路を構成する分圧抵抗で発生する電
圧も低下する。すなわち、CR充放電回路の最低電圧と
増幅回路の出力電圧の最低値の電圧差が交流電源が低下
すると小さくなり、CR充放電回路の出力と増幅回路の
出力が交差する位相が交流電源の0V位相に近づき、ゆ
えに、ヒータの100%通電状態が確保できるものであ
る。According to the present invention, even if the first power supply circuit and the second power supply circuit that generate a negative DC voltage when the AC power supply drops are not stabilized, the minimum charge / discharge circuit of the CR charge / discharge circuit is provided. The voltage difference between the voltage and the lowest value of the output voltage of the amplifier circuit is determined by the voltage generated by the voltage dividing resistor constituting the second power supply circuit, and the voltage generated by the voltage dividing resistor is the load current of the second power supply circuit. Depends on Therefore, when the AC power supply is reduced and the first power supply circuit and the second power supply circuit are not stabilized and are reduced, the load current of the second power supply circuit is reduced and the voltage division constituting the second power supply circuit is reduced. The voltage generated by the resistor also drops. That is, the voltage difference between the lowest voltage of the CR charge / discharge circuit and the lowest value of the output voltage of the amplifier circuit becomes smaller as the AC power supply decreases, and the phase at which the output of the CR charge / discharge circuit and the output of the amplifier circuit intersect is 0 V of the AC power supply. The phase is approached, and therefore, a 100% energized state of the heater can be ensured.
【0010】[0010]
【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1は電気湯沸かし器の位相制御回路図で30
は交流電源、31は第一の電源回路でダイオード32で
整流、抵抗33で降圧、ツェナーダイオード34で安定
化、コンデンサ35で平滑して負の直流電圧Vccを出
力する。36は第二の電源回路で第一の電源回路31の
直流電圧Vccを分圧抵抗37で降圧、ツェナーダイオ
ード38で安定化、コンデンサ39で平滑して直流電圧
Vddを出力する。40はパルス発生回路で交流電源3
0に同期したゼロクロスパルスを発生する。41はCR
充放電回路でパルス発生回路40で駆動され抵抗42と
コンデンサ43で充電部44を、トランジスタ45で放
電部46を構成して鋸状の波形の電圧Vsを出力する。
47は温度検出回路で湯温をサーミスタ48で検出して
抵抗49との分割電圧を出力する。50は温度設定回路
で湯温をボリューム51で設定して抵抗52との分割電
圧を出力する。53は増幅回路でインピーダンス変換す
るオペアンプ54、増幅するオペアンプ55、抵抗5
6、抵抗57、抵抗58で構成して温度検出回路47と
温度設定回路50の出力電圧差を増幅して直流電圧Vt
を出力する。59は比較器でCR充放電回路41の出力
Vsと増幅回路53の出力Vtを比較してVs>Vtな
らばHiを出力する。60はトリガ回路で比較器59の
出力がHiとなった位相にトリガパルスを出力する。6
1はトライアックでトリガ回路60のトリガパルスによ
り駆動する。62はヒータでトライアック61がオンす
ると交流電源30が供給され流水を加熱する。そして、
比較器59の電源とCR充放電回路41の放電部46は
第一の電源回路31に接続し、増幅回路53とCR充放
電回路41の充電部44は第二の電源回路36に接続し
ている。An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a phase control circuit diagram of an electric water heater.
Is a power supply circuit, 31 is a first power supply circuit, rectified by a diode 32, stepped down by a resistor 33, stabilized by a Zener diode 34, smoothed by a capacitor 35 and output a negative DC voltage Vcc. Numeral 36 denotes a second power supply circuit which reduces the DC voltage Vcc of the first power supply circuit 31 by a voltage dividing resistor 37, stabilizes it by a Zener diode 38, smoothes it by a capacitor 39, and outputs a DC voltage Vdd. Reference numeral 40 denotes a pulse generating circuit which is an AC power source 3
A zero-cross pulse synchronized with 0 is generated. 41 is CR
The charging / discharging circuit is driven by the pulse generating circuit 40, the charging unit 44 is constituted by the resistor 42 and the capacitor 43, and the discharging unit 46 is constituted by the transistor 45, and outputs a voltage Vs having a sawtooth waveform.
A temperature detecting circuit 47 detects the temperature of the hot water with a thermistor 48 and outputs a divided voltage with the resistor 49. Reference numeral 50 denotes a temperature setting circuit for setting the temperature of the hot water with the volume 51 and outputting a divided voltage with the resistor 52. 53, an operational amplifier 54 for performing impedance conversion by an amplifier circuit, an operational amplifier 55 for amplifying, and a resistor 5
6, a resistor 57 and a resistor 58 to amplify the output voltage difference between the temperature detection circuit 47 and the temperature setting circuit 50 to increase the DC voltage Vt.
Is output. A comparator 59 compares the output Vs of the CR charge / discharge circuit 41 with the output Vt of the amplifier circuit 53 and outputs Hi if Vs> Vt. Reference numeral 60 denotes a trigger circuit which outputs a trigger pulse at a phase when the output of the comparator 59 becomes Hi. 6
Reference numeral 1 denotes a triac which is driven by a trigger pulse of the trigger circuit 60. Reference numeral 62 denotes a heater. When the triac 61 is turned on, the AC power supply 30 is supplied to heat the flowing water. And
The power supply of the comparator 59 and the discharging unit 46 of the CR charging / discharging circuit 41 are connected to the first power supply circuit 31, and the amplifying circuit 53 and the charging unit 44 of the CR charging / discharging circuit 41 are connected to the second power supply circuit 36. I have.
【0011】上記構成において、図2の動作説明図と共
に説明する。交流電源30に同期したゼロクロスパルス
を発生するパルス発生回路40の出力Vzは交流電源3
0の0VにおいてHiとなってCR充放電回路41の放
電部46を駆動する。このパルス発生回路40の出力V
zがLoの期間において、CR充放電回路41の充電部
44のコンデンサ43は、抵抗42とで決まる時定数に
よって充電される。そして、パルス発生回路40の出力
VzがHiの期間において、トランジスタ45がオンし
てコンデンサ43の電荷を第二の電源回路36の分圧抵
抗37を介して急速に放電すると共に、出力Vsの電圧
を第一の電源回路31の負の直流電圧Vcc電位として
鋸波の出力Vsを出力する。増幅回路53は温度検出回
路47と温度設定回路50の出力電圧差を増幅して直流
電圧Vtを出力し、その直流電圧Vtはボリューム51
の抵抗値を小さくするほど低くなり、最低値は第二の電
源回路36の出力である直流電圧Vdd電位となる。ま
た、ボリューム51抵抗値が一定で流量が増加、また
は、入水温が低下してサーミスタ48の抵抗値が増加し
ても、直流電圧Vtは低くなり、最低値は第二の電源回
路36の出力である直流電圧Vdd電位となる。The above configuration will be described with reference to the operation explanatory diagram of FIG. The output Vz of the pulse generation circuit 40 that generates a zero-cross pulse synchronized with the AC power supply 30 is
It becomes Hi at 0 V of 0, and drives the discharge unit 46 of the CR charge / discharge circuit 41. The output V of this pulse generation circuit 40
During the period when z is Lo, the capacitor 43 of the charging unit 44 of the CR charge / discharge circuit 41 is charged by a time constant determined by the resistor 42. Then, during the period when the output Vz of the pulse generation circuit 40 is Hi, the transistor 45 is turned on to rapidly discharge the charge of the capacitor 43 through the voltage dividing resistor 37 of the second power supply circuit 36, and the voltage of the output Vs Is output as the sawtooth wave output Vs as the negative DC voltage Vcc potential of the first power supply circuit 31. The amplification circuit 53 amplifies the output voltage difference between the temperature detection circuit 47 and the temperature setting circuit 50 and outputs a DC voltage Vt.
Becomes lower as the resistance value of the second power supply circuit 36 decreases, and the lowest value is the potential of the DC voltage Vdd which is the output of the second power supply circuit 36. Further, even if the resistance value of the volume 51 is constant and the flow rate increases, or the resistance value of the thermistor 48 increases due to a decrease in the incoming water temperature, the DC voltage Vt decreases and the minimum value is the output of the second power supply circuit 36. , Which is the DC voltage Vdd potential.
【0012】そして、比較器59で出力Vsと出力Vt
を比較してVs>Vtとなった時点で比較器59がHi
を出力して、トリガ回路60を駆動してトリガパルスを
出力し、トライアック61をオンしてヒータ62へ通電
する。比較器59がHiを出力する時点、すなわち、位
相は増幅回路53の出力Vtが低いほど前に進みヒータ
62の通電量が100%側へと増加する。ヒータ62へ
の通電量が増加すれば流水を加熱する能力が上がり出湯
する湯温は高くなる。そして、ヒータ62の最大の通電
量は、交流電源30の0V時点における出力Vsの最低
値と、出力Vtの最低値、すなわち、第一の電源回路3
1の出力Vccと第二の電源回路36の出力Vddの電
位差Vbから決まることとなり、この電位差Vbが小さ
いほど最大の通電量は大きくなる。The comparator 59 outputs the output Vs and the output Vt.
Are compared, and when Vs> Vt, the comparator 59 becomes Hi.
To drive the trigger circuit 60 to output a trigger pulse, and turn on the triac 61 to energize the heater 62. The time when the comparator 59 outputs Hi, that is, the phase is advanced as the output Vt of the amplifier circuit 53 is lower, and the energization amount of the heater 62 is increased to the 100% side. If the amount of electricity supplied to the heater 62 increases, the ability to heat the flowing water increases, and the temperature of the hot water that flows out increases. The maximum energization amount of the heater 62 depends on the minimum value of the output Vs and the minimum value of the output Vt at the time of 0 V of the AC power supply 30, that is, the first power supply circuit 3
1 and the potential difference Vb between the output Vdd of the second power supply circuit 36 and the smaller the potential difference Vb, the greater the maximum energization amount.
【0013】次に、図3のように交流電源30が低下し
た時において、負の直流電圧Vccを発生する第一の電
源回路31、及び、負の直流電圧Vddを発生する第二
の電源回路36が安定化しなくなると、CR充放電回路
41の出力Vsの最低電圧と、増幅回路53の出力Vt
の最小値の電圧差が、第二の電源回路36を構成する分
圧抵抗37に発生する電圧で決まり、この分圧抵抗37
で発生する電圧は第二の電源回路36の負荷電流によっ
てきまる。従って、交流電源30が低下して第一の電源
回路31、及び、第二の電源回路36が安定化しなくな
って低下すると第二の電源回路36の負荷電流が減少し
て第二の電源回路36を構成する分圧抵抗37で発生す
る電圧も低下する。すなわち、CR充放電回路41の出
力Vsの最低電圧と増幅回路53の出力電圧Vtの最低
値の電圧差Vcが交流電源30が低下するほど小さくな
り、出力Vsと出力Vtが交差する位相Tcは、交流電
源30の0Vに近い所を維持することになる。Next, a first power supply circuit 31 for generating a negative DC voltage Vcc and a second power supply circuit for generating a negative DC voltage Vdd when the AC power supply 30 drops as shown in FIG. 36 is no longer stabilized, the lowest voltage of the output Vs of the CR charge / discharge circuit 41 and the output Vt of the amplifier 53
Is determined by the voltage generated at the voltage dividing resistor 37 constituting the second power supply circuit 36, and the voltage dividing resistor 37
Is determined by the load current of the second power supply circuit 36. Therefore, when the AC power supply 30 decreases and the first power supply circuit 31 and the second power supply circuit 36 become unstable and decrease, the load current of the second power supply circuit 36 decreases and the second power supply circuit 36 decreases. , The voltage generated by the voltage dividing resistor 37 is also reduced. That is, the voltage difference Vc between the lowest voltage of the output Vs of the CR charge / discharge circuit 41 and the lowest value of the output voltage Vt of the amplifier circuit 53 decreases as the AC power supply 30 decreases, and the phase Tc at which the output Vs and the output Vt intersect is , Near the 0V of the AC power supply 30.
【0014】[0014]
【発明の効果】以上のように、本発明は交流電源から負
の直流電圧を発生する第一の電源回路と、第一の電源回
路から分圧して直流電圧を発生する第二の電源回路を構
成して、比較器の電源とCR充放電回路の放電部は第一
の電源回路に接続し、増幅回路とCR充放電回路の充電
部は第二の電源回路に接続することにより、交流電源が
低下したときにおいても、第一の電源回路の降圧する抵
抗の値を小さくすることなく、CR充放電回路の出力V
sと増幅回路の出力Vtの最低値がVs>Vtの電位関
係となる位相を、交流電源の0V位相に近づけることが
でき、ヒータの100%通電状態が確実に確保でき、十
分な湯温が得られるもので、第一の電源回路の交流電源
を降圧する抵抗の消費電力が抑えられ、よって、第一の
電源回路の降圧する抵抗の形状、及び、放熱スペースも
小さくなり、実装容量が小さく、また、コスト安ともな
る電気湯沸かし器の位相制御回路を提供することができ
るものである。As described above, the present invention provides a first power supply circuit for generating a negative DC voltage from an AC power supply and a second power supply circuit for generating a DC voltage by dividing the voltage from the first power supply circuit. The power supply of the comparator and the discharging part of the CR charging / discharging circuit are connected to the first power supply circuit, and the charging part of the amplifying circuit and the CR charging / discharging circuit are connected to the second power supply circuit. Is reduced, the output V of the CR charge / discharge circuit is reduced without reducing the value of the step-down resistor of the first power supply circuit.
The phase at which the minimum value of s and the minimum value of the output Vt of the amplifier circuit has the potential relationship of Vs> Vt can be brought close to the 0 V phase of the AC power supply, the 100% energized state of the heater can be reliably ensured, and sufficient hot water temperature can be obtained. As a result, the power consumption of the resistor that steps down the AC power supply of the first power supply circuit is suppressed, and therefore, the shape of the step-down resistor of the first power supply circuit and the heat radiation space are also reduced, and the mounting capacity is reduced. In addition, it is possible to provide a phase control circuit of an electric water heater that is inexpensive.
【図1】本発明の一実施例の電気湯沸かし器の位相制御
回路図FIG. 1 is a phase control circuit diagram of an electric water heater according to one embodiment of the present invention.
【図2】同回路の第一の動作説明図FIG. 2 is a first operation explanatory diagram of the circuit.
【図3】同回路の第二の動作説明図FIG. 3 is a diagram illustrating a second operation of the circuit.
【図4】電気湯沸かし器の構成図FIG. 4 is a configuration diagram of an electric water heater.
【図5】従来の電気湯沸かし器の位相制御回路図FIG. 5 is a phase control circuit diagram of a conventional electric water heater.
【図6】同回路の第一の動作説明図FIG. 6 is a first operation explanatory diagram of the circuit.
【図7】同回路の第二の動作説明図FIG. 7 is a diagram illustrating a second operation of the circuit.
【図8】同回路の第三の動作説明図FIG. 8 is a diagram illustrating a third operation of the circuit.
30 交流電源 31 第一の電源回路 36 第二の電源回路 40 パルス発生回路 41 CR充放電回路 44 充電部 46 放電部 47 温度検出回路 50 温度設定回路 53 増幅回路 59 比較器 60 トリガ回路 61 トライアック 62 ヒータ Reference Signs List 30 AC power supply 31 First power supply circuit 36 Second power supply circuit 40 Pulse generation circuit 41 CR charge / discharge circuit 44 Charging unit 46 Discharging unit 47 Temperature detection circuit 50 Temperature setting circuit 53 Amplification circuit 59 Comparator 60 Trigger circuit 61 Triac 62 heater
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H05B 3/00 F24H 1/20 G05D 23/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) H05B 3/00 F24H 1/20 G05D 23/00
Claims (1)
電源を供給するトライアックと、前記交流電源から負の
直流電圧を発生する第一の電源回路と、前記第一の電源
回路から分圧して直流電圧を発生する第二の電源回路
と、前記交流電源に同期したゼロクロスパルスを発生す
るパルス発生回路と、前記ゼロクロスパルスが発生して
いない時にコンデンサに充電する充電部と前記ゼロクロ
スパルスが発生している時にコンデンサに電荷を放電す
る放電部とからなり鋸波を出力するCR充放電回路と、
前記ヒータで加熱した水の湯温を検出する温度検出回路
と、前記ヒータで加熱する水の温度を設定する温度設定
回路と、前記温度検出回路と前記温度設定回路との電圧
差を増幅する増幅回路と、前記CR充放電回路と前記増
幅回路との出力を比較する比較器と、前記比較器からの
出力により駆動され前記トライアックヘトリガ信号を出
力するトリガ回路とを備え、前記比較器の電源と前記C
R充放電回路の放電部は第一の電源回路に接続し、前記
増幅回路と前記CR充放電回路の充電部は前記第二の電
源回路に接続した電気湯沸かし器の位相制御回路。1. A heater for heating water, a triac for supplying AC power to the heater, a first power supply circuit for generating a negative DC voltage from the AC power supply, and a voltage divider for dividing the voltage from the first power supply circuit. A second power supply circuit that generates a DC voltage, a pulse generation circuit that generates a zero cross pulse synchronized with the AC power supply, a charging unit that charges a capacitor when the zero cross pulse is not generated, and the zero cross pulse is generated. A CR charging / discharging circuit that outputs a sawtooth wave, comprising a discharging unit that discharges electric charge to a capacitor when performing
A temperature detection circuit for detecting the temperature of the water heated by the heater; a temperature setting circuit for setting the temperature of the water to be heated by the heater; and an amplifier for amplifying a voltage difference between the temperature detection circuit and the temperature setting circuit. A comparator for comparing outputs of the CR charge / discharge circuit and the amplifier circuit; and a trigger circuit driven by an output from the comparator to output the triac trigger signal, and a power supply for the comparator. And the C
A phase control circuit for an electric water heater, wherein a discharging unit of the R charging / discharging circuit is connected to a first power supply circuit, and a charging unit of the amplification circuit and the CR charging / discharging circuit is connected to the second power supply circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01718393A JP3189458B2 (en) | 1993-02-04 | 1993-02-04 | Phase control circuit of electric water heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01718393A JP3189458B2 (en) | 1993-02-04 | 1993-02-04 | Phase control circuit of electric water heater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06231862A JPH06231862A (en) | 1994-08-19 |
JP3189458B2 true JP3189458B2 (en) | 2001-07-16 |
Family
ID=11936836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01718393A Expired - Fee Related JP3189458B2 (en) | 1993-02-04 | 1993-02-04 | Phase control circuit of electric water heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3189458B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4876168A (en) * | 1987-06-26 | 1989-10-24 | Minolta Camera Kabushiki Kaisha | Photosensitive member comprising charge generating layer and charge transporting layer comprising amorphous carbon containing chalogen or transition metal |
-
1993
- 1993-02-04 JP JP01718393A patent/JP3189458B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06231862A (en) | 1994-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4900885A (en) | High frequency heating system with changing function for rated consumption power | |
JP3168842B2 (en) | High frequency heating equipment | |
JP3189458B2 (en) | Phase control circuit of electric water heater | |
JP3189459B2 (en) | Phase control circuit of electric water heater | |
JP3483956B2 (en) | Constant power control device | |
JPH0715651B2 (en) | Temperature control device | |
JP3227745B2 (en) | Temperature control device | |
JP2589159Y2 (en) | Induction heating device for cooking | |
JP2774895B2 (en) | Switching regulator | |
KR100876009B1 (en) | Power compensation apparatus for induction heating apparatus | |
JPS6122804B2 (en) | ||
JP2987537B2 (en) | Electric cooker and its control device | |
JPH11202680A (en) | Voltage fluctuation reducing circuit | |
JP2003059623A (en) | Current control method, and current control device for practicing current control method | |
JPH0837086A (en) | Induction-heating cooking device | |
JPH0141890B2 (en) | ||
JP2000324809A (en) | Power factor correction controller circuit | |
JPS5880712A (en) | Temperature controller | |
JPH09106315A (en) | Temperature controller | |
JPS58129513A (en) | Temperature controlling device | |
JPH03280389A (en) | Inverter control circuit for driving magnetron | |
JP2732834B2 (en) | Automatic voltage switching circuit | |
JPS6135555B2 (en) | ||
JPH0710177B2 (en) | Switching regulator | |
JPH09308284A (en) | Motor revolution controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |