JPS6137707B2 - - Google Patents

Info

Publication number
JPS6137707B2
JPS6137707B2 JP55147773A JP14777380A JPS6137707B2 JP S6137707 B2 JPS6137707 B2 JP S6137707B2 JP 55147773 A JP55147773 A JP 55147773A JP 14777380 A JP14777380 A JP 14777380A JP S6137707 B2 JPS6137707 B2 JP S6137707B2
Authority
JP
Japan
Prior art keywords
bit line
voltage
cell
potential
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55147773A
Other languages
Japanese (ja)
Other versions
JPS5771580A (en
Inventor
Yoshihiro Takemae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP55147773A priority Critical patent/JPS5771580A/en
Priority to US06/313,616 priority patent/US4458336A/en
Priority to EP81304967A priority patent/EP0050529B1/en
Priority to DE8787104318T priority patent/DE3177221D1/en
Priority to IE2483/81A priority patent/IE53512B1/en
Priority to DE8181304967T priority patent/DE3176601D1/en
Priority to EP87104318A priority patent/EP0239913B2/en
Publication of JPS5771580A publication Critical patent/JPS5771580A/en
Publication of JPS6137707B2 publication Critical patent/JPS6137707B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4099Dummy cell treatment; Reference voltage generators

Description

【発明の詳細な説明】 本発明は、MOSキヤパシタを記憶素子とする
ダイナミツク型半導体メモリ装置に係り、特に電
源電圧変動に対するセル情報量の安定化に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dynamic semiconductor memory device using a MOS capacitor as a storage element, and particularly to stabilizing the amount of cell information against fluctuations in power supply voltage.

MOSキヤパシタを記憶素子とするダイナミツ
ク型半導体メモリ装置は一般に第1図の様に構成
される。この図でSAはセンスアンプ、BL,
はセンスアツプSAから左右に延びるビツト線
対、PREはMOSトランジスタQ1〜Q3からなるプ
リチヤージ回路、MCはMOSトランジスタQ5およ
びMOSキヤパシタCsからなるメモリセル、DMC
はMOSトランジスタQ6,Q7およびMOSキヤパシ
タCDからなるダミーセル、WLはトランジスタ
Q5をオンにしてセルMCをビツト線BLへ接続す
るワード線、DWLはトランジスタQ6をオンにし
てダミーセルDMCをビツト線へ接続するダミ
ーワード線、はトランジスタQ7をオンにして
容量CDを放電させるつまりノードN2をメモリ電
源の低電位側電圧Vss(通常0V)に設定する信
号、BCはトランジスタQ1〜Q3をオンにしてビツ
ト線対BL,をシヨートしかつ電源の高電位側
電圧Vcc(一般に5V)にプリチヤージさせる信号
であり、CBはビツト線容量を示す。なおMOS容
量CS及びCDの対向電極にはVccが印加されてい
る。
A dynamic semiconductor memory device using a MOS capacitor as a storage element is generally constructed as shown in FIG. In this figure, SA is a sense amplifier, BL,
PRE is a pre-charge circuit consisting of MOS transistors Q1 to Q3 , MC is a memory cell consisting of MOS transistor Q5 and MOS capacitor Cs , and DMC is a bit line pair extending left and right from sense-up SA.
is a dummy cell consisting of MOS transistors Q 6 and Q 7 and MOS capacitor C D , WL is a transistor
DWL is the word line that turns on Q5 and connects the cell MC to the bit line BL.DWL is the dummy word line that turns on the transistor Q6 and connects the dummy cell DMC to the bit line.DWL turns on the transistor Q7 and connects the dummy cell DMC to the bit line BL. In other words, BC is a signal that sets node N2 to the low potential side voltage Vss (usually 0V) of the memory power supply.BC turns on transistors Q1 to Q3 , shorts the bit line pair BL, and This is a signal to precharge the potential side voltage Vcc (generally 5V), and C B indicates the bit line capacitance. Note that Vcc is applied to the opposing electrodes of the MOS capacitors C S and C D.

第2図は第1図のセルMCから情報“0”を読
出す際の動作波形図である。書込みまたはリフレ
ツシユが終了してワード線WLをVssに低下させ
た後、信号BC,を上げてビツト線BL,を
ccにプリチヤージし、且つダミーセルDMCの
ノードN2をVssに設定し、スタンドバイ状態に移
行する。この種のメモリ装置は一般にVcc=5Vが
基準電源であるが、これには±10%の変動が許容
されているので、実際にはVccは4.5〜5.5Vの間
で変化する可能性がある。第2図はVcc=4.5Vの
時にセルMCに“0”を書込んで(N1点をVss
して)時刻t2でこれを読出す間に、そのスタンド
バイ期間中のt0〜t1でVccが4.5Vから5.5Vに上昇
した場合の波形例である。一般にダミーセル
DMCの容量CDはメモリセルMCの容量CSに対し CD=1/2CS ……(1) に設定されるので、第2図とは異なりt2時点でも
cc=4.5VのままであればWLが立ち上がつた時
ビツト線BL,より、セルノードN1、ダミーセ
ルノードN2に電流が流れ込み、BL,の電圧が
降下し、その降下電圧は,BLでそれぞれ、約
cc/C,Vcc/Cであるのでビツト線BL
の電位VB L とビツト線の電位VBLは VBL=Vcc−Vcc/C =4.5−4.5C/C=4.5−4.5/2 C
/C……(2) VBL=Vcc−Vcc/C =4.5−4.5C/C ……(3) であるから、ビツト線BL,の差電圧ΔVBLは ΔVBL=|VBL−VBL| =2.25C/C(V) …(4) となる。しかし、第2図のようにt0〜t1でVcc
5.5Vに変動し、以後もこの値を維持すれば、Vcc
が5.5Vに上つたときノードN1の電位は容量CS
より突き上げられてVccの変化分1Vだけ上昇し、
ビツト線電位は次の如くなる。
FIG. 2 is an operational waveform diagram when reading information "0" from the cell MC of FIG. 1. After writing or refreshing is completed and the word line WL is lowered to Vss , the signal BC is raised to precharge the bit line BL to Vcc , and the node N2 of the dummy cell DMC is set to Vss . Move to standby state. This type of memory device generally has a reference power supply of Vcc = 5V, but this is allowed to fluctuate by ±10%, so in reality, Vcc may vary between 4.5 and 5.5V. There is. Figure 2 shows that when Vcc = 4.5V, "0" is written to the cell MC ( N1 point is set to Vss ) and while it is read out at time t2 , t0 during the standby period. This is an example of a waveform when Vcc rises from 4.5V to 5.5V at ~ t1 . Generally dummy cell
Since the capacitance C D of DMC is set to C D = 1/2 C S with respect to the capacitance C S of the memory cell MC, V cc remains at 4.5 V even at time t 2 , unlike in Fig. 2. Then, when WL rises, current flows from bit line BL to cell node N 1 and dummy cell node N 2 , and the voltage of BL drops, and the voltage drop is approximately V cc C for each of BL. Since D /C B and V cc C S /C B , the bit line BL
The potential V BL of the bit line and the potential V BL of the bit line are V BL = V cc - V cc CD / CB = 4.5-4.5 CD / CB = 4.5-4.5/2 CS
/C B ... (2) V BL = V cc - V cc C S /C B = 4.5-4.5 C S /C B ... (3) Therefore, the differential voltage ΔV BL of the bit line BL is ΔV BL = |V BL -V BL | =2.25C S /C B (V)...(4). However, as shown in Figure 2, from t 0 to t 1 , V cc =
If it fluctuates to 5.5V and maintains this value thereafter, V cc
When the voltage rises to 5.5V, the potential of the node N1 is pushed up by the capacitor C S and rises by 1V corresponding to the change in Vcc ,
The bit line potential is as follows.

BL=Vcc−Vcc/C =5.5−5.5C/C=5.5−5.5/2 C
/C……(5) VBL=Vcc−(Vcc−N1)C/C =Vcc−(Vcc−1.0)C/C =5.5−4.5C/C ……(6) 従つて読出し時点t2での差電圧は ΔVBL=|VBL−VBL|=1.75C/C ……(7) に減少する。この回路では“1”リード時には上
述した問題は生じない。即ちメモリセルMCに
“1”を書込むということは本例ではノードN1
ccに設定するということであるから、書込み終
了でノードN1の電位は4.5V、その後5.5Vへの電
源変動があるとノードN1は容量CSにより突上げ
られて5.5Vになり、これで続取り状態に入ると
電源電圧変動がない場合の“1”リードと同様、
ビツト線BLから電荷を引抜くことはなく、一方
側は5.5Vにプリチヤージされている該ビツト
線から1/2CSに対応する電荷を引抜き、これら は正常時と全く同じである。
V BL =V cc -V cc CD /C B =5.5-5.5C D /C B =5.5-5.5/2 C S
/C B ......(5) V BL = V cc - (V cc -N 1 ) C S /C B = V cc - (V cc -1.0) C S /C B = 5.5-4.5 C S /C B ...(6) Therefore, the differential voltage at the read time t2 decreases to ΔV BL =|V BL -V BL |=1.75C S /C B ...(7). In this circuit, the above-mentioned problem does not occur when reading "1". In other words, writing "1" to the memory cell MC means setting the node N 1 to V cc in this example, so the potential of the node N 1 is 4.5V when the writing is completed, and then the power supply is set to 5.5V. When there is a fluctuation, the node N 1 is pushed up by the capacitor C S to 5.5V, and when it enters the takeover state, it is similar to the “1” lead when there is no fluctuation in the power supply voltage.
No charge is extracted from the bit line BL, and a charge corresponding to 1/2 C S is extracted from the bit line, which is precharged to 5.5V on one side, and these are exactly the same as in normal times.

第1図のメモリ回路では上述のように“0”リ
ードが電源電圧変動の影響を受け、これはMOS
容量CS及びCDの対向電極がVccを印加されてい
ることに起因する。MOS容量CSの対向電極電位
MOS容量下に基板と反対の不純物をイオンイン
プランテーシヨンなどの技術により注入すればV
ccでなくVSSなどでもよい。VSSにすればVcc
電圧変動によるノードN1の電位変動は回避でき
そうである。第3図の回路はかゝる観点に立つも
ので、MOSキヤパシタの対向電極電位をVSS
している。しかしこの第3図の回路は“0”リー
ドには問題ないが、“1”リードに電源変動の影
響を受ける。第4図は第3図の“1”リードの動
作波形で、同じくVcc=4.5VでセルMCに“1”
を書込み、t2〜t1でVccが5.5Vに変動した例であ
る。第4図と異なり読出し時t2までVccが4.5Vを
保てば VBL=Vcc−Vcc/C =4.5−4.5/2 C/C ……(8) であり、セルMCの情報が“1”であればN1
4.5Vなのでワード線WLが上つてもビツト線BLか
らN1点への電荷の流入はないので VBL=Vcc=4.5V ……(9) である。従つて ΔVBL=|VBL−VBL|=2.25C/C ……(10) となり、(4)式と変らない。しかし、第4図のよう
に電源Vccがスタンドバイ期間に5.5Vに上昇して
しまうと VBL=Vcc−Vcc/C =5.5−5.5C/C=5.5−5.5/2 C
/C……(11) となり、またVccが5.5Vに上昇してもN1点は上昇
しないで4.5Vのままであるため、セルMCに流れ
込む電荷で VBL=Vcc−(Vcc−N1)C/C =5.5−(5.5−4.5)C/C=5.5−C/C
……(12) となるので、読出し時点t2の差電圧は(7)式と同様
に ΔVBL=|VBL−VBL|=1.75C/C ……(13) に減少する。
In the memory circuit shown in Figure 1, the “0” lead is affected by power supply voltage fluctuations as described above, and this is due to the MOS
This is due to the fact that Vcc is applied to the opposing electrodes of the capacitances C S and C D. Opposite electrode potential of MOS capacitor C S
If an impurity opposite to the substrate is implanted under the MOS capacitor using techniques such as ion implantation, V
You can use V SS instead of cc . If V SS is used, it seems possible to avoid potential fluctuations at node N 1 due to voltage fluctuations in V cc . The circuit shown in FIG. 3 is based on this point of view, and the potential of the opposing electrode of the MOS capacitor is set to V SS . However, although the circuit shown in FIG. 3 has no problem with "0" leads, it is affected by power supply fluctuations with "1" leads. Figure 4 shows the operating waveform of the "1" lead in Figure 3, and the cell MC also has a "1" at Vcc = 4.5V.
In this example, Vcc is changed to 5.5V from t2 to t1 . Unlike Fig. 4, if Vcc maintains 4.5V until t2 during reading, VBL = Vcc - Vcc CD / CB = 4.5-4.5/2 CS / CB ......(8) , and if the information of cell MC is “1”, N 1 =
Since the voltage is 4.5V, even if the word line WL rises, no charge flows from the bit line BL to the N1 point, so V BL =V cc =4.5V (9). Therefore, ΔV BL =|V BL −V BL |=2.25C S /C B ...(10), which is the same as equation (4). However, as shown in Figure 4, if the power supply V cc rises to 5.5V during the standby period, V BL = V cc - V cc CD / CB = 5.5-5.5 CD / CB = 5.5-5 .5/2 C S
/CD...(11 ), and even if Vcc rises to 5.5V, the N1 point does not rise and remains at 4.5V, so the charge flowing into cell MC is VBL = Vcc - (V cc -N 1 ) CS / CB =5.5-(5.5-4.5) CS / CB =5.5- CS /C
B ...(12) Therefore, the differential voltage at read time t2 decreases to ΔV BL = |V BL -V BL |=1.75C S /C B ...(13), similar to equation (7). .

第5図はこれらの点を改善した回路例で、直列
抵抗R1,R1からなる分圧回路PS1によつて電源V
ccの1/2に相当する電圧Vc=Vcc/2を発生し、
これをMOS容量CS,CDの対向電極に印加する
ようにしたものである。第6図はこの回路の
“0”リード時の動作波形図であり、また第7図
は“1”リード時の動作波形図である。この回路
では、“0”ライト、“0”リード共にVcc=4.5V
一定であれば、読出し時の差電圧は ΔVBL=2.25C/C ……(14) であり、また第6図のようにVccがt0〜t1間で
4.5Vから5.5Vに変動しても読出し時点t2が十分に
遅ければVc,N1が図示の如く変るので VBL=Vcc−Vcc/C=5.5−5.5C/C =5.5−5.5/2 C/C=5.5−2.75C
/C……(15) VBL=Vcc−(Vcc−N1)C/C =5.5−(5.5−0.5)C/C=5.5−5C/C
……(16) であるから、t2時の差電圧は ΔVBL=|VBL−VBL|=2.25C/C ……(17) となり、(14)式と変らない。同様のことは“1”
リード時にもあてはまる。つまり、Vcc=4.5V一
定であれば読出し時の差電圧は ΔVBL=2.25C/C ……(18) であり、また第1図のようにVccがt0〜t1間で
4.5Vから5.5Vに変動しても読出し時点t2が充分に
遅ければ VBL=Vcc−Vcc/C =5.5−5.5/2 C/C ……(19) VBL=Vcc−(Vcc−N1)C/C =5.5−(5.5−5)C/C=5.5−0.5C/C
……(20) となるので、t2時の差電圧は ΔVBL=|VBL−VBL|=2.25C/C ……(21) となり、(18)式と変らない。
Figure 5 shows an example of a circuit that improves these points .
Generates a voltage V c =V cc /2 corresponding to 1/2 of cc ,
This is applied to the opposing electrodes of the MOS capacitors C S and C D . FIG. 6 is an operational waveform diagram of this circuit when reading "0", and FIG. 7 is an operational waveform diagram when reading "1". In this circuit, Vcc = 4.5V for both “0” write and “0” read
If it is constant, the differential voltage at the time of reading is ΔV BL =2.25C S /C B (14), and as shown in Figure 6, when V cc is between t 0 and t 1 ,
Even if it fluctuates from 4.5V to 5.5V, if the readout time t2 is slow enough , Vc and N1 will change as shown, so VBL = Vcc - Vcc CD / C B = 5.5-5.5C D / C B =5.5-5.5/2 C S /C B =5.5-2.75 C S
/C B ......(15) V BL =V cc - (V cc -N 1 )C S /C B =5.5-(5.5-0.5)C S /C B =5.5-5C S /C
B ...(16) Therefore, the differential voltage at t2 is ΔV BL =|V BL -V BL |=2.25C S /C B ...(17), which is the same as equation (14). Similar thing is “1”
This also applies when leading. In other words, if V cc = 4.5V constant, the differential voltage during reading is ΔV BL = 2.25C S /C B (18), and as shown in Figure 1, when V cc is between t 0 and t 1 in
Even if it fluctuates from 4.5V to 5.5V, if the readout time t2 is slow enough, V BL = V cc - V cc C D /C B =5.5-5.5/2 C S /C B ......(19) V BL =V cc -(V cc -N 1 )C S /C B =5.5-(5.5-5)C S /C B =5.5-0.5C S /C
B ...(20) Therefore, the differential voltage at t2 is ΔV BL =|V BL -V BL |=2.25C S /C B ...(21), which is the same as equation (18).

しかし、このメモリ回路では消費電力を小にす
るため抵抗R1の値は大きくするのでVccの変動に
対するVcの即応性が劣り、読出し時点t2が早ま
れば第3図と同様にΔVBLが小さくなる。例え
ば、64Kビツト級のRAMでは全セル共通に使用
される分圧回路PS1のVc点に接続される容量Cが
1000pFにも及び、また抵抗R1に流れる電流IR1
を0.1mA以下に抑えるために2R1=50KΩとすれ
ば、Vccが変動した際にVcに現われる変化は 2R1・C=50μm なる大きさ時定数を有する。このため、第7図で
ccが5.5Vに変化した直後t1で読出しを行なえ
ば、差電圧は ΔVBL=1.75C/C ……(22) となり、(13)式と変らない。
However, in this memory circuit, the value of resistor R 1 is made large in order to reduce power consumption, so the quick response of V c to fluctuations in V c is poor, and if the read time t 2 is earlier, ΔV BL becomes smaller. For example, in a 64K-bit RAM, the capacitance C connected to the Vc point of the voltage divider PS 1 , which is used in common for all cells, is
1000 pF , and the current I R1 flowing through the resistor R1
If 2R 1 =50KΩ is set in order to suppress the voltage to 0.1 mA or less, the change that appears in V c when V cc fluctuates has a time constant of 2R 1 ·C = 50 μm. Therefore, if reading is performed at t 1 immediately after V cc changes to 5.5V in Figure 7, the differential voltage will be ΔV BL = 1.75C S /C B ... (22), which is the same as equation (13). .

本発明はこの点を更に改善して、いかなる周波
数成分の電源変動に対してもセルの情報量(ビツ
ト線からの電荷抽出量)が変化せず、しかもダミ
ーセルが不要となる利点を持つ回路構成を提供し
ようとするものである。複数のワード線及びビツ
ト線を有し、それらの交差部にメモリセルを配列
し、該メモリセルがトランスフアーゲートを介し
て該ビツト線に接続されたキヤパシタを記憶素子
とし、該ビツト線をブリチヤージ電圧に充電し、
該キヤパシタ内の電荷量を応じて該ビツト線を高
電位又は低電位にするようにしてなるダイナミツ
ク型の半導体メモリ装置において、該ブリチヤー
ジ電圧及び該キヤパシタの該トランスフアーゲー
トとは反対側の対向電極側電圧を共に、前記ビツ
ト線の高電位電圧と低電位電圧との中央値に設定
する回路を設けてなることを特徴とするが、以下
図示の実施例を参照しながらこれを詳細に説明す
る。
The present invention further improves this point and provides a circuit configuration that has the advantage that the amount of information in the cell (the amount of charge extracted from the bit line) does not change even when the power supply changes in any frequency component, and there is no need for dummy cells. This is what we are trying to provide. It has a plurality of word lines and bit lines, memory cells are arranged at their intersections, the memory cells use a capacitor connected to the bit line via a transfer gate as a storage element, and the bit line is used as a bridge charger. charge to voltage,
In a dynamic type semiconductor memory device in which the bit line is set to a high potential or a low potential depending on the amount of charge in the capacitor, the bridging voltage and a counter electrode of the capacitor opposite to the transfer gate are provided. The circuit is characterized in that it is provided with a circuit for setting both side voltages to the median value of the high potential voltage and the low potential voltage of the bit line, and this will be explained in detail below with reference to the illustrated embodiment. .

第8図は本発明の一実施例を示す回路図で、第
9図はその“0”リード時の動作波形図、第10
図は“1”リード時の動作波形図である。第8図
が第5図と異なる点は2つあり、第1は電源Vcc
の1/2正しくは(Vcc―VSS)/2に相当する電
圧を発生する分圧回路PS2の出力VcをMOS容量
Sの対向電極のみならず、ブリチヤージ回路
PREにも印加するようにした点である。第2
は、プリチヤージ回路PREによつてチヤージア
ツプされるビツト線BL,のスタンドバイ時の
電位がVcc/2となるのでビツト線の電位そ
のものをセル情報の判定に使用でき、このためダ
ミーセルDMCを省略した点である。なおこれに
伴ない本メモリ回路ではダイナミツクプルアツプ
回路DPUをビツト線接続する。
Fig. 8 is a circuit diagram showing an embodiment of the present invention, Fig. 9 is an operation waveform diagram when reading "0", and Fig. 10 is a circuit diagram showing an embodiment of the present invention.
The figure is an operation waveform diagram when reading "1". There are two points in which Fig. 8 differs from Fig. 5. The first is that the power supply V cc
The output V c of the voltage divider circuit PS 2 , which generates a voltage equivalent to 1/2 of (V cc - V SS )/2, is applied not only to the counter electrode of the MOS capacitor C S but also to the bricharge circuit.
The point is that it is applied to PRE as well. Second
In this case, the standby potential of the bit line BL, which is charged up by the precharge circuit PRE, is Vcc /2, so the potential of the bit line itself can be used to determine cell information, and therefore the dummy cell DMC is omitted. It is a point. Accordingly, in this memory circuit, the dynamic pull-up circuit DPU is connected to the bit line.

cc=4.5VでセルMCに対し書込みまたはリフ
レツシユをしてワード線WLをVSSに低下させる
と、高電位側のビツト線は4.5Vで、低電位側
のビツト線BLは0Vであるが、この後信号BCを上
昇させるとトランジスタQ1〜Q3がオンとなり、
トランジスタQ3を通してビツト線側の電荷が
ビツト線BL側へ分配され、両者はその中間値
2.25Vでバランスする(時刻t0)。これでスタンバ
イ状態になり、以後ジヤンクシヨンリーク等で変
動したビツト線BL,の電位は分圧回路PS2
より補償され、2.25Vを保つ。読取りに当り、ワ
ード線WLを上昇させればセル情報に応じてビツ
ト線BL,に微小電位差ΔVBLが生じる。そし
てセンスアンプSAが駆動され、ローレベル側の
ビツト線の電位は該センスアンプのトランジスタ
によりVSSへ落され、ハイレベル側のビツト線は
ダイナミツクブルアツプ回路DPUによりVccへ引
上げられ、BL,間の電位差は著しく拡大す
る。この拡大されたビツト線BL,の電位差は
図示しないコラム線を通して読取り書込みアンプ
へ導かれる。
When writing or refreshing the cell MC at V cc = 4.5V and lowering the word line WL to V SS , the bit line on the high potential side is 4.5 V and the bit line BL on the low potential side is 0 V. , after this, increasing the signal BC turns on transistors Q 1 to Q 3 ,
The charge on the bit line side is distributed to the bit line BL side through transistor Q3 , and both are at their intermediate value.
Balance at 2.25V (time t 0 ). The bit line BL is now in standby mode, and the potential of the bit line BL, which fluctuates due to juncture leaks, is compensated by the voltage divider PS2 and maintained at 2.25V. When reading, when the word line WL is raised, a minute potential difference ΔV BL is generated on the bit line BL depending on the cell information. Then, the sense amplifier SA is driven, and the potential of the bit line on the low level side is dropped to V SS by the transistor of the sense amplifier, and the bit line on the high level side is pulled up to V CC by the dynamic pull-up circuit DPU, and BL , the potential difference between them increases significantly. This enlarged potential difference on the bit line BL is led to the read/write amplifier through a column line (not shown).

次に第9図、第10図を参照して各種状態の動
作を説明する。“0”リード時にVcc=4.5Vの
ままであれば、ビツト線はダミーセルがない
ので電位変化はなく VBL=Vc=2.25V ……(23) であり、またビツト線BLの電位は VBL=Vc−Vc/C =2.25V−2.25C/C ……(24) である。このため ΔVBL=|VBL−VBL|=2.25C/C ……(25) となる。“0”リード時でスタンドバイ期間に
ccが4.5Vから5.5Vに変動し、その直後t1に読出
す場合はVCが前述した時定数により2.25Vに留
まり、またN1=0Vであるからその結果は上記
と同じである。“0”リード時でスタンドバイ
期間にVccが4.5Vから5.5Vに変動し、それから充
分に時間が経過した時点t2以後で読出す場合は、 VBL=VC=5.5/2=2.75V ……(26) VBL=VC−(VC−N1)C/C =2.75−(2.75−0.5)C/C =2.75−2.25C/C ……(27) であるから ΔVBL=|VBL−VBL|=2.25C/C ……(28) となる。“1”リード時にVcc=4.5Vのままで
あれば VBL=VC=2.25V ……(29) VBL=VC+(Vcc−VC)C/C =2.25+(4.5−2.25)C/C =2.25+2.25C/C ……(30) であるから ΔVBL=|VBL−VBL|=2.25C/C ……(31) となる。“1”リード時でスタンドバイ期間に
電源Vccが4.5Vから5.5Vに変動した直後t1は、Vc
=5.25V、N1=4.5Vであるのでその結果は上記
と等しい。“1”リード時でスタンドバイ期間
の上記電源変動から充分に時間が経過した時点t2
以後では、 VBL=VC=5.5/2=2.75V ……(32) VBL=VC+(Vcc+0.5−VC)C/C =2.75+(4.5+0.5−2.75)C/C =2.75+2.25C/C ……(33) であるから、 ΔVBL=|VBL−VBL|=2.25C/C ……(34) となる。上記,,,は第8図の回路でV
cc=4.5VでセルMCに情報“0”または“1”を
書込み、その後Vcc=5.5Vに変動した後に読出し
を行なう全てのケースを想定したものであるが、
その結果(28,34式)はVcc=4.5Vのままで読出
す場合(25,31式)と変らない。従つて、電源変
動によらず常にセルMCの情報量を一定に保ち得
るが、特にVccの変動直後にも安定した読出しが
行なえる点は、読出し速度の高速化を図り、また
分圧回路PS2の抵抗R2,R2の値を大にしてそこに
流れる電流を低減する上で効果的である。また、
ダミーセルDMCを要することなく読出しが可能
であるため構成が簡略化される。
Next, operations in various states will be explained with reference to FIGS. 9 and 10. If Vcc remains at 4.5V when reading “0”, there is no change in the potential of the bit line because there is no dummy cell, VBL = Vc = 2.25V (23), and the potential of the bit line BL is VBL = Vc - VcCS /CB = 2.25V- 2.25CS / CB ...(24). Therefore, ΔV BL =|V BL −V BL |=2.25C S /C B (25). When reading "0", Vcc changes from 4.5V to 5.5V during the standby period, and when reading immediately after that at t1 , Vc remains at 2.25V due to the time constant mentioned above, and when N1 = 0V. Therefore, the result is the same as above. When reading “0”, V cc fluctuates from 4.5V to 5.5V during the standby period, and when reading after a sufficient time t 2 , V BL = V C = 5.5/2. =2.75V ……(26) V BL =V C −(V C −N 1 )C S /C B =2.75−(2.75−0.5) C S /C B =2.75−2.25C S /C B … (27) Therefore, ΔV BL = |V BL −V BL |=2.25C S /C B ...(28). If V cc = 4.5V when reading “1”, V BL = V C = 2.25 V … (29) V BL = V C + (V cc −V C ) C S /C B = 2.25 + ( 4.5-2.25) Since C S / C B = 2.25 + 2.25 C S / C B ... (30), ΔV BL = | V BL - V BL | = 2.25 C S / C B ... (31) . Immediately after the power supply Vcc changes from 4.5V to 5.5V during the standby period when reading “1”, t1 is Vc
= 5.25V, N 1 = 4.5V, so the result is the same as above. When reading “1”, a sufficient amount of time has elapsed since the above power fluctuation during the standby period t 2
From now on, V BL = V C = 5.5/2 = 2.75V ... (32) V BL = V C + (V cc +0.5-V C ) C S /C B = 2.75 + (4.5 + 0. 5-2.75) Since C S / C B = 2.75 + 2.25 C S / C B ... (33), ΔV BL = | V BL - V BL | = 2.25 C S / C B ... (34) Become. The above,,, is the circuit shown in Fig. 8, and V
This assumes all cases in which information "0" or "1" is written to cell MC at cc = 4.5V, and then read after V cc = 5.5V.
The results (formulas 28 and 34) are the same as when reading with Vcc = 4.5V (formulas 25 and 31). Therefore, the amount of information in the cell MC can always be kept constant regardless of power supply fluctuations, and in particular, stable reading can be performed immediately after fluctuations in Vcc , which increases the reading speed and also improves the voltage divider circuit. This is effective in increasing the values of resistors R 2 and R 2 of PS 2 and reducing the current flowing there. Also,
Since reading is possible without requiring a dummy cell DMC, the configuration is simplified.

本発明は、プリチヤージ電圧が印加されるビツ
ト線と、メモリセルの対向電極とを共に分圧回路
により高電位と低電位のほぼ中央値に設定するこ
とにより、電源電圧の変動が生じてもビツト線と
セルの対向電極とが同様に且つ最少変動分だけ変
動することになり、もつて読出し感度の低下を防
止することができるようにしたものである。つま
り、本発明の如く1トランジスタ・セル型の場
合、セル内ノードN1の電位とビツト線BLの電位
との相対的比較により読出しが行なわれる。例え
ば“0”を記憶している時は、セル内ノードN1
の電位は0Vであり、ビツト線プリチヤージレベ
ルとの差によりどれだけのチヤージがビツト線か
らセル内キヤパシタに引き込まれるかによりビツ
ト線の電圧変化量が決まり、その量をセンスアン
プにて読出しているのである。従つて電源電圧変
動が生じても、相対的比較されるセル内ノード
N1の電位とビツト線プリチヤージ電位とが同様
に変動し又は同じ方向に変動してくれれば、読出
し感度に影響はないのである。そしてセル内ノー
ドNの電位はセルの対向電極と容量結合にて変化
することから、本発明ではセルの対向電極とビツ
ト線プリチヤージ電圧とを1/2Vcc(中央値)発生 回路の出力端に接続し、両者の相対的電位差を一
定に保とうとしているのである。この点、従来例
に示したセルの対向電極がVcc(高電位)の場合
(第1,2図)、セルの対向電極がVSS(低電位)
の場合(第3,4図)及び、セルの対向電極のみ
1/2Vcc(中央値)にした場合(第5,6図)では 本発明の如き効果が得られないのは既述したとお
りである。
In the present invention, the bit line to which the precharge voltage is applied and the opposing electrode of the memory cell are both set at approximately the midpoint between the high potential and the low potential using a voltage divider circuit. The line and the opposing electrode of the cell are made to fluctuate in the same way and by the minimum amount of fluctuation, thereby making it possible to prevent a decrease in read sensitivity. That is, in the case of a one-transistor cell type as in the present invention, reading is performed by relative comparison of the potential of the intra-cell node N1 and the potential of the bit line BL. For example, when “0” is stored, node N 1 in the cell
The potential of is 0V, and the amount of voltage change of the bit line is determined by how much charge is drawn from the bit line to the capacitor in the cell depending on the difference with the bit line precharge level, and this amount is read out by the sense amplifier. -ing Therefore, even if power supply voltage fluctuations occur, the nodes in the cell that are relatively compared
If the potential of N1 and the bit line precharge potential fluctuate in the same way or in the same direction, there will be no effect on read sensitivity. Since the potential of the node N in the cell changes due to capacitive coupling with the counter electrode of the cell, in the present invention, the counter electrode of the cell and the bit line precharge voltage are connected to the output terminal of the 1/2 V cc (median value) generation circuit. They are trying to connect and keep the relative potential difference between them constant. In this regard, when the counter electrode of the cell shown in the conventional example is V cc (high potential) (Figures 1 and 2), the counter electrode of the cell is V SS (low potential).
As mentioned above, the effect of the present invention cannot be obtained in the case of (Figures 3 and 4) and when only the opposite electrode of the cell is set to 1/2V cc (median value) (Figures 5 and 6). It is.

以上述べたように本発明によれば、1トランジ
スタ1キヤパシタ型の半導体メモリ装置におい
て、電源電圧変動に対するセル情報量の安定化を
図り、また構成を簡略化できる利点がある。
As described above, the present invention has the advantage that in a one-transistor, one-capacitor type semiconductor memory device, the amount of cell information can be stabilized against fluctuations in the power supply voltage, and the structure can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第3図は一般的な1トランジスタ
1キヤパシタ型の半導体メモリの回路図、第2図
および第4図はそれらの動作波形図、第5図は電
源変動対策を施した従来の1トランジスタ1キヤ
パシタ型半導体メモリの回路図、第6図および第
7図はその動作波形図、第8図は本発明の一実施
例を示す回路図、第9図および第10図はその動
作波形図である。 図中、MCはメモリセル、CSはそのMOSキヤ
パシタ、BL,はビツト線、PREはプリチヤー
ジ回路、PS2は分圧回路、Vccはメモリ電源の高
電位側電圧、VSSは同低電位側電圧である。
Figures 1 and 3 are circuit diagrams of a typical one-transistor, one-capacitor type semiconductor memory, Figures 2 and 4 are their operating waveform diagrams, and Figure 5 is a conventional one that takes measures against power fluctuations. A circuit diagram of a capacitor type semiconductor memory with one transistor, FIGS. 6 and 7 are its operating waveform diagrams, FIG. 8 is a circuit diagram showing an embodiment of the present invention, and FIGS. 9 and 10 are its operating waveform diagrams. It is. In the figure, MC is the memory cell, C S is its MOS capacitor, BL is the bit line, PRE is the precharge circuit, PS 2 is the voltage divider circuit, V cc is the high potential side voltage of the memory power supply, and V SS is the same low potential. side voltage.

Claims (1)

【特許請求の範囲】[Claims] 1 MOSキヤパシタを記憶素子とするダイナミ
ツクメモリセルをマトリクス状に多数配列した半
導体メモリ装置において、ビツト線プリチヤージ
電圧およびMOSキヤパシタの対向電極電圧を共
に、メモリ電源の高電位側電圧と低電位側電圧と
の中央値に設定する回路を設けてなることを特徴
とする半導体メモリ装置。
1 In a semiconductor memory device in which a large number of dynamic memory cells having MOS capacitors as storage elements are arranged in a matrix, the bit line precharge voltage and the counter electrode voltage of the MOS capacitor are both the high potential side voltage and the low potential side voltage of the memory power supply. 1. A semiconductor memory device comprising a circuit for setting a median value between .
JP55147773A 1980-10-22 1980-10-22 Semiconductor memory device Granted JPS5771580A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP55147773A JPS5771580A (en) 1980-10-22 1980-10-22 Semiconductor memory device
US06/313,616 US4458336A (en) 1980-10-22 1981-10-21 Semiconductor memory circuit
EP81304967A EP0050529B1 (en) 1980-10-22 1981-10-22 Semiconductor memory circuit
DE8787104318T DE3177221D1 (en) 1980-10-22 1981-10-22 SEMICONDUCTOR MEMORY CIRCUIT.
IE2483/81A IE53512B1 (en) 1980-10-22 1981-10-22 Semiconductor memory circuit
DE8181304967T DE3176601D1 (en) 1980-10-22 1981-10-22 Semiconductor memory circuit
EP87104318A EP0239913B2 (en) 1980-10-22 1981-10-22 Semiconductor memory circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55147773A JPS5771580A (en) 1980-10-22 1980-10-22 Semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS5771580A JPS5771580A (en) 1982-05-04
JPS6137707B2 true JPS6137707B2 (en) 1986-08-25

Family

ID=15437847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55147773A Granted JPS5771580A (en) 1980-10-22 1980-10-22 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS5771580A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193803U (en) * 1986-05-28 1987-12-09

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812759B2 (en) * 1984-04-06 1996-02-07 株式会社日立製作所 Dynamic RAM
JPS6394499A (en) * 1986-10-07 1988-04-25 Toshiba Corp Semiconductor memory device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113131A (en) * 1975-09-08 1977-09-22 Toko Inc Sensing amplifier for one transistor
JPS5359384A (en) * 1976-09-13 1978-05-29 Texas Instruments Inc Nnchannel mos silicon gate ram cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113131A (en) * 1975-09-08 1977-09-22 Toko Inc Sensing amplifier for one transistor
JPS5359384A (en) * 1976-09-13 1978-05-29 Texas Instruments Inc Nnchannel mos silicon gate ram cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193803U (en) * 1986-05-28 1987-12-09

Also Published As

Publication number Publication date
JPS5771580A (en) 1982-05-04

Similar Documents

Publication Publication Date Title
JP3373534B2 (en) Semiconductor storage device
KR930008416B1 (en) Semiconductor memory circuit
EP0050529B1 (en) Semiconductor memory circuit
JPH10312685A (en) Semiconductor memory device
JPS60239993A (en) Dynamic semiconductor memory device
US4622655A (en) Semiconductor memory
US4503343A (en) Active pull-up circuit
KR100272903B1 (en) Semiconductor memory device
JPS63282993A (en) Semiconductor dynamic random access memory
JPH0366757B2 (en)
US4409672A (en) Dynamic semiconductor memory device
JPS6116099A (en) Dynamic semiconductor memory device
JPS6137707B2 (en)
JP2814862B2 (en) Semiconductor storage device
EP0239913B2 (en) Semiconductor memory circuit
JPS62129997A (en) Dynamic ram
JPS5935114B2 (en) Width increase circuit
JPS60258793A (en) Dynamic type semiconductor storage device
JPH0510756B2 (en)
JP2001229671A (en) Semiconductor memory
JP2825036B2 (en) Semiconductor memory circuit
JPS63282994A (en) Semiconductor dynamic random access memory
JPS59112490A (en) Semiconductor storage device
JP2001307479A (en) Semiconductor integrated circuit device
JPS5939836B2 (en) memory integrated circuit