JPS6137473B2 - - Google Patents

Info

Publication number
JPS6137473B2
JPS6137473B2 JP5842977A JP5842977A JPS6137473B2 JP S6137473 B2 JPS6137473 B2 JP S6137473B2 JP 5842977 A JP5842977 A JP 5842977A JP 5842977 A JP5842977 A JP 5842977A JP S6137473 B2 JPS6137473 B2 JP S6137473B2
Authority
JP
Japan
Prior art keywords
oil
pressure
valve
compressor
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5842977A
Other languages
Japanese (ja)
Other versions
JPS53144011A (en
Inventor
Yoichi Mizutani
Yutaka Shinshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP5842977A priority Critical patent/JPS53144011A/en
Publication of JPS53144011A publication Critical patent/JPS53144011A/en
Publication of JPS6137473B2 publication Critical patent/JPS6137473B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は油冷式圧縮機に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to an oil-fed compressor.

(従来の技術) 油冷式圧縮機たとえばスクリユー圧縮機は、電
動機により駆動される圧縮機本体と、該圧縮機本
体へ吸込まれる空気量を調整する容量調整弁(気
体流入量調整弁)と、圧縮機本体で圧縮された空
気から油分を分離する油タンクと、該油タンクを
通過した空気からミスト状の油分を分離する油分
離器と、前記油タンク内の油液を冷却して圧縮機
本体へ噴射する油冷却器とから構成されている。
圧縮機本体が駆動すると、容量調整弁を介して空
気が圧縮機本体内に吸込まれ、そこで圧縮されて
油タンク内に流入し、圧縮空気中の油分が取り除
かれる。油タンクからの圧縮空気は油分離器でミ
スト状の油分が除去されて完全に浄化され、吐出
弁を開いたときに浄化された圧縮空気が外部機器
に供給される。油タンク内の油液は油タンクの内
圧によつて油冷却器に向けて供給されて冷却さ
れ、冷却された後に圧縮機本体内へ噴射されて潤
滑及び気密保持の働きをする。
(Prior Art) An oil-fed compressor, such as a screw compressor, includes a compressor body driven by an electric motor, and a capacity adjustment valve (gas inflow adjustment valve) that adjusts the amount of air sucked into the compressor body. , an oil tank that separates oil from the air compressed by the compressor body, an oil separator that separates oil mist from the air that has passed through the oil tank, and an oil separator that cools and compresses the oil in the oil tank. It consists of an oil cooler that injects oil into the main body.
When the compressor main body is driven, air is sucked into the compressor main body via the capacity adjustment valve, where it is compressed and flows into the oil tank, where the oil content in the compressed air is removed. The compressed air from the oil tank is completely purified by removing mist of oil in an oil separator, and when the discharge valve is opened, the purified compressed air is supplied to external equipment. The oil in the oil tank is supplied to the oil cooler by the internal pressure of the oil tank and is cooled, and after being cooled, it is injected into the compressor main body to provide lubrication and maintain airtightness.

(発明が解決しようとする問題点) 吐出弁を閉じることにより油タンク、油分離器
内の圧力は上昇し、この状態で圧縮機本体を停止
させると、容量調整弁と油タンクとの圧力差によ
り油タンク内の圧縮空気は圧縮機本体の内部へ逆
流し、これと同時に油タンク内の油液もタンク内
圧により圧縮機本体内へ噴射され、容量調整弁内
部と油タンク及び油分離器の内部の圧力は同圧と
なる。この状態で圧縮機本体を再起動させると、
圧縮機本体は回転せず、電動機は焼損してしまつ
ていた。この理由としては、圧縮機本体内の圧力
バランスが崩れ、吸込側では油タンクの圧力より
低くなり、油の噴射が行なわれ、吐出側では油の
圧縮が行なわれて起動不能になるものと思われて
いる。
(Problem to be solved by the invention) When the discharge valve is closed, the pressure in the oil tank and oil separator increases, and if the compressor body is stopped in this state, the pressure difference between the capacity adjustment valve and the oil tank increases. As a result, the compressed air in the oil tank flows back into the compressor body, and at the same time, the oil liquid in the oil tank is also injected into the compressor body due to the tank internal pressure, causing damage to the inside of the capacity adjustment valve, the oil tank, and the oil separator. The internal pressure is the same. If you restart the compressor in this state,
The compressor body did not rotate, and the electric motor was burnt out. The reason for this is thought to be that the pressure balance inside the compressor collapses, and the pressure on the suction side becomes lower than the oil tank pressure, causing oil to be injected, and on the discharge side, oil is compressed, making it impossible to start. It is being said.

ところで、このような場合は、圧縮機本体を停
止させた時に、油分離器内の圧力を低下させれ
ば、圧縮機本体を回転させることができる。この
方法では、従来、油分離器内の圧縮空気を全部放
出させていたので、多くのエネルギーが無駄にな
るという問題点を残しており、さらには再起動時
には放気のためにそのたびに人手を要するという
欠点があつた。
By the way, in such a case, if the pressure inside the oil separator is lowered when the compressor main body is stopped, the compressor main body can be rotated. Conventionally, with this method, all of the compressed air in the oil separator was released, which resulted in the problem of wasting a lot of energy.Furthermore, it required manual labor each time to restart the oil separator. The disadvantage was that it required

また、アンロード運転時には、吸込側経路内の
圧力変動が大きくなるため、吸込み空気の圧力変
化による騒音が増大し、いわゆるアンロード騒音
が発生するという問題があつた。
Further, during unloading operation, pressure fluctuations in the suction side passage become large, so there is a problem in that noise due to pressure changes of the suction air increases, resulting in so-called unloading noise.

このような問題を解決する方法としては、運転
終了後の吐出側圧縮空気の圧力を下げるための放
気用弁装置と、アンロード騒音を防ぐための特別
な手段とを付加することが考えられるが、複数の
弁装置等を圧縮機本体に付帯させることは、部品
点数が増加し取付スペースも大となり、実用上好
ましくない。
Possible ways to solve this problem include adding an air release valve device to reduce the pressure of the compressed air on the discharge side after the end of operation, and special means to prevent unloading noise. However, attaching a plurality of valve devices and the like to the compressor main body increases the number of parts and requires a large installation space, which is not practically preferable.

なお、この種の圧縮機における前記容量調整弁
は、吐出側圧力を導入して該圧力が増すにつれて
開弁量が小さくなるようになつており、たとえば
アンロード運転時には吐出側経路の圧力が高いた
め弁開度が小さくなり、その結果、容量調整弁の
内室の真空度が大になる。
Note that the capacity adjustment valve in this type of compressor introduces discharge side pressure, and as the pressure increases, the valve opening amount becomes smaller. For example, during unload operation, the pressure in the discharge side path is high. Therefore, the valve opening degree becomes smaller, and as a result, the degree of vacuum in the internal chamber of the capacity adjustment valve increases.

本発明は上記従来技術の問題点に鑑みてなされ
たもので、その目的とするところは、吸込側経路
の気体流入量調整弁の内圧を導いて放気機能と油
噴出口への気体戻し機能とを行う圧力調整機構付
弁装置を付加することにより、圧縮機停止時には
油分離器内の圧力を減少させて再起動を容易なら
しめ、かつ、アンロード時には吐出側通路内の圧
力気体の一部を油噴出口に導入してアンロード騒
音を低減するようにした、油冷式圧縮機を提供す
ることにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to guide the internal pressure of the gas inflow amount regulating valve in the suction side path to provide an air release function and a gas return function to the oil spout. By adding a valve device with a pressure adjustment mechanism, when the compressor is stopped, the pressure inside the oil separator is reduced to facilitate restarting, and when the compressor is unloaded, the pressure gas in the discharge side passage is reduced. An object of the present invention is to provide an oil-cooled compressor in which an oil-cooled compressor is introduced into an oil spout to reduce unloading noise.

(問題点を解決するための手段) この目的達成のための本発明の具体的手段は、
圧縮機本体1の吸込側に設けた気体流入量調整弁
5に接続される信号圧導入用通路23と、圧縮機
本体1の吐出側に設けた油分離器4に接続される
吐出側通路30と、大気に連通する放気通路31
と、信号圧導入用通路23の内圧を一端で受けて
作動し吐出側通路30を放気通路31に連通させ
る弁体27と、弁体27をその一端方向に付勢す
る作動圧調整用ばね28とを有する弁装置8を備
え、この弁装置8に、アンロード運転時に弁体2
7が一端方向に移動して吐出側通路30と連通す
る絞り部36を付設し、絞り部36を、圧縮機本
体1の油噴出口1aに接続してなる油冷式圧縮機
である。
(Means for solving the problem) Specific means of the present invention for achieving this objective are as follows:
A signal pressure introduction passage 23 connected to the gas inflow adjustment valve 5 provided on the suction side of the compressor body 1, and a discharge side passage 30 connected to the oil separator 4 provided on the discharge side of the compressor body 1. and an air discharge passage 31 communicating with the atmosphere.
, a valve body 27 that receives the internal pressure of the signal pressure introduction passage 23 at one end and operates to communicate the discharge side passage 30 with the air discharge passage 31; and an operating pressure adjustment spring that biases the valve body 27 toward the one end. The valve device 8 is provided with a valve device 8 having a valve body 28 during an unload operation.
This is an oil-cooled compressor in which a constriction part 7 is moved toward one end and communicates with the discharge side passage 30, and the constriction part 36 is connected to the oil spout 1a of the compressor main body 1.

(作用) 上記の構成により、油分離器4の内圧が高い状
態で圧縮機本体1を停止させたときは、油分離器
4側すなわち吐出側の圧力気体が吸込側経路に逆
流することによつて気体流入量調整弁5の室5c
に入り、信号圧導入用通路23に油分離器4の内
圧が導かれる。この内圧は弁体27を作動圧調整
用ばね28に抗してその他端方向に軸移動させ、
これにより吐出側通路30が放気通路31に連通
する。このため、圧縮機本体1の吐出側通路30
内の圧力気体が放気通路31から大気中に放出さ
れ、吐出側通路30の内圧すなわち油分離器4の
内圧が低下する。油分離器4の内圧が設定圧(第
3図では圧力P1)まで低下すると、前記ばね28
の力により弁体27がその一端方向に軸移動し、
吐出側通路30と放気通路31との連通が遮断さ
れる。このため吐出側通路30内の圧力気体の放
出が停止する。
(Function) With the above configuration, when the compressor main body 1 is stopped while the internal pressure of the oil separator 4 is high, the pressure gas from the oil separator 4 side, that is, the discharge side, flows back into the suction side path. Chamber 5c of gas inflow adjustment valve 5
The internal pressure of the oil separator 4 is introduced into the signal pressure introduction passage 23. This internal pressure causes the valve body 27 to move axially in the other end direction against the operating pressure adjustment spring 28.
Thereby, the discharge side passage 30 communicates with the air discharge passage 31. For this reason, the discharge side passage 30 of the compressor main body 1
The pressure gas inside is released into the atmosphere from the air discharge passage 31, and the internal pressure of the discharge side passage 30, that is, the internal pressure of the oil separator 4 is reduced. When the internal pressure of the oil separator 4 drops to the set pressure (pressure P 1 in FIG. 3), the spring 28
Due to the force, the valve body 27 is axially moved in the direction of one end thereof,
Communication between the discharge side passage 30 and the air discharge passage 31 is cut off. Therefore, the release of the pressure gas in the discharge side passage 30 is stopped.

したがつて、弁体27を付勢する作動圧調整用
ばね28の設定圧を、圧縮機が再起動しうるよう
に適当圧に調整しておくことにより、必要最小量
の圧力気体だけが放出され、電動機に焼損等の不
具合を与えることなく、停止後の圧縮機を再び容
易に起動させうるものとなる。
Therefore, by adjusting the set pressure of the operating pressure adjustment spring 28 that biases the valve body 27 to an appropriate pressure so that the compressor can be restarted, only the minimum necessary amount of pressurized gas can be released. This makes it possible to easily restart the compressor after it has been stopped without causing problems such as burnout to the electric motor.

一方、圧縮機本体1が駆動しているときは、圧
縮された気体が油分離器4を経て負荷側に送られ
て使用され、油タンク3で分離された油は、油噴
出口1aから圧縮機本体1内へ噴射される。
On the other hand, when the compressor body 1 is in operation, the compressed gas is sent to the load side via the oil separator 4 and used, and the oil separated in the oil tank 3 is compressed from the oil spout 1a. It is injected into the machine body 1.

負荷側の圧力気体の使用量が減少すると、油分
離器4及び油タンク3の内圧が上昇し、この油圧
は圧縮機本体1の気体流入量調整弁5の背圧室5
dに導かれこれを閉弁させる。所謂アンロード運
転に切り換わる。
When the amount of pressure gas used on the load side decreases, the internal pressure of the oil separator 4 and the oil tank 3 increases, and this oil pressure is transferred to the back pressure chamber 5 of the gas inflow adjustment valve 5 of the compressor main body 1.
d to close the valve. Switching to so-called unload operation.

このアンロード運転時には、気体流入量調整弁
5の室5cの真空度が高くなるので、作動圧調整
用ばね28の力により弁装置8の弁体27がその
一端方向に軸移動し、吐出側通路30が弁装置8
の絞り部36の一端と連通する。この絞り部36
はその他端が圧縮機本体1の油噴出口1aに接続
されているため、吐出側通路30内の圧力気体は
油噴出口1aに導入される。
During this unloading operation, the degree of vacuum in the chamber 5c of the gas inflow adjustment valve 5 increases, so the valve body 27 of the valve device 8 is axially moved toward one end thereof by the force of the operating pressure adjustment spring 28, and the discharge side The passage 30 is the valve device 8
It communicates with one end of the constriction part 36 of. This aperture part 36
Since the other end is connected to the oil spout 1a of the compressor main body 1, the pressure gas in the discharge side passage 30 is introduced into the oil spout 1a.

したがつて、油分離器4内の圧力気体はその一
部が絞られたのち油噴出口1aより圧縮機本体1
内に噴射されるため、アンロード運転中における
吸込気体による騒音発生が効果的に低減される。
Therefore, the pressure gas in the oil separator 4 is partially throttled and then flows through the oil spout 1a to the compressor main body 1.
Since the suction gas is injected into the air, the noise generated by the suction gas during unloading operation is effectively reduced.

このように本発明の圧縮機は一つの弁装置を付
加するだけで、前述の再起動の容易化とアンロー
ド騒音の防止を実現するものである。よつて、圧
力気体を油噴出口に導くための弁装置と、放気さ
せるための弁装置等の特別な手段とを別々に設置
するものに比べて、構成が簡単、小型化し安価と
なり、実用的な価値を高めるものである。
In this way, the compressor of the present invention realizes the above-described ease of restart and prevention of unloading noise by simply adding one valve device. Therefore, compared to a system in which a valve device for guiding pressure gas to the oil spout and a special means such as a valve device for releasing air are installed separately, the configuration is simpler, smaller, cheaper, and more practical. It increases the value of the product.

また、本発明においては、油分離器4の圧力気
体の大気への放出は、気体流入量調整弁5に逆流
する気体の圧力が再起動可能な設定値になつたと
きに自動的に停止される。したがつて、気体の圧
力が必要以上に低下しないため、圧縮機を再起動
した際、圧縮機本体1への油噴射を即刻開始しう
る。このため、たとえ油分離器4や油タンク3の
容量が大きい場合であつても、直ちに油噴射を行
うことができることから、再起動運転時において
油分離器4や油タンク3の内圧を油噴射可能な所
要圧まで上昇させるための試運転を実施する必要
がない。
Further, in the present invention, the release of the pressure gas from the oil separator 4 to the atmosphere is automatically stopped when the pressure of the gas flowing back into the gas inflow control valve 5 reaches a set value that allows restart. Ru. Therefore, since the gas pressure does not drop more than necessary, oil injection to the compressor main body 1 can be started immediately when the compressor is restarted. Therefore, even if the oil separator 4 or oil tank 3 has a large capacity, oil injection can be performed immediately, so that the internal pressure of the oil separator 4 or oil tank 3 can be reduced by oil injection during restart operation. There is no need to carry out a trial run to raise the required pressure to a possible level.

(実施例) 以下、本発明の一実施例を図面によつて説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は油冷式圧縮機の一例としてのスクリユ
ー圧縮機の構成を示すもので、1は電動機2によ
り駆動される圧縮機本体であり、該圧縮機本体1
の吐出側には油タンク3及び油分離器4が接続さ
れており、圧縮機本体1の吸込側には容量調整弁
5が接続されている。容量調整弁5は油タンク3
内の圧油とばね5aとの作動により弁体5bの開
閉動作が制御され、圧縮機本体1へ吸込まれる空
気の容量を調整する。前記油タンク3には油冷却
器6が接続されており、該油冷却器6で冷却され
た油液が圧縮機本体1内に噴射される。7は外部
機器に圧縮空気を供給するための吐出弁である。
FIG. 1 shows the configuration of a screw compressor as an example of an oil-fed compressor. 1 is a compressor main body driven by an electric motor 2;
An oil tank 3 and an oil separator 4 are connected to the discharge side of the compressor, and a capacity adjustment valve 5 is connected to the suction side of the compressor main body 1. Capacity adjustment valve 5 is oil tank 3
The opening/closing operation of the valve body 5b is controlled by the operation of the pressure oil inside and the spring 5a, and the capacity of air sucked into the compressor main body 1 is adjusted. An oil cooler 6 is connected to the oil tank 3, and the oil cooled by the oil cooler 6 is injected into the compressor main body 1. 7 is a discharge valve for supplying compressed air to external equipment.

8は圧縮機本体1の吸込側系路(容量調整弁5
の空気吸込口から圧縮機本体1の吸込ポートまで
の間に形成される系路)に接続され、吸込側系路
の圧力によつて吐出側系路(圧縮機本体1の吐出
ポートから下流側に形成される系路)の圧力を減
圧させる弁装置であつて、該弁装置8を第2図に
より詳細に説明する。
8 is a suction side system of the compressor main body 1 (capacity adjustment valve 5
The pressure in the suction side line causes the discharge side line (downstream side from the discharge port of the compressor body 1) to be connected to the air inlet of the compressor body 1. The valve device 8, which is a valve device for reducing the pressure of a system (system formed in a system), will be explained in detail with reference to FIG.

弁装置8の本体10内にはシリンダ22が形成
されており、該シリンダ22の一端にはポート2
3が臨んでおり、他端には外部からばね受け24
を螺合させるねじ部25が設けられている。26
はばね受け24を本体10に固定するロツクナツ
トである。
A cylinder 22 is formed in the main body 10 of the valve device 8, and a port 2 is connected to one end of the cylinder 22.
3 is facing, and the spring receiver 24 is attached to the other end from the outside.
A threaded portion 25 is provided for screwing together. 26
This is a lock nut that fixes the spring receiver 24 to the main body 10.

前記シリンダ22内にはスプール弁27が摺動
自在に嵌入され、該スプール弁27はばね受け2
4に弾接したばね28により附勢されており、ポ
ート23側に配置したばね29に弾接している。
前記シリンダ22には2つのポート30,31が
臨んでおり、該ポート30,31は、スプール弁
27がばね28に抗して上方に移動するのに伴な
い、第1のピストン27aと第2のピストン27
bとで画成されるシリンダ22内の室22aを介
して連通する。32はシリンダ22とピストン2
7a,27bとの間の洩れを防止するシールリン
グである。なお、ばね28を内装した室22bは
隙間39を介して大気と連通しており、スプール
弁27の動きを阻止しないように構成されてる。
またシリンダ22内にはポート33が設けられて
おり、該ポート33はスプール弁27がばね29
に抗して下方に移動するのに伴ない室22aを介
してポート30と連通する。
A spool valve 27 is slidably fitted into the cylinder 22, and the spool valve 27 is attached to the spring receiver 2.
It is energized by a spring 28 that is in elastic contact with the port 4, and is in elastic contact with a spring 29 that is disposed on the port 23 side.
Two ports 30 and 31 face the cylinder 22, and as the spool valve 27 moves upward against the spring 28, the first piston 27a and the second piston 27
It communicates with the cylinder 22 through a chamber 22a defined by the cylinder 22 and the cylinder 22a. 32 is the cylinder 22 and piston 2
This is a seal ring that prevents leakage between the parts 7a and 27b. The chamber 22b containing the spring 28 communicates with the atmosphere through a gap 39, and is configured so as not to block the movement of the spool valve 27.
Further, a port 33 is provided in the cylinder 22, and the spool valve 27 is connected to the spring 29.
As it moves downward against the pressure, it communicates with the port 30 via the chamber 22a.

そして、ポート30は配管34を介して油分離
器4に接続され、ポート31は大気に向けて開口
され、ポート33は配管35を介して圧縮機本体
1の油噴出口1aに接続され、ポート23は容量
調整弁5の室5cに接続されている。
The port 30 is connected to the oil separator 4 via a pipe 34, the port 31 is opened to the atmosphere, the port 33 is connected to the oil spout 1a of the compressor body 1 via a pipe 35, and the port 23 is connected to the chamber 5c of the capacity adjustment valve 5.

(実施例の作用) 以上の構成に係るスクリユー圧縮機の作動につ
いて説明する。ここでは、モータ2に加わる電圧
V1は一定であるものとする。
(Operation of the embodiment) The operation of the screw compressor according to the above configuration will be explained. Here, the voltage applied to motor 2 is
Assume that V 1 is constant.

モータ2が回転すると圧縮機本体1が駆動さ
れ、気体流入量を調整する容量調整弁5の弁体5
bを開き、室5cを経て圧縮機本体1に空気が吸
入される。吸入された空気は圧縮機本体1内で油
と混ざり圧縮される。ついで、この圧縮空気は油
タンク3に吐出され油を分離し、次の油分離器4
にて霧状の油を分離する。その後、圧縮空気は吐
出弁7から負荷側の外部機器(図示せず)に送ら
れて使用される。他方、前記油タンク3内の油は
油冷却器6に送られて冷却され、油噴出口1aか
ら圧縮機本体1内へ噴射される。
When the motor 2 rotates, the compressor body 1 is driven, and the valve body 5 of the capacity adjustment valve 5 adjusts the amount of gas inflow.
b is opened, and air is sucked into the compressor main body 1 through the chamber 5c. The sucked air is mixed with oil and compressed within the compressor body 1. Next, this compressed air is discharged into the oil tank 3 to separate the oil, and then to the next oil separator 4.
Separate the mist of oil. Thereafter, the compressed air is sent from the discharge valve 7 to an external device (not shown) on the load side for use. On the other hand, the oil in the oil tank 3 is sent to an oil cooler 6, cooled, and injected into the compressor main body 1 from the oil spout 1a.

圧縮機本体1が定格運転している時、または油
分離器4内が大気圧となつて停止している時、弁
装置8は第4図の状態にある。
When the compressor main body 1 is operating at its rated value or when the oil separator 4 is at atmospheric pressure and is stopped, the valve device 8 is in the state shown in FIG. 4.

すなわち、たとえば圧縮機本体1が駆動してい
る時は、油分離器4内の圧力は室22aに導かれ
るが、スプール弁27のピストン27a及びピス
トン27bは同径で受圧面積が等しいので、スプ
ール弁27に付与される軸方向の力は釣り合つて
いる。
That is, for example, when the compressor main body 1 is driven, the pressure inside the oil separator 4 is guided to the chamber 22a, but since the piston 27a and piston 27b of the spool valve 27 have the same diameter and the same pressure receiving area, the spool valve 27 has the same diameter and the same pressure receiving area. The axial forces applied to valve 27 are balanced.

また、容量調整弁5の室5cは圧縮機本体1の
吸込通路の一部となつており、ポート23側は大
気圧であり、室22b側も大気圧である。したが
つて、スプール弁27は第4図の状態にあり、ポ
ート30はポート27,33と連通していない。
Further, the chamber 5c of the capacity adjustment valve 5 is part of the suction passage of the compressor main body 1, and the port 23 side is at atmospheric pressure, and the chamber 22b side is also at atmospheric pressure. Therefore, the spool valve 27 is in the state shown in FIG. 4, and the port 30 is not communicating with the ports 27, 33.

次に運転を停止した場合(但し油分離器4は第
3図のP1以上とする)には、室5cの圧力は油分
離器4の圧力と等しくなるためポート23とポー
ト30との圧力は等しく且つP1以上となる。室2
2bはばね受け24の隙間39を介して大気に連
通しているため、ポート23と室22bとの圧力
差によりスプール弁27はばね28を圧縮しつつ
図の上方へ移動し、第2図の状態となり、ポート
30とポート31とが室22aを介して連通し、
油分離器4内の圧縮空気はポート31より大気に
放出される。放気が進み、油分離器4内の圧力が
P1に達すると室22aもP1となるため、ポート2
3の圧力もP1となつて予め設定されたばね28の
ばね荷重によりスプール弁27は下方へ戻され、
ポート31を塞ぎ放気を停止する。この圧力P1
は第3図から明らかなように、起動が可能であ
り、圧縮機本体1を再駆動した時に、油分離器4
の圧力は再駆動できる圧力P1となつているため
に、圧縮機本体1が駆動する。
Next, when the operation is stopped (however, the oil separator 4 is set to P 1 or higher in Fig. 3), the pressure in the chamber 5c becomes equal to the pressure in the oil separator 4, so the pressure at ports 23 and 30 increases. are equal and greater than or equal to P 1 . room 2
2b communicates with the atmosphere through the gap 39 in the spring receiver 24, so the spool valve 27 moves upward in the figure while compressing the spring 28 due to the pressure difference between the port 23 and the chamber 22b. state, the ports 30 and 31 communicate through the chamber 22a,
Compressed air in the oil separator 4 is released to the atmosphere through a port 31. As the discharge progresses, the pressure inside the oil separator 4 increases.
When P 1 is reached, chamber 22a also becomes P 1 , so port 2
The pressure at step 3 also becomes P1 , and the spool valve 27 is returned downward by the preset spring load of the spring 28.
The port 31 is closed to stop air release. As is clear from FIG. 3, at this pressure P 1 , startup is possible, and when the compressor main body 1 is driven again, the oil separator 4
Since the pressure at P1 is such that it can be driven again, the compressor main body 1 is driven.

圧縮機本体1が起動すると、室22aは再び大
気圧となるので、弁装置8は第4図の状態に戻
る。また、ばね28はばね受け24によりそのば
ね力の調整が可能であり、圧縮機における設定圧
P1の変化、ばね28のばね力のバラツキ等を調整
することが可能となる。
When the compressor body 1 is started, the pressure in the chamber 22a becomes atmospheric again, so that the valve device 8 returns to the state shown in FIG. 4. Further, the spring force of the spring 28 can be adjusted by the spring receiver 24, and the set pressure in the compressor can be adjusted.
It becomes possible to adjust changes in P1 , variations in the spring force of the spring 28, etc.

しかして、圧縮機本体1の駆動中に負荷側の空
気使用量が所定値以下に減ると、油タンク3およ
び油分離器4の圧力は上昇し、油タンク3内の油
圧も上昇する。この油圧はパイプ40を介して容
量調整弁5に導かれ弁体5bを閉塞させ、アンロ
ード運転に切り替わる。
When the amount of air used on the load side decreases to a predetermined value or less while the compressor main body 1 is being driven, the pressure in the oil tank 3 and the oil separator 4 increases, and the oil pressure in the oil tank 3 also increases. This oil pressure is guided to the capacity adjustment valve 5 through the pipe 40, closes the valve body 5b, and switches to unload operation.

この時、容量調整弁5の室5cの真空度が高く
なり、該室5cの真空圧と室22bの大気圧との
差圧力によつてばね29を縮め、スプール弁27
は下降する。スプール弁27の下降によりポート
30は、室22a、およびスプール弁27とシリ
ンダ22間の隙間を介して絞り36に連通する。
したがつて、油分離器4内の圧縮空気の一部は、
前記隙間および絞り36を通る際に適当量だけ減
圧され、減圧後の圧縮空気が圧縮機本体1の油噴
出口1aへ導かれる。その結果、油分離器4内の
圧縮空気の一部が減圧されて油噴出口1aから圧
縮機本体1内へ噴射されることにより、アンロー
ド運転中における騒音を減少させる働きをする。
この場合、ポート31はスプール弁27により閉
成されるためポート30と連通していない。第5
図はこのアンロード運転時の状態を示す。
At this time, the degree of vacuum in the chamber 5c of the capacity adjustment valve 5 increases, and the spring 29 is compressed by the differential pressure between the vacuum pressure in the chamber 5c and the atmospheric pressure in the chamber 22b, and the spool valve 27
is descending. By lowering the spool valve 27, the port 30 communicates with the throttle 36 through the chamber 22a and the gap between the spool valve 27 and the cylinder 22.
Therefore, a part of the compressed air in the oil separator 4 is
When passing through the gap and the throttle 36, the compressed air is depressurized by an appropriate amount, and the decompressed compressed air is guided to the oil spout 1a of the compressor body 1. As a result, a portion of the compressed air in the oil separator 4 is reduced in pressure and injected into the compressor main body 1 from the oil spout 1a, thereby reducing noise during unloading operation.
In this case, the port 31 is closed by the spool valve 27 and does not communicate with the port 30. Fifth
The figure shows the state during this unloading operation.

実施例では、スプール弁27に引き輪37を取
り付けて、例えば運転中または運転終了後には任
意に放気を行つて吐出側経路内の圧力を下げるこ
とができる。
In the embodiment, a pull ring 37 is attached to the spool valve 27, and the pressure in the discharge side path can be lowered by arbitrarily releasing air during or after the operation, for example.

実施例ではスクリユー圧縮機に適用したが、こ
れに限らず油冷式圧縮機であればいずれのもので
も良い。
In the embodiment, the invention is applied to a screw compressor, but the present invention is not limited to this, and any oil-cooled compressor may be used.

(発明の効果) 叙上のように本発明によれば、ばね28を調整
しておくだけで、圧縮機本体1を停止させたとき
に、油分離器4内の圧力気体を適当量放気させ、
油分離器4内の圧力を、圧縮機本体1が再起動可
能な圧力まで自動的に低下させることができるか
ら、モータの焼損等の不具合が生ずることなく、
従来に比し圧縮機本体1の再起動を容易に行うこ
とができる。この場合、油分離器4内の圧力気体
を大気圧になるまで全部放出させなくてもよいの
で、エネルギーの無駄を省くことができる。
(Effects of the Invention) As described above, according to the present invention, by simply adjusting the spring 28, when the compressor main body 1 is stopped, an appropriate amount of pressurized gas in the oil separator 4 can be released. let me,
Since the pressure inside the oil separator 4 can be automatically lowered to the pressure at which the compressor main body 1 can be restarted, problems such as motor burnout will not occur.
The compressor main body 1 can be restarted more easily than in the past. In this case, it is not necessary to release all the pressurized gas in the oil separator 4 until it reaches atmospheric pressure, so energy waste can be avoided.

しかも、圧力気体の放出を再起動可能な大きさ
の圧力で停止させることにより、再起動時におい
て噴出口1aからの油噴射を直ちに開始させるこ
とができる。したがつて、油タンク3や油分離器
4の容量が大きくても、従来のようにその内圧を
上昇させるための運転を行う必要がなく、その分
時間的ロスをなくすことができる。
Furthermore, by stopping the release of pressurized gas at a pressure that is large enough to restart, oil injection from the jet port 1a can be immediately started at the time of restart. Therefore, even if the capacity of the oil tank 3 or the oil separator 4 is large, there is no need to operate the oil tank 3 or the oil separator 4 to increase the internal pressure as in the conventional case, and time loss can be eliminated accordingly.

アンロード運転時に、吐出側圧力気体が絞り部
36により適宜減圧されて油噴出口1aに導入さ
れるから、アンロード運転中における吸入気体に
よる騒音の発生を効果的に防止することができ
る。
During the unloading operation, the pressure gas on the discharge side is appropriately reduced in pressure by the throttle part 36 and introduced into the oil jet port 1a, so that it is possible to effectively prevent the generation of noise due to the intake gas during the unloading operation.

さらに、放気機構と油噴出口1aへの気体戻し
機構とが1個の弁装置8に併有されていることか
ら、上記両機構を2個の弁装置に別々に付加させ
たものに比べて、取付スペース、配管作業、製作
コスト等の面で有利となり、実際的な使用価値が
増大するという特有の効果がある。
Furthermore, since the air release mechanism and the gas return mechanism to the oil spout 1a are combined in one valve device 8, compared to a case in which both of the above mechanisms are separately added to two valve devices. Therefore, it is advantageous in terms of installation space, piping work, manufacturing cost, etc., and has the unique effect of increasing practical use value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る圧縮機の構成図、第2
図、第4図および第5図は弁装置の断面図、第3
図は起動特性図である。 1……圧縮機本体、1a……油噴出口、4……
油分離器、5……容量調整弁(気体流入量調整
弁)、8……弁装置、23……ポート(信号圧導
入用通路)、27……スプール弁(弁体)、28…
…作動圧調整用ばね、30……ポート(吐出側通
路)、31……ポート(放気通路)、36……絞
り。
Fig. 1 is a configuration diagram of a compressor according to the present invention;
Figures 4 and 5 are cross-sectional views of the valve device;
The figure is a starting characteristic diagram. 1... Compressor main body, 1a... Oil spout, 4...
Oil separator, 5... Capacity adjustment valve (gas inflow adjustment valve), 8... Valve device, 23... Port (signal pressure introduction passage), 27... Spool valve (valve body), 28...
...Spring for adjusting operating pressure, 30... Port (discharge side passage), 31... Port (discharge passage), 36... Throttle.

Claims (1)

【特許請求の範囲】 1 圧縮機本体1の吸込側に設けられた気体流入
量調整弁5に接続される信号圧導入用通路23
と、圧縮機本体1の吐出側に設けられた油分離器
4に接続される吐出側通路30と、大気に連通す
る放気通路31と、前記信号圧導入用通路23の
内圧を一端面で受けて作動し前記吐出側通路30
を前記放気通路31に連通させる弁体27と、該
弁体27をその一端方向に付勢する作動圧調整用
ばね28とを有する弁装置8を具備してなり、 該弁装置8に、アンロード運転時に前記弁体2
7がその一端方向に移動することで前記吐出側通
路30と連通する絞り部36を付設し、 該絞り部36を、圧縮機本体1の油噴出口1a
に接続したことを特徴とする油冷式圧縮器。
[Claims] 1. Signal pressure introduction passage 23 connected to gas inflow adjustment valve 5 provided on the suction side of compressor main body 1
The internal pressure of the discharge side passage 30 connected to the oil separator 4 provided on the discharge side of the compressor main body 1, the air discharge passage 31 communicating with the atmosphere, and the signal pressure introduction passage 23 is controlled at one end surface. The discharge side passage 30
The valve device 8 includes a valve body 27 that communicates with the air discharge passage 31, and an operating pressure adjustment spring 28 that biases the valve body 27 toward one end thereof, and the valve device 8 includes: The valve body 2 during unloading operation.
7 is attached with a constriction part 36 that communicates with the discharge side passage 30 by moving toward one end thereof, and the constriction part 36 is connected to the oil spout 1a of the compressor main body 1.
An oil-cooled compressor characterized by being connected to.
JP5842977A 1977-05-20 1977-05-20 Oil cooled compressor Granted JPS53144011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5842977A JPS53144011A (en) 1977-05-20 1977-05-20 Oil cooled compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5842977A JPS53144011A (en) 1977-05-20 1977-05-20 Oil cooled compressor

Publications (2)

Publication Number Publication Date
JPS53144011A JPS53144011A (en) 1978-12-15
JPS6137473B2 true JPS6137473B2 (en) 1986-08-23

Family

ID=13084126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5842977A Granted JPS53144011A (en) 1977-05-20 1977-05-20 Oil cooled compressor

Country Status (1)

Country Link
JP (1) JPS53144011A (en)

Also Published As

Publication number Publication date
JPS53144011A (en) 1978-12-15

Similar Documents

Publication Publication Date Title
US4406589A (en) Compressor
US5388967A (en) Compressor start control and air inlet valve therefor
US4098487A (en) Device for controlling oil injection to a screw compressor
JP5706681B2 (en) Multistage compressor
KR20120024478A (en) Control valve for variable capacity compressor
EP0130662B1 (en) Compressor control system
US4171188A (en) Rotary air compressors with intake valve control and lubrication system
US4270885A (en) Unloading means for a gas compressor
US10316845B2 (en) Oil supply type compressor
US4815950A (en) Multi-stage compressor capacity control apparatus
JPS60249694A (en) Starting unloader device for compressor
JPS6137473B2 (en)
US3446232A (en) Fuel regulating valve
JP3009255B2 (en) Suction throttle valve for oiled screw compressor
KR200212869Y1 (en) pipe arrangement system for inducing vacuum in fabrication of semiconductor
JP5046659B2 (en) air compressor
JP3356807B2 (en) No-load operation device and stop method for engine compressor
JPS6332948Y2 (en)
CN108368837B (en) Liquid-cooled compressor and method of operating the same
JPS5851294A (en) Shaft sealing apparatus for compressor
JPS5882090A (en) Unloader for screw compressor
JPS6211347Y2 (en)
JPH0396668A (en) Oil recovery device of oil cooling type compressor
JPS6153490A (en) Capacity controller of oil cooling type rotary compressor
KR0131031B1 (en) Air-compressor volume controller by five-way electric valve