JPS6137344B2 - - Google Patents

Info

Publication number
JPS6137344B2
JPS6137344B2 JP53011998A JP1199878A JPS6137344B2 JP S6137344 B2 JPS6137344 B2 JP S6137344B2 JP 53011998 A JP53011998 A JP 53011998A JP 1199878 A JP1199878 A JP 1199878A JP S6137344 B2 JPS6137344 B2 JP S6137344B2
Authority
JP
Japan
Prior art keywords
corrosion
radiator
alloy
copper
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53011998A
Other languages
Japanese (ja)
Other versions
JPS54106023A (en
Inventor
Hiroshi Rikukawa
Masahiro Tsuji
Hiroshi Yasuda
Junji Pponda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP1199878A priority Critical patent/JPS54106023A/en
Publication of JPS54106023A publication Critical patent/JPS54106023A/en
Publication of JPS6137344B2 publication Critical patent/JPS6137344B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(目的) 本発明は、耐食性に優れた自動車のラジエータ
チユーブ用銅合金に関するものである。 (従来技術及び問題点) 一般に自動車用ラジエーターは第4図に示すよ
うに、上部タンク1と下部タンク2との間にラジ
エーター液を循環させる多数のラジエーターチユ
ーブ3を連結させ、このラジエーターチユーブ3
間に熱を放散させるフイン4を取付けた構造とな
つており、上記上部タンク1にはオーバーフロー
パイプ5とラジエーター液用インレツトパイプ6
が設けられ、下部タンク2にはドレインコツク7
とラジエーター液用アウトレツトパイプ8がそれ
ぞれ設けられている。 又、側部にはブラケツト9と補強体10が取付
けられている。 上記のラジエーターは自動車のエンジン冷却の
放熱効果を高めるために、通常自動車の前部に設
置され、フアンにより空気を吹き付けて強制冷却
させている。 上記ラジエーターのフイン4は熱伝導性の高い
純銅あるいは少量の添加元素を有する純銅に近い
材料が用いられている。 一方、上記のラジエーターチユーブ材は、前記
第4図に示すように偏平の筒体に屈曲加工され、
縁部はロツクシーム又ははんだ付けにより結合さ
れている。 このような自動車用ラジエーターチユーブ材
は、強度、屈曲性(加工性)、熱伝導性及び耐食
性が必要とされており、さらに近年では放熱性の
向上と軽量化のために板厚0.13mm程度の薄い材料
のチユーブ材が要求されている。 自動車用ラジエーターチユーブの腐食環境をみ
ると、チユーブの内部にはラジエーター液である
熱水(水道水あるいは不凍液)が流れ、チユーブ
の外部は大気が強制的に吹き付けられている。 最近、大気の中に窒素酸化物、亜硫酸ガス等が
増加し、又道路には凍結防止剤として塩素化合物
(塩)を散布するなど自動車走行環境が悪化して
きている。 これらの腐食環境悪化によつて自動車用ラジエ
ーターの耐久性が増々求められる要因となつてい
るが、本発明者等は、自動者用ラジエーターの水
もれの原因が主として黄銅の脱亜鉛腐食によるも
のであることを次の試験により確めた。まず使用
中にある市販乗用車のラジエーターチユーブ材で
ある銅65重量%、亜鉛35重量%の黄銅の腐食部分
(断面の顕微境写真を第1図に示す。)をX線マイ
クロアナライザーで分析したところ脱亜鉛腐食で
あることが確認された。 又市販の乗用車用新車のラジエーターについて
塩水噴霧(JIS Z 2371塩水噴霧試験方法準用)
を行い、生じた腐食部分(断面の顕微鏡写真を第
2図に示す。)をX線マイクロアナライザーで分
析したところ同様に脱亜鉛腐食であることが確認
された。 このように従来自動車用ラジエーターチユーブ
材として銅−亜鉛合金である黄銅が用いられてき
たが、この黄銅には特有の脱亜鉛腐食という現象
があり、特に耐久性の面から大きな問題があつ
た。 このようなことから黄銅の脱亜鉛腐食を解消す
るために少量のアルミニウムと砒素を添加した、
いわゆるアルミ黄銅が提案されたが、この合金は
海水に対しては優れた耐久性を示す反面ラジエー
ターチユーブ材の内部を流れる熱水(淡水)に対
してはピツテイング腐食から応力腐食に進展する
という致命的な欠陥を有しており、さらに合金の
複雑さ、製造上の困難さから自動車用ラジエータ
ー材としては不向きであつた。 又、一般の熱交換器用管材に用いられている
Cu>70wt%、Pb≦0.075wt%、Fe≦0.06wt%及
びSn0.9〜1.20重量%を必須成分として含有する
アドミラルテイ合金を使用することも考えられ
た。このアドミラルテイ合金はもともと船舶のタ
ービン復水器用管として開発されたものである
が、海水に対してはさらに耐食性の優れたアルミ
ニウム黄銅に取つて替えられており、今では専ら
淡水、湖水を冷却水として利用する熱交換器に使
用されているのみである。 これはアドミラルテイ合金が海水に対しては耐
食性に劣ることを示すものであり、上記のような
今日の塩素化合物(塩水、海水)等を含有する大
気によつて激しく汚染される環境下での自動車用
ラジエーター材としては不適といえる。 以上から塩水(海水)、淡水の何れにも同時に
耐食性を持ち合せ、ラジエーターチユーブ材の内
面腐食及び外面腐食に対して上記のアルミニウム
黄銅、アドミラルテイ合金のいずれも失格であ
り、これがため両合金とも自動車のラジエーター
チユーブ用合金として実用化されていない。 本発明は上記のような欠点を解消する新規な耐
食性銅合金を提供するもので、亜鉛25〜38重量
%、リン0.005〜0.070重量%を含み、残部銅及び
不可避的な不純物よりなる自動車のラジエーター
チユーブ用銅合金に関する。 本発明に係る合金における添加元素中、亜鉛25
〜38重量%は銅とともに本合金の基となるもので
あつて、ラジエーターチユーブ材としての耐食
性、強度、成形加工性を満足させ熱伝導性を良好
に維持するものであり、亜鉛の含有量を25〜38重
量%とする理由は、亜鉛含有量が25重量%未満で
は強度、加工性で満足のいく値が得られず、又38
重量%を超えると銅−亜鉛合金におけるβ相の析
出が顕著にみられ、耐食性及び冷間加工性が悪く
なるためである。 又、リンの添加量を0.005〜0.070重量%とする
理由は、リンの添加量が0.005重量%未満では耐
脱亜鉛腐食性の効果が見られず、又0.070重量%
を超えると耐脱亜鉛腐食性は満足するが、粒界腐
食の徴候が見られるためである。このようにリン
0.005〜0.070重量%、亜鉛25〜38重量%、残銅か
らなる銅合金において、初めて耐脱亜鉛腐食性に
著しく富み、かつ強度、成形加工性、熱伝導性さ
らには耐応力腐食に対しても十分満足できる自動
車のラジエーターチユーブ用材として優れた銅合
金が得られる。 以上の本発明の合金は厚さ0.13mm程度の薄板と
され、これをさらにはんだ付け又はロツクシーム
により偏平な管に加工されるが、このような薄肉
管であつてもラジエーターチユーブ材として十分
な耐久性を有し、今日の自動車用ラジエーター材
として不可欠な合金である。 次に本発明に係る合金について実施例により説
明する。 (実施例) 第1表に示す諸組成の合金を溶製し、熱間圧延
及び適宜焼なましを加えながら冷間圧延により1
mm厚さの板とし、最終的に500℃×3minの焼なま
しを加えたのち腐食試験に供した。腐食試験は脱
亜鉛促進試験とし、腐食液は1の水に 硫酸銅(5水塩) 125 g 酢酸ナトリウム(3水塩) 45 g 酢 酸 37.5g 塩化カリウム 25 g を各々溶かしたもので、液温50℃、静置浸漬50時
間とした。 耐食性の評価は、脱亜鉛腐食については試片の
断面組織観察及び全面腐食については腐食速度で
行い、その結果を第2図に示した。第3図には試
料番号A、B、E及びびFの、脱亜鉛腐食試験に
よる腐食の断面の顕微鏡写真として夫々(a)、(b)、
(c)、(d)として示したものである。 これらの結果から明らかなごとくリンを0.005
〜0.070重量%0範囲にある本発明のCu−Zn−P
合金は耐脱亜鉛腐食に著しい改善効果があるこ
と、又リンの添加により全面腐食にとくに悪い作
用を及ぼさないことが判り、自動車等のラジエー
ター用銅合金として最適である。
(Objective) The present invention relates to a copper alloy for automobile radiator tubes that has excellent corrosion resistance. (Prior Art and Problems) Generally, as shown in FIG. 4, an automobile radiator has a plurality of radiator tubes 3 connected to each other for circulating radiator fluid between an upper tank 1 and a lower tank 2.
The upper tank 1 has an overflow pipe 5 and an inlet pipe 6 for radiator liquid.
is provided, and the lower tank 2 is equipped with a drain tank 7.
and a radiator fluid outlet pipe 8 are provided, respectively. Further, a bracket 9 and a reinforcing body 10 are attached to the side part. The above-mentioned radiator is usually installed at the front of a car in order to enhance the heat dissipation effect for cooling the car engine, and uses a fan to blow air to forcefully cool the engine. The fins 4 of the radiator are made of pure copper having high thermal conductivity or a material close to pure copper with a small amount of added elements. On the other hand, the above radiator tube material is bent into a flat cylindrical body as shown in FIG.
The edges are joined by lock seams or soldering. Such automotive radiator tube materials are required to have strength, flexibility (workability), thermal conductivity, and corrosion resistance, and in recent years, in order to improve heat dissipation and reduce weight, sheets with a thickness of about 0.13 mm have been developed. Thin tube material is required. Looking at the corrosive environment of automobile radiator tubes, hot water (tap water or antifreeze), which is the radiator fluid, flows inside the tube, and air is forcibly blown onto the outside of the tube. Recently, the driving environment for automobiles has been deteriorating due to the increase in nitrogen oxides, sulfur dioxide, etc. in the atmosphere, and the spraying of chlorine compounds (salts) as antifreeze agents on roads. The deterioration of these corrosive environments is a factor in the increasing demand for durability in automobile radiators, but the present inventors believe that the cause of water leakage in automobile radiators is mainly due to dezincification corrosion of brass. This was confirmed by the following test. First, we analyzed a corroded part of brass (a microscopic cross-sectional photograph is shown in Figure 1) of 65% copper and 35% zinc, which is the radiator tube material of a commercially available passenger car in use, using an X-ray microanalyzer. It was confirmed that this was dezincification corrosion. Salt water spray (JIS Z 2371 salt water spray test method applied mutatis mutandis) for the radiators of new commercially available passenger cars.
When the resulting corrosion area (a cross-sectional micrograph is shown in Figure 2) was analyzed using an X-ray microanalyzer, it was similarly confirmed that this was dezincification corrosion. Brass, which is a copper-zinc alloy, has thus far been used as a material for automobile radiator tubes, but this brass has a unique phenomenon of dezincification corrosion, which poses a major problem, particularly in terms of durability. For this reason, small amounts of aluminum and arsenic were added to eliminate dezincification corrosion of brass.
So-called aluminum brass was proposed, but while this alloy shows excellent durability against seawater, it suffers from pitting corrosion that progresses to stress corrosion when exposed to hot water (fresh water) flowing inside the radiator tube material. It was unsuitable as a radiator material for automobiles due to the complexity of the alloy and manufacturing difficulties. It is also used for general heat exchanger tube materials.
It was also considered to use an Admiralty alloy containing as essential components Cu>70wt%, Pb≦0.075wt%, Fe≦0.06wt% and Sn 0.9-1.20wt%. This Admiralty alloy was originally developed for use in marine turbine condenser pipes, but it has been replaced by aluminum brass, which has better corrosion resistance against seawater, and is now used exclusively for cooling freshwater and lake water. It is only used in heat exchangers that use it as water. This indicates that Admiralty alloy has poor corrosion resistance against seawater, and is suitable for use in today's environments heavily polluted by the atmosphere containing chlorine compounds (salt water, seawater), etc. It can be said that it is unsuitable as a radiator material for automobiles. From the above, both aluminum brass and Admiralty alloy have corrosion resistance in both saltwater (seawater) and freshwater, and are ineligible for internal and external corrosion of radiator tube materials. It has not been put to practical use as an alloy for automobile radiator tubes. The present invention provides a novel corrosion-resistant copper alloy that eliminates the above-mentioned drawbacks, and is suitable for automobile radiators containing 25-38% by weight of zinc, 0.005-0.070% by weight of phosphorus, and the balance consisting of copper and unavoidable impurities. Regarding copper alloy for tubes. Among the additive elements in the alloy according to the present invention, zinc 25
~38% by weight is the basis of this alloy along with copper, and satisfies corrosion resistance, strength, and formability as a radiator tube material, and maintains good thermal conductivity. The reason why the zinc content is 25 to 38% by weight is that if the zinc content is less than 25% by weight, satisfactory values for strength and workability cannot be obtained.
This is because if the content exceeds % by weight, precipitation of β phase in the copper-zinc alloy will be noticeable, resulting in poor corrosion resistance and cold workability. In addition, the reason why the amount of phosphorus added is set to 0.005 to 0.070% by weight is that if the amount of phosphorus added is less than 0.005% by weight, no effect on dezincification corrosion resistance can be seen;
This is because, although the dezincification corrosion resistance is satisfactory when it exceeds 100%, signs of intergranular corrosion are observed. Like this
For the first time, a copper alloy consisting of 0.005 to 0.070% by weight, 25 to 38% by weight of zinc, and residual copper has extremely high dezincification corrosion resistance, and has excellent strength, formability, thermal conductivity, and even stress corrosion resistance. An excellent copper alloy can be obtained as a fully satisfactory material for automobile radiator tubes. The above-mentioned alloy of the present invention is made into a thin plate with a thickness of about 0.13 mm, which is then processed into a flat tube by soldering or lock seaming, but even such a thin-walled tube has sufficient durability as a radiator tube material. This alloy is indispensable as a radiator material for today's automobiles. Next, the alloy according to the present invention will be explained using examples. (Example) Alloys having various compositions shown in Table 1 were melted and cold rolled with hot rolling and appropriate annealing.
The plate was made into a plate with a thickness of mm, and after being annealed at 500°C for 3 minutes, it was subjected to a corrosion test. The corrosion test was a dezincification acceleration test, and the corrosive solution was prepared by dissolving 125 g of copper sulfate (pentahydrate), 45 g of sodium acetate (trihydrate), 37.5 g of acetic acid, and 25 g of potassium chloride in 1 water. The temperature was 50°C, and the soaking was performed for 50 hours. Corrosion resistance was evaluated by observing cross-sectional structure of specimens for dezincification corrosion and by corrosion rate for general corrosion. The results are shown in Figure 2. Figure 3 shows (a), (b), and micrographs of the corrosion cross sections of sample numbers A, B, E, and F in the dezincification corrosion test, respectively.
These are shown as (c) and (d). As is clear from these results, 0.005 phosphorus
Cu-Zn-P of the present invention in the range of ~0.070 wt% 0
It has been found that the alloy has a significant improvement effect on dezincification corrosion resistance, and that the addition of phosphorus does not have a particularly negative effect on general corrosion, making it ideal as a copper alloy for radiators in automobiles and the like.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は市販乗用車用ラジエーター材の腐食状
態を表わす顕微鏡写真、第2図は市販乗用車用ラ
ジエーターの新品についての噴霧試験による腐食
状態の顕微鏡写真、第3図は各種材料の腐食試験
による腐食状態を表わす顕微鏡写真である。第4
図は自動車用ラジエーターの構造の概略説明図で
ある。
Figure 1 is a microscopic photograph showing the corrosion state of commercially available passenger car radiator materials, Figure 2 is a microscopic photograph of the corrosion state obtained from spray tests on new commercially available passenger car radiators, and Figure 3 is the corrosion state obtained from corrosion tests of various materials. This is a microscopic photograph showing. Fourth
The figure is a schematic explanatory diagram of the structure of an automobile radiator.

Claims (1)

【特許請求の範囲】[Claims] 1 亜鉛25〜38重量%、リン0.005〜0.070重量%
を含み、残部銅及び不可避的な不純物よりなる自
動車のラジエーターチユーブ用銅合金。
1 Zinc 25-38% by weight, phosphorus 0.005-0.070% by weight
Copper alloy for automobile radiator tubes, containing copper with the balance being copper and unavoidable impurities.
JP1199878A 1978-02-07 1978-02-07 Copper alloy for radiator Granted JPS54106023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1199878A JPS54106023A (en) 1978-02-07 1978-02-07 Copper alloy for radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1199878A JPS54106023A (en) 1978-02-07 1978-02-07 Copper alloy for radiator

Publications (2)

Publication Number Publication Date
JPS54106023A JPS54106023A (en) 1979-08-20
JPS6137344B2 true JPS6137344B2 (en) 1986-08-23

Family

ID=11793246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1199878A Granted JPS54106023A (en) 1978-02-07 1978-02-07 Copper alloy for radiator

Country Status (1)

Country Link
JP (1) JPS54106023A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593531B2 (en) * 1979-09-27 1984-01-24 株式会社デンソー Corrosion-resistant copper alloy and heat exchanger using it

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2224095A (en) * 1940-02-15 1940-12-03 Scovill Manufacturing Co Tube for heat exchanging apparatus
US3963526A (en) * 1972-08-22 1976-06-15 Aktieselskabet Nordiske Kabel-Og Traadfabriker Method of imparting increased dezincification resistance to brass
JPS544814A (en) * 1977-06-14 1979-01-13 Kobe Steel Ltd Copper alloy for radiator tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2224095A (en) * 1940-02-15 1940-12-03 Scovill Manufacturing Co Tube for heat exchanging apparatus
US3963526A (en) * 1972-08-22 1976-06-15 Aktieselskabet Nordiske Kabel-Og Traadfabriker Method of imparting increased dezincification resistance to brass
JPS544814A (en) * 1977-06-14 1979-01-13 Kobe Steel Ltd Copper alloy for radiator tube

Also Published As

Publication number Publication date
JPS54106023A (en) 1979-08-20

Similar Documents

Publication Publication Date Title
JP2005060790A (en) Aluminum alloy brazing fin material for heat exchanger
KR20180126550A (en) An aluminum composite material having a corrosion preventive layer
JP2000087162A (en) Aluminum alloy clad material for heat exchanger excellent in corrosion resistance
JP2019167581A (en) Method for producing aluminum alloy extruded tube
KR102144203B1 (en) High strength and corrosion resistant alloy for use in HVAC&R systems
JP4019775B2 (en) Aluminum alloy brazing sheet for heat exchangers with excellent corrosion resistance
JPS6137344B2 (en)
JP2002256402A (en) Method of producing fin material for use in heat exchanger
JP3858255B2 (en) Aluminum alloy clad material for heat exchangers with excellent corrosion resistance
JP2000212668A (en) Aluminum alloy extruded tube for heat exchanger excellent in corrosion resistance
JP2010270386A (en) Aluminum alloy fin material for heat exchanger
Fortin et al. Aluminum materials and processes for automotive heat exchanger applications
JP2000087164A (en) Aluminum alloy clad material for heat exchanger excellent in corrosion resistance
JP2000212667A (en) Aluminum alloy extruded tube for heat exchanger excellent in corrosion resistance
JP3811932B2 (en) Aluminum alloy clad material for heat exchangers with excellent corrosion resistance
JP2000087163A (en) Aluminum alloy clad material for heat exchanger excellent in corrosion resistance
JP2000084661A (en) Manufacture of heat exchanger excellent in corrosion resistance
JPH0360896B2 (en)
JP3253823B2 (en) Method for producing high strength and high heat resistant fin material made of aluminum alloy for heat exchanger
JP2000087166A (en) Aluminum alloy clad material for heat exchanger excellent in corrosion resistance
JP3858254B2 (en) Aluminum alloy clad material for heat exchangers with excellent corrosion resistance
JPS61195947A (en) Core of heat exchanger made of aluminum alloy having good corrosion resistance
JP2000297338A (en) Aluminum alloy clad material for heat exchanger, excellent in corrosion resistance under alkaline environment and acid environment
JPS5856016B2 (en) Method for manufacturing aluminum alloy extruded shapes for fluid passage materials in heat exchangers
JP2000297339A (en) Aluminum alloy clad material for heat exchanger, excellent in corrosion resistance under alkaline environment and acid environment