【発明の詳細な説明】[Detailed description of the invention]
本発明は、成形性が良く、かつ機械的強度や耐
熱性などの物性がすぐれたガラス繊維強化ポリプ
ロピレン組成物の製造方法に関する。さらにくわ
しくは、ポリプロピレンと変性ポリプロピレンな
らびに有機過酸化物とを混合し、次いで得られた
混合物に表面処理剤を施したガラス繊維を添加
し、これらを溶融混練することによりガラス繊維
強化ポリプロピレン組成物を製造する方法に関す
る。
従来、ポリプロピレンの機械的強度や耐熱性な
どを向上させるため、ポリプロピレンにガラス繊
維を充填する方法がとられており、ポリプロピレ
ンとガラス繊維の接着性を高めるため、ガラス繊
維を有機シラン化合物などのカツプリング剤で表
面処理したものが用いられている。さらに、ポリ
プロピレンに不飽和カルボン酸や芳香族ビニル化
合物などをグラフト重合させ変性したポリプロピ
レンに同様なガラス繊維を充填し、相互の接着強
度を高める試みがなされているが、機械的強度は
向上するものの、かえつて、熱安定性や耐候性な
どが低下するという欠点が生じている。これらを
解決せんとして、変性ポリプロピレンをポリプロ
ピレンで希釈し使用することも提案されている
が、これら両者の単なる混合だけでは、ガラス繊
維との接着強度に難があり、熱安定性や耐候性な
どもさほど向上せず、また成形性も充分良いとは
いえない。
ここにおいて本発明者らは、このようなガラス
繊維強化ポリプロピレン組成物として、成形性と
各種物性がともにすぐれたものを得るよう種々検
討した結果、ポリプロピレン100重量部と、不飽
和カルボン酸で変性したポリプロピレン0.5ない
し45重量部、および有機過酸化物0.005ないし1.0
重量部とを混合し、次いで得られた混合物に表面
処理剤を施したガラス繊維を全重量に対して5な
いし40重量%となるように添加し、これらを溶融
混練することによりすぐれたガラス繊維強化ポリ
プロピレン組成物を製造できることを見出すに至
つた。
本発明におけるポリプロピレンとは、通常の結
晶性ポリプロピレンのほか、プロピレン共重合体
を指称し、不飽和カルボン酸による変性ポリプロ
ピレンとは、ポリプロピレンに対してアクリル酸
やマレイン酸、フマル酸などの不飽和カルボン酸
あるいはこれらの無水物を10重量%以下グラフト
重合させたものを指称する。
本発明において用いる有機過酸化物としては、
過酸化ベンゾイル、過酸化ラウロイル、過酸化ジ
クミルなどが好ましい。また、ガラス繊維の表面
処理剤としては、γ−アミノピロプルエトキシシ
ランやビニルトリエトキシシラン、γ−クリシド
キシプロピル−トリビルトリ−メトキシシランな
どの不飽和シラン化合物が好ましい。さらに、ガ
ラス繊維としては、ローピングやチヨツプドスト
ランドなどといわれている、その長さが1ないし
10mmのものが混合し易く、分散性がよいので好ま
しい。
本発明の方法にしたがつてガラス繊維強化ポリ
プロピレン組成物をつくるには、まずポリプロピ
レンのペレツト100重量部に対し、変性ポリプロ
ピレンのペレツト0.5ないし45重量部と、有機過
酸化物0.005ないし10重量部とを添加し、これら
を常温においてV型プレンダーなどにより混合
し、ついで、得られた混合物に表面処理済みのガ
ラス繊維を全組成物重量基準で5ないし40重量%
添加混合し、これらを押出成形機あるいはバンバ
リーミキサーなどに供給して溶融混練し、常法に
よりペレツト化すればよい。
原料の配合割合については、変性ポリプロピレ
ンを0.5重量部未満としたのでは、ポリプロピレ
ンおよび変性ポリプロピレン混合物のガラス繊維
とを接着強度が低下し、またこれを45重量部以上
にすると、得られる組成物の機械的強度を低下を
招く。また有機過酸化物の場合には、これが
0.005重量部未満ではその添加効果があがらず、
これを1.0重量部以上にすると、その作用が強過
ぎて、得られる組成物の機械的強度の低下を招
く。
有機過酸化物の効果理由については、未だ不明
であるが、ポリプロピレンがある程度の分子切断
をともなう活性化作用を受けるためではないかと
みられ、このことは、得られる組成物の成形温度
が従来この種のものより可成り低くて足り、ま
た、耐クリープ性や剛性、強度、寸法安定性の向
上はガラス繊維との親和性が増大したとみられる
からである。
なお、ガラス繊維の表面処理や配合割合につい
ては、通常のガラス繊維強化ポリプロピレン組成
物の場合と同様にして差支えない。
本発明の方法により製造されるガラス繊維強化
ポリプロピレン組成物は、上記各種機械的強度の
ほか、耐熱性においてもすぐれているので、耐熱
性と機械的強度がとくに要求される工業部品の分
野に適している。
つぎに、本発明を実施例および比較例によりさ
らに具体的に説明する。
実施例 1
ポリプロピレンとしてメルトインデツクス8.0
のポリプロピレン〔出光石油化学(株)製:出光ポリ
プロJ700G〕100重量部に、変性ポリプロピレン
としてアクリル酸換算含有量が6重量%の変性ポ
リプロピレン〔エクソンケミカル社製:デクソ
ン・XPA−2〕を5.3重量部と、有機過酸化物と
してジクミルパーオキサイドを0.1重量部の割合
で添加し、V型プレンダーで10分間混合した。つ
いで、これにシラン系カツプリング剤で表面処理
してある長さ3mmのガラス繊維を、組成物全重量
基準で20重量%となるように添加し1分間混合し
た。得られた混合物を押出機に供給して加熱溶融
し、混練押出し後、切断してガラス繊維強化ポリ
プロピレン組成物のペレツトを得た。
得られた組成物について、成形性と関連の深い
金型への最小充填圧力、および物性として引張強
度(ASTM−D638:23℃)、曲わ強度(ASTM−
D790:23℃)、アイゾツト衝撃強度(ASTM−
D256:ノツチ付・23℃)、熱変形温度(ASTM−
D648:18.6Kg/cm2)を測定した。これらの結果
を第1表に示す。
実施例 2
ポリプロピレン100重量部に対する変性ポリプ
ロピレンの配合割合を11重量部としたほかは、実
施例1と同様にしてガラス繊維強化ポリプロピレ
ン組成物を得た。この組成物について、実施例1
と同様に成形性と物性を測定した。その結果を第
1表に示す。
実施例 3
ポリプロピレン100重量部に対する変性ポリプ
ロピレンの配合割合を25重量部としたほかは、実
施例1と同様にしてガラス繊維強化ポリプロピレ
ン組成物を得た。これについて実施例1と同様に
成形性と物性を測定し、その結果を第1表に示
す。
比較例 1〜3
有機過酸化物の添加効果をみるため、ジクミル
パーオキサイドを添加せず、それぞれ実施例1な
いし3について比較実験をおこない、比較例1な
いし3とした。それぞれの組成物の成形性および
物性の測定結果を第1表中に併配する。
The present invention relates to a method for producing a glass fiber-reinforced polypropylene composition that has good moldability and excellent physical properties such as mechanical strength and heat resistance. More specifically, a glass fiber-reinforced polypropylene composition is prepared by mixing polypropylene, modified polypropylene, and an organic peroxide, then adding glass fibers treated with a surface treatment agent to the resulting mixture, and melting and kneading them. Relating to a method of manufacturing. Conventionally, in order to improve the mechanical strength and heat resistance of polypropylene, a method has been used to fill polypropylene with glass fibers. The surface treated with a chemical agent is used. Furthermore, attempts have been made to fill polypropylene modified by graft-polymerizing unsaturated carboxylic acids or aromatic vinyl compounds with similar glass fibers to increase mutual adhesive strength, but although the mechanical strength has improved, On the contrary, the disadvantage is that thermal stability, weather resistance, etc. are reduced. In order to solve these problems, it has been proposed to use modified polypropylene diluted with polypropylene, but simply mixing the two has problems with adhesive strength with glass fibers and has poor thermal stability and weather resistance. The improvement was not so great, and the moldability was not sufficiently good. Here, the present inventors conducted various studies to obtain such a glass fiber-reinforced polypropylene composition with excellent moldability and various physical properties. 0.5 to 45 parts by weight of polypropylene, and 0.005 to 1.0 parts by weight of organic peroxide
parts by weight, then glass fibers treated with a surface treatment agent are added to the resulting mixture in an amount of 5 to 40% by weight based on the total weight, and these are melt-kneaded to produce excellent glass fibers. It has now been discovered that reinforced polypropylene compositions can be produced. In the present invention, polypropylene refers to normal crystalline polypropylene as well as propylene copolymers, and polypropylene modified with unsaturated carboxylic acids refers to polypropylene with unsaturated carboxylic acids such as acrylic acid, maleic acid, and fumaric acid. Refers to a product obtained by graft polymerization of 10% by weight or less of an acid or anhydride thereof. The organic peroxide used in the present invention includes:
Benzoyl peroxide, lauroyl peroxide, dicumyl peroxide and the like are preferred. Further, as a surface treatment agent for glass fibers, unsaturated silane compounds such as γ-aminopyroprolethoxysilane, vinyltriethoxysilane, and γ-crisidoxypropyl-tribyltri-methoxysilane are preferred. Furthermore, glass fibers are called roping or chopped strands, and their length is 1 to 1.
A diameter of 10 mm is preferred because it is easy to mix and has good dispersibility. To prepare a glass fiber reinforced polypropylene composition according to the method of the present invention, first, 0.5 to 45 parts by weight of modified polypropylene pellets and 0.005 to 10 parts by weight of organic peroxide are added to 100 parts by weight of polypropylene pellets. These are mixed at room temperature using a V-type blender, etc., and then surface-treated glass fibers are added to the resulting mixture in an amount of 5 to 40% by weight based on the total weight of the composition.
They may be added and mixed, supplied to an extruder or Banbury mixer, melted and kneaded, and pelletized by a conventional method. Regarding the blending ratio of raw materials, if the modified polypropylene is less than 0.5 parts by weight, the adhesive strength between the polypropylene and the glass fiber of the modified polypropylene mixture will decrease, and if it is more than 45 parts by weight, the resulting composition will deteriorate. This causes a decrease in mechanical strength. In the case of organic peroxides, this
If it is less than 0.005 part by weight, the effect of the addition will not be enhanced;
If this amount exceeds 1.0 parts by weight, its effect will be too strong, leading to a decrease in the mechanical strength of the resulting composition. The reason for the effect of organic peroxides is still unclear, but it appears to be because polypropylene undergoes an activation effect accompanied by a certain degree of molecular scission. This is because it is considerably lower than that of seeds, and the improvement in creep resistance, rigidity, strength, and dimensional stability is thought to be due to increased affinity with glass fibers. Note that the surface treatment and blending ratio of the glass fibers may be the same as in the case of ordinary glass fiber-reinforced polypropylene compositions. The glass fiber-reinforced polypropylene composition produced by the method of the present invention has excellent heat resistance as well as the above-mentioned various mechanical strengths, so it is suitable for the field of industrial parts where heat resistance and mechanical strength are particularly required. ing. Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples. Example 1 Melt index 8.0 as polypropylene
To 100 parts by weight of polypropylene [manufactured by Idemitsu Petrochemical Co., Ltd.: Idemitsu Polypro J700G], 5.3 parts by weight of modified polypropylene [manufactured by Exxon Chemical Co., Ltd.: Dexon XPA-2] with an acrylic acid equivalent content of 6% by weight was added. 1 part by weight and dicumyl peroxide as an organic peroxide at a ratio of 0.1 part by weight, and mixed for 10 minutes in a V-type blender. Next, 3 mm long glass fibers whose surface had been treated with a silane coupling agent were added to the mixture in an amount of 20% by weight based on the total weight of the composition, and mixed for 1 minute. The obtained mixture was supplied to an extruder, heated and melted, kneaded and extruded, and then cut to obtain pellets of a glass fiber reinforced polypropylene composition. Regarding the obtained composition, the minimum filling pressure into the mold, which is closely related to moldability, and the physical properties such as tensile strength (ASTM-D638: 23°C) and bending strength (ASTM-
D790: 23℃), Izot impact strength (ASTM-
D256: Notched / 23℃), heat distortion temperature (ASTM-
D648: 18.6Kg/cm 2 ) was measured. These results are shown in Table 1. Example 2 A glass fiber-reinforced polypropylene composition was obtained in the same manner as in Example 1, except that the blending ratio of modified polypropylene was 11 parts by weight with respect to 100 parts by weight of polypropylene. For this composition, Example 1
The moldability and physical properties were measured in the same manner as above. The results are shown in Table 1. Example 3 A glass fiber reinforced polypropylene composition was obtained in the same manner as in Example 1, except that the blending ratio of modified polypropylene was 25 parts by weight relative to 100 parts by weight of polypropylene. The moldability and physical properties of this were measured in the same manner as in Example 1, and the results are shown in Table 1. Comparative Examples 1 to 3 In order to examine the effect of adding organic peroxide, comparative experiments were conducted for Examples 1 to 3 without adding dicumyl peroxide, and Comparative Examples 1 to 3 were obtained. The measurement results of moldability and physical properties of each composition are also shown in Table 1.
【表】
上表のすべての項目にみられるとおり、有機過
酸化物の添加効果は顕著である。[Table] As seen in all the items in the table above, the effect of adding organic peroxides is significant.