JPH0313259B2 - - Google Patents

Info

Publication number
JPH0313259B2
JPH0313259B2 JP57137606A JP13760682A JPH0313259B2 JP H0313259 B2 JPH0313259 B2 JP H0313259B2 JP 57137606 A JP57137606 A JP 57137606A JP 13760682 A JP13760682 A JP 13760682A JP H0313259 B2 JPH0313259 B2 JP H0313259B2
Authority
JP
Japan
Prior art keywords
weight
carbon
polycarbonate
parts
unsaturated acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57137606A
Other languages
Japanese (ja)
Other versions
JPS5927947A (en
Inventor
Ryuzo Tomomatsu
Toshifumi Shimazaki
Kazuyuki Nomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP13760682A priority Critical patent/JPS5927947A/en
Publication of JPS5927947A publication Critical patent/JPS5927947A/en
Publication of JPH0313259B2 publication Critical patent/JPH0313259B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリカーボネート樹脂組成物に関し、
詳しくはポリカーボネートと、カーボンフアイバ
ーあるいはカーボンウイスカーからなるカーボン
系充填剤よりなる配合物もしくはさらにガラス繊
維を加えた配合物に不飽和酸変性ポリプロピレン
を加えることによつて物性を改善させたポリカー
ボネート樹脂組成物に関する。 ポリカーボネート樹脂はすぐれた強度、耐衝撃
性、透明性等を有しているため、エンジニアリン
グ樹脂として各種分野に広く利用されている。と
ころで、このポリカーボネート樹脂の導電性を改
善するためにポリカーボネートにカーボンフアイ
バーもしくはカーボンブラツクを配合したものが
種々提案されている。その結果、ポリカーボネー
トの導電性は改善されたが、成形時ポリカーボネ
ートの分解によつて機械的物性が著しく低下し、
実用上各種の問題が生起している。 一方、ポリカーボネートにカーボンフアイバー
やガラス繊維を加えることによつて剛性が改善さ
れるけれども、耐衝撃性が著しく低下するので用
途が限定され、光学機器や電動工具のハウジン
グ、絶縁シヤーシやコネクター等の家電用部品あ
るいは自動車等の工業材料部品などに使用するの
に支障を来たしていた。 本発明者らはポリカーボネートに関する上記の
問題点を解消すべく鋭意研究を重ねた結果、ポリ
カーボネートと、カーボンフアイバーあるいはカ
ーボンウイスカーからなるカーボン系充填剤より
なる配合物もしくはさらにガラス繊維を加えた配
合物に不飽和酸変性ポリプロピレンを加えること
によつて目的が達成できることを見出し、かかる
知見に基いて本発明を完成したのである。 すなわち本発明は第1にポリカーボネート95〜
70重量%と、カーボンフアイバーあるいはカーボ
ンウイスカーからなるカーボン系充填剤5〜30重
量%よりなる配合物100重量部に、不飽和酸付加
量が0.5〜10重量%である不飽和酸変性ポリプロ
ピレンを0.1〜40重量部混合してなるポリカーボ
ネート樹脂組成物を提供するものである。 さらに本発明は第2にポリカーボネート95〜70
重量%、カーボンフアイバーあるいはカーボンウ
イスカーからなるカーボン系充填剤5〜30重量%
およびガラス繊維5〜20重量%よりなる配合物
100重量部に、不飽和酸変性ポリプロピレンを0.1
〜40重量部混合してなるポリカーボネート樹脂組
成物を提供するものである。 本発明のポリカーボネート樹脂組成物におい
て、カーボン系充填剤はポリカーボネートの導電
性を改善するために使用される。 また、ガラス繊維は第2番目の本発明のポリカ
ーボネート樹脂組成物の成分として用いられる
が、該組成物を高剛性の要求される用途に使用す
る場合、ガラス繊維を添加することが有効であ
る。さらに、本発明において不飽和酸変性ポリプ
ロピレンはポリカーボネート樹脂組成物の耐衝撃
性を向上させるために加えられるものである。 ポリカーボネートは任意の製法で得られたもの
を使用することができ、たとえばビスフエノール
Aとホスゲンを反応させるホスゲン法やビスフエ
ノールAとジフエニルカーボネート等の炭酸ジエ
ステルとを反応させるエステル交換法がある。ポ
リカーボネートは単独で使用してもよく、あるい
は2種以上を組合せて用いることもできる。な
お、難燃性などの要求される用途に対してはハロ
ゲン化ビスフエノールの共重合体を用いることが
望ましい。また、使用するポリカーボネートの分
子量については特に限定はないが通常は10000〜
100000程度のものが用いられ、20000〜50000のも
のが好ましい。 カーボン系充填剤であるカーボンフアイバーと
してはレーヨン系、ポリアクリロニトリル系、リ
グニンポバール系、ピツチ系、カーボンウイスカ
ーなどいずれも使用可能であるが、これらの中で
はレーヨン系、ポリアクリロニトリル系、リグニ
ンポバール系のものは導電性や剛性を向上させる
効果が大きいので好ましい。 またカーボンフアイバーに代えてカーボンウイ
スカーを用いてもよい。 次に、ガラス繊維は、前述したように、ポリカ
ーボネート樹脂組成物に高剛性が要求される場合
に添加されるものであり、その種類は問わず任意
のものを使用できるが、無アルカリガラス繊維が
好ましい。 不飽和酸変性ポリプロピレンはポリプロピレン
を溶媒中あるいは溶融状態で過酸化物の存在下お
よび必要に応じてジエンモノマーを主成分とする
液状ゴムを加えて不飽和カルボン酸またはその無
水物と反応させることによつて得られるものであ
る。この反応に用いられる不飽和カルボン酸とし
ては、たとえばアクリル酸、メタアクリル酸、マ
レイン酸、無水マレイン酸、フマール酸、イタコ
ン酸、メサコン酸、シトラコン酸、クロトン酸、
イソクロトン酸、アンゲリカ酸などがあり、これ
らの無水物も同様に使用できる。なお、不飽和酸
変性ポリプロピレン中の不飽和カルボン酸または
その無水物の付加量は0.5〜10重量%である。 本発明のポリカーボネート樹脂組成物中の各成
分の配合割合については、第1の発明において
は、ポリカーボネート95〜70重量%とカーボン系
充填剤5〜30重量%よりなる配合物100重量部に
対して不飽和酸変性ポリプロピレン0.1〜40重量
部、好ましくは5〜20重量部とする。ここでポリ
カーボネートが95重量%を超えると、得られる組
成物の導電性や剛性の改良が十分に行なえない。
一方、70重量%未満であると組成物の流動性、衝
撃強度が低下し、外観不良となるので好ましくな
い。また、カーボン系充填剤の配合量が5重量%
未満であると、組成物の導電性が劣つたものとな
り好ましくなく、30重量%を超えると、ポリカー
ボネートの分解が起こり機械物性が低下するので
好ましくない。不飽和酸変性ポリプロピレンの配
合量が0.1重量部以下であると、目的とする効果
が十分に奏されず、また40重量部以上となると組
成物の衝撃値が急激に低下し好ましくない。 次に、第2の発明においては、ポリカーボネー
トおよびカーボン系充填剤の配合割合は上記第1
の発明の場合と同じであり、さらにガラス繊維を
5〜20重量%加える。また、不飽和酸変性ポリプ
ロピレンはこれらポリカーボネート、カーボン系
充填剤およびガラス繊維の合計量100重量部に対
して0.1〜40重量部、好ましくは5〜20重量部加
える。ここでガラス繊維の配合量が5重量%未満
であると組成物の剛性を満足しうる程度に改良す
ることができず、また20重量%を超えて加えると
得られる組成物の流動性が低下し、かつ成形時に
スクリユー摩耗が起こり好ましくない。 本発明のポリカーボネート樹脂組成物には必要
に応じて他の添加剤、たとえば難燃化剤、離型
剤、酸化防止剤、耐候性付与剤、帯電防止剤、耐
熱剤、着色剤、可塑剤、補強剤、界面活性剤、無
機充填剤、滑剤、核剤などを適宜加えることがで
きる。 本発明のポリカーボネート樹脂組成物は上記各
成分を配合し、通常の混合方法、たとえばタンブ
ラー、リボンブレンダー、高速ミキサー、V型ブ
レンダー、ニーダー、ペレタイザー等を用いて混
練して目的とする組成物を得る。この組成物から
成形品を製造する場合は、射出成形、押出成形、
加圧成形、回転成形等の種々の成形方法を適用す
ることができるが、家電製品、自動車部品等の製
造には射出成形が好適である。 本発明のポリカーボネート樹脂組成物は従来の
ポリカーボネート系組成物と異なり成形時にポリ
カーボネートの分解が抑制され、しかも流動性が
向上して作業性にすぐれている。さらに、本発明
によればカーボン系充填剤を配合したことによる
ポリカーボネートの導電性の改良という効果を維
持しつつ耐衝撃性や剛性等をも改善されたポリカ
ーボネート樹脂組成物が得られる。それ故、本発
明のポリカーボネート樹脂組成物は光学機器や電
動工具のハウジングのほか家電用部品、自動車部
品などの製造にきわめて適したものである。 次に本発明の実施例を示す。 実施例 1〜12 第1表に示した各成分の所定量を配合し、二軸
混練押出機を用いて十分に混練したのちペレタイ
ザーでペレツトを得、このペレツトの一部を用い
て分子量およびQ値を測定した。また、残りのペ
レツトは射出成形によりIzod衝撃強度測定用試験
片および体積固有抵抗測定用試験片を作成した。
この試験片について物性を測定し、第1表に示し
たような結果を得た。なお、物性の測定は下記の
条件で行なつた。 Q値:JIS K6719 (測定温度280℃、 応力160Kg/cm2)による。 Izod衝撃強度:JIS K7110による。 体積固有抵抗:ASTM D257による。 比較例 1〜12 不飽和酸変性ポリプロピレンを配合しなかつた
ことあるいは本発明の範囲外の割合で配合したこ
と以外は実施例1〜12と同様にして試験片を作成
した。この試験片についての物性の測定結果を第
2表に示す。
The present invention relates to a polycarbonate resin composition,
Specifically, polycarbonate resin compositions with improved physical properties by adding unsaturated acid-modified polypropylene to a blend of polycarbonate and a carbon-based filler made of carbon fiber or carbon whisker, or a blend of glass fiber. Regarding. Polycarbonate resin has excellent strength, impact resistance, transparency, etc., and is therefore widely used as an engineering resin in various fields. Incidentally, in order to improve the electrical conductivity of this polycarbonate resin, various proposals have been made in which polycarbonate is blended with carbon fiber or carbon black. As a result, the electrical conductivity of polycarbonate was improved, but the mechanical properties were significantly reduced due to the decomposition of polycarbonate during molding.
Various problems arise in practice. On the other hand, although rigidity can be improved by adding carbon fiber or glass fiber to polycarbonate, the impact resistance is significantly reduced, so its applications are limited, and it is used in home appliances such as housings for optical equipment and power tools, insulating chassis, and connectors. This has caused problems when used in industrial parts such as automobile parts or industrial material parts such as automobiles. The inventors of the present invention have conducted intensive research to solve the above problems regarding polycarbonate, and as a result, we have developed a blend of polycarbonate and a carbon filler made of carbon fiber or carbon whisker, or a blend of glass fiber. They discovered that the objective could be achieved by adding unsaturated acid-modified polypropylene, and based on this knowledge, they completed the present invention. That is, the present invention firstly uses polycarbonate 95~
To 100 parts by weight of a compound consisting of 70% by weight and 5 to 30% by weight of a carbon filler consisting of carbon fiber or carbon whisker, 0.1% of unsaturated acid-modified polypropylene with an unsaturated acid addition amount of 0.5 to 10% by weight is added. The present invention provides a polycarbonate resin composition obtained by mixing up to 40 parts by weight. Furthermore, the present invention secondly relates to polycarbonate 95 to 70
5-30% by weight of carbon filler consisting of carbon fibers or carbon whiskers
and a blend consisting of 5-20% by weight of glass fibers
0.1 part by weight of unsaturated acid-modified polypropylene
The present invention provides a polycarbonate resin composition obtained by mixing up to 40 parts by weight. In the polycarbonate resin composition of the present invention, carbon-based fillers are used to improve the electrical conductivity of the polycarbonate. Further, glass fiber is used as a component of the polycarbonate resin composition of the second aspect of the present invention, and when the composition is used for applications requiring high rigidity, it is effective to add glass fiber. Furthermore, in the present invention, unsaturated acid-modified polypropylene is added to improve the impact resistance of the polycarbonate resin composition. Polycarbonate obtained by any method can be used, such as the phosgene method in which bisphenol A and phosgene are reacted, and the transesterification method in which bisphenol A is reacted with a carbonic acid diester such as diphenyl carbonate. Polycarbonate may be used alone or in combination of two or more types. Note that for applications requiring flame retardancy, it is desirable to use a copolymer of halogenated bisphenol. There are no particular limitations on the molecular weight of the polycarbonate used, but it is usually 10,000~
A number of about 100,000 is used, and a number of about 20,000 to 50,000 is preferable. Rayon-based, polyacrylonitrile-based, lignin poval-based, pitch-based, carbon whisker, etc. can all be used as carbon fiber, which is a carbon-based filler, but among these, rayon-based, polyacrylonitrile-based, and lignin poval-based It is preferable because it has a great effect of improving conductivity and rigidity. Further, carbon whiskers may be used instead of carbon fibers. Next, as mentioned above, glass fiber is added when high rigidity is required to the polycarbonate resin composition, and any type of glass fiber can be used, but non-alkali glass fiber is preferable. Unsaturated acid-modified polypropylene is produced by reacting polypropylene with an unsaturated carboxylic acid or its anhydride in a solvent or in a molten state in the presence of peroxide and, if necessary, adding a liquid rubber containing a diene monomer as a main component. This is what you get. Examples of unsaturated carboxylic acids used in this reaction include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, mesaconic acid, citraconic acid, crotonic acid,
Examples include isocrotonic acid and angelic acid, and anhydrides of these can also be used. The amount of the unsaturated carboxylic acid or its anhydride added to the unsaturated acid-modified polypropylene is 0.5 to 10% by weight. Regarding the blending ratio of each component in the polycarbonate resin composition of the present invention, in the first invention, it is based on 100 parts by weight of a blend consisting of 95 to 70% by weight of polycarbonate and 5 to 30% by weight of carbon filler. The amount of unsaturated acid-modified polypropylene is 0.1 to 40 parts by weight, preferably 5 to 20 parts by weight. If the polycarbonate content exceeds 95% by weight, the conductivity and rigidity of the resulting composition cannot be sufficiently improved.
On the other hand, if it is less than 70% by weight, the fluidity and impact strength of the composition will decrease, resulting in poor appearance, which is not preferable. In addition, the amount of carbon filler added is 5% by weight.
If it is less than 30% by weight, the conductivity of the composition will be poor, and if it exceeds 30% by weight, the polycarbonate will decompose and the mechanical properties will deteriorate, which is not preferable. If the amount of unsaturated acid-modified polypropylene is less than 0.1 parts by weight, the intended effect will not be sufficiently achieved, and if it is more than 40 parts by weight, the impact value of the composition will drop rapidly, which is not preferred. Next, in the second invention, the blending ratio of polycarbonate and carbon filler is the same as the first invention.
The method is the same as that of the invention described above, and 5 to 20% by weight of glass fiber is further added. Further, the unsaturated acid-modified polypropylene is added in an amount of 0.1 to 40 parts by weight, preferably 5 to 20 parts by weight, based on 100 parts by weight of the total amount of the polycarbonate, carbon filler and glass fiber. If the amount of glass fiber added is less than 5% by weight, the stiffness of the composition cannot be improved to a satisfactory degree, and if it is added in an amount exceeding 20% by weight, the fluidity of the resulting composition decreases. However, screw wear occurs during molding, which is undesirable. The polycarbonate resin composition of the present invention may contain other additives as necessary, such as flame retardants, mold release agents, antioxidants, weather resistance agents, antistatic agents, heat resisters, colorants, plasticizers, Reinforcing agents, surfactants, inorganic fillers, lubricants, nucleating agents, etc. can be added as appropriate. The polycarbonate resin composition of the present invention is obtained by blending the above-mentioned components and kneading them using a conventional mixing method such as a tumbler, ribbon blender, high-speed mixer, V-type blender, kneader, pelletizer, etc. to obtain the desired composition. . When manufacturing molded products from this composition, injection molding, extrusion molding,
Although various molding methods such as pressure molding and rotational molding can be applied, injection molding is suitable for manufacturing home appliances, automobile parts, and the like. Unlike conventional polycarbonate-based compositions, the polycarbonate resin composition of the present invention suppresses decomposition of polycarbonate during molding, and has improved fluidity and excellent workability. Further, according to the present invention, it is possible to obtain a polycarbonate resin composition that has improved impact resistance, rigidity, etc. while maintaining the effect of improving the electrical conductivity of polycarbonate by incorporating a carbon filler. Therefore, the polycarbonate resin composition of the present invention is extremely suitable for manufacturing housings for optical instruments and power tools, as well as parts for home appliances, automobile parts, and the like. Next, examples of the present invention will be shown. Examples 1 to 12 Predetermined amounts of each component shown in Table 1 were blended, thoroughly kneaded using a twin-screw kneading extruder, and pellets were obtained using a pelletizer. A portion of the pellets was used to determine the molecular weight and Q. The value was measured. In addition, the remaining pellets were injection molded to prepare test pieces for measuring Izod impact strength and test pieces for measuring volume resistivity.
The physical properties of this test piece were measured and the results shown in Table 1 were obtained. The physical properties were measured under the following conditions. Q value: Based on JIS K6719 (measurement temperature 280°C, stress 160Kg/cm 2 ). Izod impact strength: According to JIS K7110. Volume resistivity: According to ASTM D257. Comparative Examples 1 to 12 Test pieces were prepared in the same manner as Examples 1 to 12, except that unsaturated acid-modified polypropylene was not blended or was blended in a ratio outside the range of the present invention. Table 2 shows the measurement results of the physical properties of this test piece.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 * 第1表と同じ
実施例13〜14および比較例13〜15 第3表に示した各成分の所定量を配合したこと
以外は、実施例1〜12と同様にして試験片を作成
した。この試験片についての物性の測定結果を第
3表に示す。 第3表により不飽和酸変性ポリプロピレンを使
用することにより(実施例13)、他の不飽和酸変
性ポリオレフインを使用した場合(比較例13)よ
り、アイゾツト衝撃強度などの機械的強度が向上
することが判る。 また第3表より不飽和酸付加量が0.5〜10重量
%の範囲内の不飽和酸変性ポリプロピレン(実施
例13,14)は、上記範囲未満の不飽和酸変性ポリ
プロピレン(比較例14)に比し、アイゾツト衝撃
強度にすぐれていることが判る。さらに不飽和酸
付加量が上記範囲を超えたものは(比較例15)、
導電性が十分でないことが判る。
[Table] * Examples 13 to 14 and Comparative Examples 13 to 15, which are the same as in Table 1. Test pieces were prepared in the same manner as in Examples 1 to 12, except that the prescribed amounts of each component shown in Table 3 were blended. Created. Table 3 shows the measurement results of the physical properties of this test piece. According to Table 3, by using unsaturated acid-modified polypropylene (Example 13), mechanical strength such as Izod impact strength is improved compared to when other unsaturated acid-modified polyolefins are used (Comparative Example 13). I understand. Also, from Table 3, unsaturated acid-modified polypropylene with an added amount of unsaturated acid in the range of 0.5 to 10% by weight (Examples 13 and 14) is compared to unsaturated acid-modified polypropylene with an addition amount of less than the above range (Comparative Example 14). It can be seen that it has excellent Izotsu impact strength. In addition, the amount of unsaturated acid added exceeds the above range (Comparative Example 15),
It can be seen that the conductivity is not sufficient.

【表】【table】

【表】 比較例 16〜17 第4表に示した各成分の所定量を配合したこと
以外は、実施例1〜12と同様にして試験片を作成
した。 この試験片についての物性の測定結果を第4表
に示す。
[Table] Comparative Examples 16 to 17 Test pieces were prepared in the same manner as Examples 1 to 12, except that the prescribed amounts of each component shown in Table 4 were blended. Table 4 shows the measurement results of the physical properties of this test piece.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 ポリカーボネート95〜70重量%と、カーボン
フアイバーあるいはカーボンウイスカーからなる
カーボン系充填剤5〜30重量%よりなる配合物
100重量部に、不飽和酸付加量が0.5〜10重量%で
ある不飽和酸変性ポリプロピレンを0.1〜40重量
部混合してなるポリカーボネート樹脂組成物。 2 ポリカーボネート95〜70重量%、カーボンフ
アイバーあるいはカーボンウイスカーからなるカ
ーボン系充填剤5〜30重量%およびガラス繊維5
〜20重量%よりなる配合物100重量部に、不飽和
酸変性ポリプロピレンを0.1〜40重量部混合して
なるポリカーボネート樹脂組成物。
[Claims] 1. A compound consisting of 95-70% by weight of polycarbonate and 5-30% by weight of a carbon-based filler consisting of carbon fibers or carbon whiskers.
A polycarbonate resin composition prepared by mixing 100 parts by weight with 0.1 to 40 parts by weight of unsaturated acid-modified polypropylene having an unsaturated acid addition amount of 0.5 to 10% by weight. 2 95-70% by weight of polycarbonate, 5-30% by weight of carbon filler consisting of carbon fiber or carbon whisker, and glass fiber 5
A polycarbonate resin composition prepared by mixing 0.1 to 40 parts by weight of unsaturated acid-modified polypropylene to 100 parts by weight of a blend consisting of ~20% by weight.
JP13760682A 1982-08-07 1982-08-07 Polycarbonate resin composition Granted JPS5927947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13760682A JPS5927947A (en) 1982-08-07 1982-08-07 Polycarbonate resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13760682A JPS5927947A (en) 1982-08-07 1982-08-07 Polycarbonate resin composition

Publications (2)

Publication Number Publication Date
JPS5927947A JPS5927947A (en) 1984-02-14
JPH0313259B2 true JPH0313259B2 (en) 1991-02-22

Family

ID=15202616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13760682A Granted JPS5927947A (en) 1982-08-07 1982-08-07 Polycarbonate resin composition

Country Status (1)

Country Link
JP (1) JPS5927947A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2606816B2 (en) * 1985-10-31 1997-05-07 株式会社東芝 Character reader
US4879168A (en) * 1987-10-28 1989-11-07 The Dow Chemical Company Flame retarding and fire blocking fiber blends
JPH01217091A (en) * 1988-02-25 1989-08-30 Nisshin Steel Co Ltd Resin composition having excellent adhesion to metal
BR9007280A (en) * 1989-04-04 1992-02-18 Dow Chemical Co NON-FIBROUS MATERIAL COMPOSITION TO IMPROVE THE FIRE RESISTANCE OF INFLAMMABLE POLYMERIC MATERIALS, NON-FIBROUS MATERIAL COMPOSITION ARTICLE AND NON-INFLAMMABLE FIBER REINFORCED FOAM STRUCTURE
JPH03162445A (en) * 1989-11-21 1991-07-12 Mitsubishi Gas Chem Co Inc Sliding resin composition
JP4908673B2 (en) 2000-10-05 2012-04-04 株式会社東海理化電機製作所 Room mirror
JP2015164993A (en) * 2014-02-06 2015-09-17 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition and molded article

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157648A (en) * 1979-05-29 1980-12-08 Mitsubishi Chem Ind Ltd Polycarbonate resin composition
JPS58136652A (en) * 1982-02-08 1983-08-13 Mitsubishi Chem Ind Ltd Electrically conductive polycarbonate resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157648A (en) * 1979-05-29 1980-12-08 Mitsubishi Chem Ind Ltd Polycarbonate resin composition
JPS58136652A (en) * 1982-02-08 1983-08-13 Mitsubishi Chem Ind Ltd Electrically conductive polycarbonate resin composition

Also Published As

Publication number Publication date
JPS5927947A (en) 1984-02-14

Similar Documents

Publication Publication Date Title
US4035333A (en) Flame-resistant resin composition
JPS63235357A (en) Reinforced resin composition for molding
JPH0313259B2 (en)
JPS6236450A (en) Glass fiber-reinforced polypropylene composition
CA2095220A1 (en) Polyester molding composition having improved flame resistance
WO1996025460A1 (en) Crystalline polyolefin resin composition and electrical insulation parts made from said composition
JPH0114940B2 (en)
JPH06104758B2 (en) Thermoplastic composition for injection molding
JP3164696B2 (en) Polyacetal resin composition
JPH051184A (en) Propylene resin composition
KR20140092471A (en) Polyester Resin Composition
JP3080724B2 (en) Conductive polyester resin composition
KR940004862B1 (en) Polycarbonate resin compositions
KR102391576B1 (en) Polypropylene-based Resin Composition with Excellent Thermal Conductivity and Mechanical Properties and Article Molded Therefrom
JP2690775B2 (en) Polyamide resin composition
JP3962095B2 (en) Polyester resin composition
JPS6234258B2 (en)
JPH06299068A (en) Polyamide resin composition
JPS6128696B2 (en)
JP2885883B2 (en) Propylene resin composition
KR930001998B1 (en) Anti-flammable polyester resin composition
JP4034831B2 (en) Flame retardant polyester resin composition with improved tracking resistance
KR930008195B1 (en) Polyphenylene sulfide resin composition
JPH03146541A (en) Polypropylene resin composition
JPH0718166A (en) Thermoplastic polyester resin composition