JPS6137212B2 - - Google Patents

Info

Publication number
JPS6137212B2
JPS6137212B2 JP14892778A JP14892778A JPS6137212B2 JP S6137212 B2 JPS6137212 B2 JP S6137212B2 JP 14892778 A JP14892778 A JP 14892778A JP 14892778 A JP14892778 A JP 14892778A JP S6137212 B2 JPS6137212 B2 JP S6137212B2
Authority
JP
Japan
Prior art keywords
glass
tube
temperature
jacket
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14892778A
Other languages
Japanese (ja)
Other versions
JPS5575933A (en
Inventor
Shiro Kurosaki
Juichi Usui
Minoru Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP14892778A priority Critical patent/JPS5575933A/en
Publication of JPS5575933A publication Critical patent/JPS5575933A/en
Publication of JPS6137212B2 publication Critical patent/JPS6137212B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02754Solid fibres drawn from hollow preforms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/0124Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down
    • C03B37/01245Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down by drawing and collapsing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/08Sub-atmospheric pressure applied, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/12Drawing solid optical fibre directly from a hollow preform
    • C03B2205/14Drawing solid optical fibre directly from a hollow preform comprising collapse of an outer tube onto an inner central solid preform rod
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/12Drawing solid optical fibre directly from a hollow preform
    • C03B2205/16Drawing solid optical fibre directly from a hollow preform the drawn fibre consisting of circularly symmetric core and clad
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/62Heating means for drawing
    • C03B2205/69Auxiliary thermal treatment immediately prior to drawing, e.g. pre-heaters, laser-assisted resistance heaters

Description

【発明の詳細な説明】 本発明は、光伝送用石英系フアイバー用石英管
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a quartz tube for a quartz fiber for optical transmission.

光伝送用石英系フアイバーの作り方としてはM
―CVD法(内寸法)O―CVD法(外ズケ法)、
VAD法(軸ズケ法)がある。O―CVD法では、
コアとクラツドからなる半径方向に所定の屈折率
分布を持つ管或は棒(プレフオーム)をまず作
り、溶融紡糸してフアイバーを作る。必要な光伝
送領域は小さくても(例えば75μmφ)よいが、
取り扱い性や強度を強くする為にその外側にジヤ
ケツト層を設けることが普通である。さらにこの
ジヤケツト層の屈折率や光伝送損失をクラツドに
比して大きくすることによつて帯域改善やクロ
ス・トークの防止等の機能をもたせることもあ
る。
How to make quartz fiber for optical transmission is M.
-CVD method (inner dimension) O-CVD method (outer dimension method),
There is the VAD method (shaft method). In the O-CVD method,
A tube or rod (preform) consisting of a core and a cladding with a predetermined refractive index distribution in the radial direction is first made and then melt spun to make a fiber. The required optical transmission area may be small (for example, 75 μmφ), but
It is common to provide a jacket layer on the outside to improve handling and strength. Furthermore, by making the refractive index and optical transmission loss of this jacket layer larger than those of the cladding, functions such as band improvement and cross talk prevention may be provided.

このような目的に対して従来は次のように行な
つていた。
Conventionally, this purpose has been achieved as follows.

O―CVD法で作つた管の内面、外面を洗浄か
つ平滑にしたもの、或はその管を高温でコラツプ
スして棒としたもの、或はVAD法で作つた棒状
のものを石英ガラス管(ブラジル産水晶etcの石
英を精選し酸水素炎等で加熱溶融して積層させて
石英ガラス・ブロツクを作り、これを管状に溶融
加工したもの)に挿入し、減しながらスキ間をつ
ぶして棒とし、そのまま直接或は別の工程で溶融
紡糸してフアイバーとする。
The inner and outer surfaces of a tube made by the O-CVD method are cleaned and smoothed, or the tube is collapsed into a rod at high temperature, or a rod-shaped tube made by the VAD method is made into a quartz glass tube ( A quartz glass block is created by carefully selecting quartz such as crystal from Brazil, heating and melting it with an oxyhydrogen flame, etc., and stacking them to create a quartz glass block, which is then melted and processed into a tubular shape. Then, it is melt-spun into a fiber directly or in a separate process.

このような従来の方法でフアイバーを作る場合
には次のような欠点があつた。
When making fibers using such conventional methods, there were the following drawbacks.

クラツドのガラスに対して、所定の屈折率
差、吸収損失値を持つジヤケツト・ガラスを作
ることは出来ない。
It is not possible to make a jacket glass with a predetermined refractive index difference and absorption loss value with respect to the clad glass.

石英ガラス管の溶融温度は高いので、この中
に挿入するプレフオームは紡糸時高温に加熱さ
れ、比較的低温では発生しない気流が発生して
くることがある。
Since the melting temperature of the quartz glass tube is high, the preform inserted into the tube is heated to a high temperature during spinning, and an air current that does not occur at a relatively low temperature may be generated.

石英ガラス管は水晶→ガラスブロツク→管加
工という工程で作る為、高価であり、かつ高温
加熱してフアイバーにせねばならないので燃費
も大きく経済的でない。
Since quartz glass tubes are made through the process of crystal → glass block → tube processing, they are expensive, and because they must be heated to high temperatures to form fibers, they are not economical due to their high fuel consumption.

本発明はこのような欠点を有する従来の方法を
改善する方法を提供するものである。
The present invention provides a method that improves the conventional method having such drawbacks.

石英ガラスフアイバーの一つの製法として、高
純度石英棒をVycorという商品名の高ケイ酸ガラ
ス管に入れてロツド―イン―チユーブ方法でフア
イバーを作る方法が知らげている。このフアイバ
ーでは屈折率差(コアとして高純度石英とクラツ
ドとしてのVycor)は小さく、実用取扱い上多大
の努力がいる。またB2O3を含むので耐火性が悪
くフアイバー寿命が短かい。
One known method for manufacturing quartz glass fiber is to place a high-purity quartz rod into a high silicate glass tube (trade name: Vycor) and use the rod-in-tube method to make the fiber. This fiber has a small refractive index difference (high-purity quartz as the core and Vycor as the cladding) and requires a great deal of effort in practical handling. Also, since it contains B 2 O 3 , it has poor fire resistance and short fiber life.

本発明は、このような方法とは目的が異なり、
既にコアとクラツドから出来ている半径方向に所
定の屈折率分布を有するプレフオーム上に構造支
持伝送特性改善の機能をはたさせる為に、B2O3
を実質的に含まない高ケイ酸ガラスをジヤケツト
層としてロツド―イン―チユーブ法によつて設け
ることにある。
The purpose of the present invention is different from such a method,
In order to perform the function of structural support and transmission characteristic improvement on the preform which already has a predetermined refractive index distribution in the radial direction, which is made up of a core and a cladding, B 2 O 3 is added.
The present invention is to provide a jacket layer of high silicate glass substantially free of carbon dioxide by a rod-in-tube method.

以下、本発明について図にもとずいて説明す
る。第1図a,bはプレフオーム11a,11b
を高ケイ酸ガラス管(その製法の詳細は後に説明
する)12a,12bの中に入れスキ間13a,
13bのスキ間の空気を真空ポンプにて減圧しな
がらヒーター14a,14a′,14b,14b′で
適当な温度分布を保持しておく。14a′,14
b′は上昇気流によつて加熱効果がある時は省いて
もよい。
Hereinafter, the present invention will be explained based on the drawings. Figure 1 a and b are preforms 11a and 11b.
are placed in high silicate glass tubes 12a and 12b (details of the manufacturing method will be explained later) between gaps 13a and 12b.
While reducing the pressure of the air between the gaps 13b using a vacuum pump, an appropriate temperature distribution is maintained using heaters 14a, 14a', 14b, and 14b'. 14a', 14
b′ may be omitted if the heating effect is due to the rising air current.

また高温コラツプスと溶融紡糸を別々に行いた
いときにはヒーターを切り離して別の炉としても
よい。
Furthermore, if it is desired to perform high-temperature collapse and melt spinning separately, the heater may be separated and a separate furnace may be used.

第1図aは、プレフオーム11aの軟化温度よ
りもジヤケツトとしての高ケイ酸ガラス管12a
の軟化温度が低い場合の状態を示す。この時には
11aに沿つて12aがコラツプされてゆく。第
2図bはプレフオーム11bの軟化温度よりもジ
ヤケツトとしての高ケイ酸ガラス管12bの軟化
温度が高い場合の状態を示す。この時には11
a′,12bの中に沿つて変形しながらコラツプス
されてゆく。
FIG. 1a shows that the high silicate glass tube 12a as a jacket is lower than the softening temperature of the preform 11a.
This shows the situation when the softening temperature of is low. At this time, 12a is collapsed along 11a. FIG. 2b shows a situation where the softening temperature of the high silicate glass tube 12b as a jacket is higher than the softening temperature of the preform 11b. At this time 11
It collapses while deforming along the inside of a' and 12b.

プレフオームとジヤケツト管の軟化温度等が激
しく異なる時には第1図a,bが極端化されて気
流の巻込みや変形が激しくなる。この為プレフオ
ームとジヤケツト管の軟化温度差は小さい方がよ
く、さらにこのスキ間は小さくすれば前記の欠点
をもたらさない。このようなプレフオーム径とジ
ヤケツト管のスキ間を小さくするには、プレフオ
ーム径に近い内径を有するジヤケツト管を準備す
る必要がある。
When the softening temperatures, etc. of the preform and the jacket tube are significantly different, the conditions a and b in FIG. 1 become extreme, and airflow entrainment and deformation become severe. For this reason, it is better that the difference in softening temperature between the preform and the jacket tube is small, and furthermore, if this gap is made small, the above-mentioned drawbacks will not occur. In order to reduce the gap between the preform diameter and the jacket tube, it is necessary to prepare a jacket tube having an inner diameter close to the preform diameter.

第2図aは、ジヤケツト管21aをガラス旋盤
にかけ、回転してかつ孔内を真空ポンプで圧力を
調整して減圧しながら外側を酸水素炎等の火炎2
2aで加熱して変形させる。この時バーナーは管
に対して相対的に長手方向に移動させる。管はつ
ぶれて来て、肉厚は厚くなるが内径の小さい管2
3aを作ることが出来る。一方第2図bは、ジヤ
ケツト管21bをガラス旋盤にかけ、回転しかつ
孔内を乾そうN2ガス等で小さな適当な圧力をか
け、外側を酸水素炎等の火炎22bで加熱して変
形させる。この時バーナーは管に対して相対的に
長手方向に移動させると、管はふくらみ肉厚は薄
くなるが、内径の大きい管23bを作ることが出
来る。
In Figure 2a, the jacket tube 21a is placed on a glass lathe, rotated, and the inside of the hole is depressurized by adjusting the pressure with a vacuum pump while the outside is heated with a flame 2 such as an oxyhydrogen flame.
2a to heat and transform. The burner is then moved longitudinally relative to the tube. As the tube collapses, the wall thickness becomes thicker, but the inner diameter becomes smaller.
You can make 3a. On the other hand, in Fig. 2b, the jacket tube 21b is placed on a glass lathe, rotated, and the inside of the hole is dried by applying a small appropriate pressure with N2 gas, etc., and the outside is heated and deformed with a flame 22b such as an oxyhydrogen flame. . At this time, when the burner is moved in the longitudinal direction relative to the tube, the tube swells and the wall thickness becomes thinner, but a tube 23b with a larger inner diameter can be produced.

次に本発明で用いる高ケイ酸のガラス管の製造
方法について説明する。
Next, a method for manufacturing a high silicic acid glass tube used in the present invention will be explained.

Na2O―B2O3―SiO2,K2O―B2O3―SiO2
Na2O―K2O―B2O3―SiO2系の分相ガラスの管
を、従来の引上げや引下げの方法で作る。これを
分相熱処理、溶出した後粉砕して細い粒子とした
後、洗浄しこれを乾燥した後、熱固化してガラス
粒子とする。ここの洗浄工程の後で、特に屈折率
や伝送損失を所望の値にする為には、ドーパント
としての化合物に変換し得る化合物の水溶液に浸
した後、析出させて乾そうするか、或は乾そうし
た多孔質ガラスをドーパントとしての化合物に変
換しうるガス状化合物に置いて細孔内に充満させ
ることを行つた後、反応を生じせしめて微細孔の
表面にドーパントとしての化合物を析出させた
後、熱固化して透明ガラスすることにより出来
る。この例を次に述べる。
Na 2 O―B 2 O 3 ―SiO 2 , K 2 O―B 2 O 3 ―SiO 2 ,
A tube of Na 2 O―K 2 O―B 2 O 3 -SiO 2 type split phase glass is made using conventional pulling and pulling methods. This is subjected to phase separation heat treatment, eluted, and then crushed to form fine particles, washed, dried, and then thermally solidified to form glass particles. After this cleaning step, in order to achieve the desired refractive index and transmission loss, it is necessary to immerse the material in an aqueous solution of a compound that can be converted into a dopant compound, then precipitate it and dry it, or The dried porous glass was placed in a gaseous compound that could be converted into a dopant compound, and the pores were filled, and then a reaction was caused to precipitate the dopant compound on the surface of the micropores. After that, it is heat-hardened and made into transparent glass. An example of this is described below.

洗浄した後の多孔質ガラスをFeCl3水溶液に浸
けた後、NH4OH水を入れてアルカリ性とすれ
ば、細孔内表面に茶かつ色のFe(OH)3が沈澱す
る。これを乾燥、熱固化するとFe2O3がドープさ
れたB2O3を若干含むSiO2となり、これは屈折率
はバイコールに近いが、茶色がかつた吸収損失の
大きなガラスとなる。
After immersing the cleaned porous glass in an aqueous FeCl 3 solution, if NH 4 OH water is added to make it alkaline, brown Fe(OH) 3 will precipitate on the inner surface of the pores. When this is dried and thermally solidified, it becomes SiO 2 doped with Fe 2 O 3 and containing some B 2 O 3 , which has a refractive index close to that of Vycol, but becomes a glass with a brownish color and a large absorption loss.

屈折率を上げたガラスを作るには、例えば洗浄
した後の多孔質ガラス管を高温のBi(NO33の水
溶液につけた後、室温に下げ、(この時、高温と
室温の溶解度差の分だけBi(NO33は析出す
る)。
To make glass with a higher refractive index, for example, a porous glass tube after cleaning is immersed in a high-temperature Bi(NO 3 ) 3 aqueous solution, then cooled to room temperature (at this time, the difference in solubility between high temperature and room temperature is (Bi(NO 3 ) 3 precipitates).

次にプロパノールで置換する(ここでは水とプ
ロパノールの溶解度の差の分だけBi(NO3)が析
出する)と、Bi(NO33は微細孔内表面に析出す
る。これを真空中で除々に乾そうし、溶媒を飛ば
した後、加熱してゆき、Bi(NO33を分解して
Bi2O3としてゆき、さらに高温に加熱してゆき、
熱固化すると屈折率を上げたガラスを作ることが
出来る。これら2者を組み合せた方法を行えば、
屈折率も伝送損失も調整したガラスを作ることが
出来る。
Next, when replacing with propanol (here, Bi(NO 3 ) is precipitated by the difference in solubility between water and propanol), Bi(NO 3 ) 3 is precipitated on the inner surface of the micropores. This was gradually dried in a vacuum to drive off the solvent, and then heated to decompose Bi(NO 3 ) 3 .
It becomes Bi 2 O 3 and is heated to a higher temperature,
When it is thermally solidified, it is possible to create glass with a higher refractive index. If you use a method that combines these two methods,
It is possible to create glass with adjusted refractive index and transmission loss.

伝送損失を上げるドーパントとしては、これら
Fe2O3に限らず、一般には遷移金属の酸化物を用
いることが出来る。屈折率を上げるドーパントと
してはBi2O3に限らず周期律表で下側の金属元素
の酸化物を用いることが出来る。これらドーパン
トに対応して出発の化合物、それをとかす溶媒と
温度、その化合物を析出させる為に溶解度を下げ
る手段を選ぶ必要がある。
These are the dopants that increase transmission loss.
In general, oxides of transition metals can be used, not limited to Fe 2 O 3 . As a dopant that increases the refractive index, not only Bi 2 O 3 but also oxides of metal elements lower in the periodic table can be used. It is necessary to select a starting compound corresponding to these dopants, a solvent and temperature for dissolving it, and a means of lowering the solubility in order to precipitate the compound.

もう一つの方法の例には、次のものを示すこと
が出来る。乾燥した多孔質ガラスの温度を上げて
おきAlBr3の高温ガスの中に露して細孔内まで
AlBr3に充たした後、次にO2のガスを導入すると
細内で反応が生じAl2O3が出来、これが微細孔内
表面に析出される。これを熱固化すればAl2O3
ドープした透明ガラス管を作ることが出来る。こ
こでも、前述のドーパントに対応したガス化合物
を選択する必要がある。
An example of another method can be shown as follows. The temperature of the dry porous glass is raised and exposed to the high temperature gas of AlBr 3 to penetrate into the pores.
After filling with AlBr 3 , when O 2 gas is introduced, a reaction occurs within the micropores to form Al 2 O 3 , which is deposited on the inner surface of the micropores. If this is thermally solidified, a transparent glass tube doped with Al 2 O 3 can be made. Here again, it is necessary to select a gas compound compatible with the aforementioned dopant.

このようにして作つたガラス粒子を酸水素炎の
ような火炎又はプラズマ炎の中に送り込んで溶融
しながら回転するマンドレル上に積層してゆき、
後でマンドレルを除けば高ケイ酸ガラス管とな
る。
The glass particles thus produced are sent into a flame such as an oxyhydrogen flame or a plasma flame, and are laminated on a rotating mandrel while melting.
If the mandrel is removed later, it becomes a high silicate glass tube.

ガラス粒子を火炎又はプラズマ炎で透明化する
際には極めて高温(〜2000℃)である必要がある
が、この時ガラス中に残留しているB2O3は、蒸
気圧が低いので容易に蒸発し、できた高ケイ酸ガ
ラス中には、B2O3はほとんど残留しない。B2O3
は光フアイバーの耐水性を劣化させ、フアイバー
寿命を短かくするので高ケイ酸ガラスを最外層に
用いることは実用的にはまつたく行なわれていな
かつたが、本発明によりほとんどB2O3を含まな
い高ケイ酸ガラスの装置が可能になり、フアイバ
ー寿命が25年以上という実用に耐えうるレベルま
で向上させることができた。本発明を第3図に於
いて説明する。
When glass particles are made transparent using flame or plasma flame, extremely high temperatures (~2000℃) are required, but the B 2 O 3 remaining in the glass at this time has a low vapor pressure, so it can be easily Almost no B 2 O 3 remains in the high silicate glass that evaporates. B 2 O 3
Since B 2 O 3 degrades the water resistance of optical fibers and shortens the fiber life, it has not been practical to use high silicate glass as the outermost layer. However, with the present invention, almost all B 2 O 3 can be It has become possible to create a device using high-silicate glass that does not contain carbonate, and the fiber lifespan has been improved to a level that can be used for practical purposes at over 25 years. The invention will be explained with reference to FIG.

マンドレル31は回転させておき、バーナーに
対して相対的に軸方向に往復移動させておく。こ
の上に例えば高周波プラズマ32によるプラズマ
炎34の中にガラス粒子をノズル33を通じて送
り込み、溶融されたガラス粒子35を、マンドレ
ル上に吹きつけてゆく。36は積層したガラスを
示す。マンドレルは積層ガラス36に比して膨張
係数が大きな材料、例えばカーボン等を選び、積
層時の温度と冷却後の室温の温度差による熱膨張
差を利用して引き抜けるようにする必要がある。
The mandrel 31 is rotated and reciprocated in the axial direction relative to the burner. On top of this, glass particles are fed through a nozzle 33 into a plasma flame 34 generated by, for example, a high-frequency plasma 32, and molten glass particles 35 are sprayed onto the mandrel. 36 indicates laminated glass. The mandrel must be made of a material with a larger expansion coefficient than the laminated glass 36, such as carbon, so that it can be pulled out by utilizing the difference in thermal expansion caused by the temperature difference between the temperature during lamination and the room temperature after cooling.

例えばカーボン・パイプ31Bをヒーター31
Aで加熱しておき、その上にガラスを積層させて
ゆき、室温又はそれ以下の液体ちつ素温度に下げ
て熱膨張差を大きくして引き抜く必要がある。
For example, the carbon pipe 31B is connected to the heater 31
It is necessary to heat the glass at A, layer the glass on top of it, lower the liquid nitrogen temperature to room temperature or lower, increase the difference in thermal expansion, and then pull it out.

次に本発明の一実施例について述べる。 Next, one embodiment of the present invention will be described.

(1)Na2O―K2O―B2O3―SiO2の分相性ガラスを
白金るつぼで溶解し、それからパイプを引き上げ
た。このパイプを550℃×24hr熱処理し、95℃
3NHClで溶出し多孔質ガラスを砕き純水洗浄した
後、真空乾そうして加熱してゆき熱固化まで進め
てガラス粒子を作つた。このガラス粒子を石英製
バーナーの中心孔から酸水素炎の中に送り込みこ
のガラス粒子を溶かして10mmφのカーボン棒上に
積層し、15mmφの外径にした後、徐冷してさらに
−70℃まで冷却してカーボン棒を引き抜いたとこ
ろ10mmφ×15mmφパイプを作ることが出来た。こ
の管の処理を(1)と同じようにして内外表面を清浄
かつ平滑にした。
(1) A phase-splitting glass of Na 2 O―K 2 O―B 2 O 3 ―SiO 2 was melted in a platinum crucible, and then the pipe was pulled up. This pipe was heat treated at 550℃ x 24 hours and then heated to 95℃.
After eluting with 3NHCl, the porous glass was crushed, washed with pure water, dried in vacuum, and heated until thermal solidification to create glass particles. The glass particles are sent into an oxyhydrogen flame through the center hole of a quartz burner, and the glass particles are melted and layered on a 10mmφ carbon rod to have an outer diameter of 15mmφ, and then slowly cooled to -70℃. After cooling and pulling out the carbon rod, I was able to make a 10mmφ x 15mmφ pipe. This tube was treated in the same manner as in (1) to make the inner and outer surfaces clean and smooth.

この後、この管の中に10mmφのコアがP2O5
GeO2―SiO2,クラツドがB2O3―SiO2からなるプ
レフオームを挿入して溶融紡糸して150μmとし
てブライマリー・コートを施して光フアイバーを
作つた。紡糸時のトラブルは10φ×15φの石英管
を用いたときに少しみられたが、この方法は皆無
であつた。
After this, a core of 10 mmφ is placed in this tube as P 2 O 5 -
A preform consisting of GeO 2 --SiO 2 and B 2 O 3 --SiO 2 cladding was inserted and melt-spun to a thickness of 150 μm and a brimary coat was applied to produce an optical fiber. There were some troubles during spinning when a 10φ x 15φ quartz tube was used, but there were no problems with this method.

本発明によれば、 クラツドガラスに対して所定の屈折率差、吸
収損失値を持つジヤケツト・ガラス管を作るこ
とが出来るので、これを用いたフアイバーの伝
送特性は非常に改善される。
According to the present invention, it is possible to produce a jacket glass tube having a predetermined refractive index difference and absorption loss value with respect to the clad glass, so that the transmission characteristics of a fiber using this can be greatly improved.

このジヤケツト・ガラス管は、原料が安く製
造工程の性格も大量生産に適しており安価なも
のであるので、光フアイバーのコストは安くな
る。
This jacket/glass tube uses cheap raw materials and the manufacturing process is suitable for mass production and is inexpensive, so the cost of the optical fiber is low.

プレフオームの軟化温度に合わせたジヤケツ
ト管を用いてフアイバーを作れば、溶融紡糸時
に気泡発生というトラブルは生じない。
If the fiber is made using a jacket tube that matches the softening temperature of the preform, the problem of air bubbles occurring during melt spinning will not occur.

B2O3の実質的に含ない石英管ができるので
フアイバーの寿命が著しく改善される。
Since a quartz tube is produced that is substantially free of B 2 O 3 , the life of the fiber is significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bはロツド―イン―チユーブを示す
図であり、第2図a,bはチユーブの内径をそれ
ぞれ減圧加圧しながら調整することを示す図であ
り、第3図は、高ケイ酸ガラスの管を作り方の一
方法を説明する為の図である。 図中、11a,11bはプレフオームロツド、
12a,12bは高ケイ酸ガラス管、13a,1
3bは空隙、14a,14a′,14b,14b′は
ヒータ、21aはジヤケツト管、22a,22b
はバーナー、23はガラス管、31はマンドレ
ル、32は高周波プラズマ、33はノズル、34
はプラズマ炎、35はガラス粒子、36は積層ガ
ラスをそれぞれ示す。
Figures 1a and b are diagrams showing a rod-in tube, Figures 2a and b are diagrams showing that the inner diameter of the tube is adjusted while reducing pressure and pressurization, and Figure 3 is a diagram showing a high-capacity tube. It is a diagram for explaining one method of making an acid glass tube. In the figure, 11a and 11b are preform rods,
12a, 12b are high silicate glass tubes, 13a, 1
3b is a void, 14a, 14a', 14b, 14b' are heaters, 21a is a jacket pipe, 22a, 22b
is a burner, 23 is a glass tube, 31 is a mandrel, 32 is a high-frequency plasma, 33 is a nozzle, 34
35 indicates a plasma flame, 35 indicates glass particles, and 36 indicates laminated glass.

Claims (1)

【特許請求の範囲】[Claims] 1 分相性ガラスを溶融し引上げ又は引下げによ
り細棒を作り、分相熱処理、溶出、粉砕、洗浄、
乾燥、熱固化することによりガラス粒子を作り、
マンドレル上に積層した後、該マンドレルを引抜
いて管を作ることを特徴とする光フアイバー用石
英管の製造方法。
1 Melt phase splitting glass, make a thin rod by pulling up or down, phase splitting heat treatment, elution, crushing, washing,
Create glass particles by drying and heat solidifying,
A method for producing a quartz tube for optical fiber, which comprises laminating layers on a mandrel and then pulling out the mandrel to produce a tube.
JP14892778A 1978-11-30 1978-11-30 Production of fiber for light transmission Granted JPS5575933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14892778A JPS5575933A (en) 1978-11-30 1978-11-30 Production of fiber for light transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14892778A JPS5575933A (en) 1978-11-30 1978-11-30 Production of fiber for light transmission

Publications (2)

Publication Number Publication Date
JPS5575933A JPS5575933A (en) 1980-06-07
JPS6137212B2 true JPS6137212B2 (en) 1986-08-22

Family

ID=15463767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14892778A Granted JPS5575933A (en) 1978-11-30 1978-11-30 Production of fiber for light transmission

Country Status (1)

Country Link
JP (1) JPS5575933A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156512A (en) * 1987-07-29 1988-06-29 Takuwa:Kk Liquid purification device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2423170B1 (en) * 1999-06-22 2013-08-21 Mitsubishi Cable Industries, Ltd. Method for manufacturing a glass optical fiber preform
KR20060007434A (en) * 2003-05-19 2006-01-24 스미토모 덴키 고교 가부시키가이샤 Optical fiber and method of producing the same
KR100624873B1 (en) 2005-03-18 2006-09-19 엘에스전선 주식회사 The direct drawing process optical fiber preform for an optical fiber manufacture
KR100624874B1 (en) 2005-03-29 2006-09-19 엘에스전선 주식회사 Direct drawing method for an optical fiber manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156512A (en) * 1987-07-29 1988-06-29 Takuwa:Kk Liquid purification device

Also Published As

Publication number Publication date
JPS5575933A (en) 1980-06-07

Similar Documents

Publication Publication Date Title
US4225330A (en) Process for producing glass member
US4157906A (en) Method of drawing glass optical waveguides
US3938974A (en) Method of producing optical wave guide fibers
US4251251A (en) Method of making optical devices
US4082420A (en) An optical transmission fiber containing fluorine
NO161730B (en) PROCEDURE FOR THE PREPARATION OF A GLASS ARTICLE, AT LEAST A PART IS DRUG WITH FLUOR.
US3933453A (en) Flame hydrolysis mandrel and method of using
JPS61155225A (en) Manufacture of optical wave guide tube
JP2011230987A (en) Method for producing glass preform
US4161505A (en) Process for producing optical transmission fiber
KR20090127300A (en) Reduction of optical fiber cane/preform deformation during consolidation
US4493720A (en) Process for producing doped vitreous silica for preparing a preform for an optical fibre
US4242375A (en) Process for producing optical transmission fiber
WO2020155707A1 (en) Optical fiber preform rod of large size and low loss and preparation method therefor
US4165152A (en) Process for producing optical transmission fiber
JPS6022652B2 (en) Manufacturing method of glass fiber for optical transmission
RU2236386C2 (en) Method of manufacturing optic fiber intermediate product
EP0100174A1 (en) Method of making glass optical fiber
EP0216338A2 (en) Method of employing plasma for finishing start rods
JPS6137212B2 (en)
US4116653A (en) Optical fiber manufacture
JP4104558B2 (en) Manufacturing method of glass tube
JPS63315530A (en) Production of optical fiber preform
JPS63147840A (en) Production of quartz glass material
JPH0426523A (en) Production of optical fiber