JPS6136937A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6136937A
JPS6136937A JP15965384A JP15965384A JPS6136937A JP S6136937 A JPS6136937 A JP S6136937A JP 15965384 A JP15965384 A JP 15965384A JP 15965384 A JP15965384 A JP 15965384A JP S6136937 A JPS6136937 A JP S6136937A
Authority
JP
Japan
Prior art keywords
ammonia
nitriding
reaction
thermal
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15965384A
Other languages
Japanese (ja)
Inventor
Shigeaki Nakamura
中村 茂昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP15965384A priority Critical patent/JPS6136937A/en
Publication of JPS6136937A publication Critical patent/JPS6136937A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To form a thermal nitride film in a short time at a low temperature by introducing activated nitriding-gas ions by a plasma generator and thermally nitriding the surface of a semiconductor substrate. CONSTITUTION:Ammonia gas from an ammonia-gas supply source 1 such as a liquid ammonia bomb is introduced to a plasma generator 2 installed outside reaction pipe. Ammonia gas is activated by plasma at that time, and ammonia ions are generated, and introduced into the reaction pipe 3. Ammonia ions do not disapperar on their midways, and reach to the surfaces of semiconductor substrates 6 heated by an electric furnace 7, and a thermal nitriding reaction, a reaction thereof is fast, is generated. Accordingly, thermal nitride films are formed in a short time at a low temperature.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体装置の製造方法に関し、プラズマ発生
装置で活性化されたアンモニア・イオンを反応管内に導
入して、低温変、短時間で多量に半導体基板を熱窒化す
る半導体装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing semiconductor devices, and involves introducing ammonia ions activated by a plasma generator into a reaction tube, changing the temperature to a large amount in a short time. The present invention relates to a method of manufacturing a semiconductor device by thermally nitriding a semiconductor substrate.

従来例の構成とその問題点 従来、半導体の表面を熱処理で窒化させる。いわゆる、
熱窒化方法として、半導体基板をアンモニアガス等の窒
化性雰囲気で高温に加熱する方法がよく用いられている
。熱窒化反応は熱酸化反応に比較して、非常に反応の進
行が遅い欠点があり。
Conventional Structure and Problems Conventionally, the surface of a semiconductor is nitrided by heat treatment. So-called,
As a thermal nitriding method, a method in which a semiconductor substrate is heated to a high temperature in a nitriding atmosphere such as ammonia gas is often used. Thermal nitriding reaction has the disadvantage that the reaction progresses much more slowly than thermal oxidation reaction.

反応を促進させるために1100°Cないし1200℃
の高温加熱を必要とする。
1100°C to 1200°C to accelerate the reaction
Requires high temperature heating.

最近の高集積化された半導体の製造にかかる高温を導入
することは、半導体装置の構造設計上不利益が多い。 
最近、プラズマ中における熱窒化方法が提案されている
。この方法は半導体基板を含む反応管内に減圧下でアン
モニアガス等の窒化性ガスを導入し、高周波誘導加熱装
置により崖導体基板を加熱すると同時に反応ガスのプラ
ズマを発生させ、かかる活性化されたアンモニアイオン
によυ窒化反応を促進させるもので1通常の熱窒化方法
よシ低温の950℃ないし11000Cで熱窒化膜が形
成可能になる。かかるプラズマ熱窒化方法の欠点は高周
波誘導加熱方法を用いるため、サセプター上で一度に熱
窒化可能な半導体基板の枚数が通常の熱窒化方法に比較
して極めて少ない事である。さらに量産性を高めるには
、大きなサセブター2反応管および高出力の高周波加熱
装置が必要になり、コスト上不利である。
Introducing the high temperatures required to manufacture recent highly integrated semiconductors has many disadvantages in terms of structural design of semiconductor devices.
Recently, thermal nitriding methods in plasma have been proposed. In this method, a nitriding gas such as ammonia gas is introduced under reduced pressure into a reaction tube containing a semiconductor substrate, and a high-frequency induction heating device is used to heat the cliff conductor substrate while simultaneously generating plasma of the reaction gas. This method uses ions to promote the v-nitriding reaction, making it possible to form a thermal nitride film at a lower temperature of 950° C. to 11,000° C. than in the normal thermal nitriding method. A drawback of such a plasma thermal nitriding method is that, since a high-frequency induction heating method is used, the number of semiconductor substrates that can be thermally nitrided at one time on a susceptor is extremely small compared to a normal thermal nitriding method. In order to further increase mass productivity, a large susceptor 2 reaction tube and a high-power high-frequency heating device are required, which is disadvantageous in terms of cost.

発明の目的 本発明は、比較的低温で短時間に量産性良く熱窒化膜を
形成する半導体装置の製造方法を提案するものである。
OBJECTS OF THE INVENTION The present invention proposes a method for manufacturing a semiconductor device in which a thermal nitride film is formed at a relatively low temperature in a short time with good mass productivity.

発明の構成 本発明は、減圧された反応管内で加熱された半導体基板
に反応管入口に接続したプラズマ発生装置により活性化
されたアンモニアイオン等の窒化性ガスイオンを導入し
、半導体基板表面を熱窒化するもので、通常のアンモニ
アガス等を導入した熱窒化方法よシも低温、短時間で熱
窒化膜を形成することが可能である。
Structure of the Invention The present invention introduces nitriding gas ions such as ammonia ions activated by a plasma generator connected to the inlet of the reaction tube into a semiconductor substrate heated in a reaction tube under reduced pressure, thereby heating the surface of the semiconductor substrate. It nitrides, and it is possible to form a thermal nitride film at a lower temperature and in a shorter time than a normal thermal nitriding method that introduces ammonia gas or the like.

実施例の説明 以下図面によシ本発明を、実施例により、詳細に説明す
る。
DESCRIPTION OF EMBODIMENTS The present invention will now be explained in detail by way of embodiments with reference to the drawings.

図面は本発明の一実施例にかかる熱窒化に用いる反応装
置を模式的に示したものである。図示の装置において1
はアンモニア発生源(ボンベ)、2はプラズマ発生装置
である。反応管3は細にい円筒状の石英管等より形成さ
れ、この反応管3の一端をキャップ4等による半導体ウ
ェファ−の出入口にし、まだ同時に反応ガスの入口をな
すものとして、他端を反応ガスの出口として用いる。な
お。
The drawing schematically shows a reaction apparatus used for thermal nitridation according to an embodiment of the present invention. In the illustrated device 1
2 is an ammonia generation source (cylinder), and 2 is a plasma generator. The reaction tube 3 is formed of a thin cylindrical quartz tube or the like, and one end of the reaction tube 3 is used as an inlet/outlet for the semiconductor wafer through a cap 4 or the like, and at the same time, the other end is used as an inlet for the reaction gas. Used as a gas outlet. In addition.

5は石英ポート、6は半導体ウェファ−17は電気炉、
8は真空ポンプである。また、反応管3は高周波電力に
よるプラズマ発生装置2と配管接続されており、このプ
ラズマ発生装置2は開閉107ブ9を介して希釈アンモ
ニアガスを供給するため。
5 is a quartz port, 6 is a semiconductor wafer, and 17 is an electric furnace.
8 is a vacuum pump. Further, the reaction tube 3 is pipe-connected to a plasma generator 2 using high-frequency power, and this plasma generator 2 supplies diluted ammonia gas through an opening/closing valve 9.

アンモニアポンベ1と配管接続されている。またプラズ
マ発生装置2および反応管3に窒素ガスを導入するため
の開閉バルブ10および枝配管11を有する。反応管3
の内部に設置された石英ポート6の−りには、熱窒化膜
を形成させるべく多数の半導体基板6を装填し、さらに
反応管3は高温で熱窒化するだめの電気炉7の内部に装
填されている。反応管3の他端は真空ポンプ8に接続さ
れている。
It is connected to the ammonia pump 1 by piping. It also has an on-off valve 10 and a branch pipe 11 for introducing nitrogen gas into the plasma generator 2 and the reaction tube 3. Reaction tube 3
A large number of semiconductor substrates 6 are loaded into the quartz port 6 installed inside the quartz port 6 in order to form a thermal nitride film, and the reaction tube 3 is loaded inside an electric furnace 7 for thermal nitriding at high temperature. has been done. The other end of the reaction tube 3 is connected to a vacuum pump 8.

次に具体的な実施例について説明する。Next, specific examples will be described.

5へ−7 図示の装置において、液体アンモニアボンベ等のアンモ
ニアガス供給源1からのアンモニアガスを反応管外に設
けたプラズマ発生装置2へ導入し、ここでプラズマによ
シ活性化しアンモニアイオンを発生させ5反応管3に導
入する。プラズマ発生装置2および反応管3内は真空ポ
ンプ8により内部の雰囲気が排気減圧されて真空状態で
あるため。
To 5-7 In the illustrated apparatus, ammonia gas from an ammonia gas supply source 1 such as a liquid ammonia cylinder is introduced into a plasma generator 2 provided outside the reaction tube, where it is activated by plasma to generate ammonia ions. 5 and introduced into reaction tube 3. This is because the atmosphere inside the plasma generator 2 and the reaction tube 3 is evacuated and depressurized by the vacuum pump 8 and is in a vacuum state.

プラズマにより活性化されたアンモニアイオンは反応管
3に導入される途中で消滅することガく、電気炉子によ
り加熱された半導体ウェファ−6の表面に達して5通常
のアンモニアガスによる窒化反応よシも反応の速い熱窒
化反応を生じる。
The ammonia ions activated by the plasma do not disappear on the way to the reaction tube 3, but reach the surface of the semiconductor wafer 6 heated by the electric furnace and undergo a nitriding reaction using normal ammonia gas. Produces a fast thermal nitriding reaction.

さらに本発明をシリコンウェファ−を用いたMO3電界
効果トランジスタの製作におけるゲート絶縁膜の形成に
適用した場合を例として説明する。熱窒化膜を形成させ
るべきシリコンウェファ−〇を反応管3内の石英ポート
6の上におく、この時、反応管3の内部へは枝配管11
によシ窒素ガス等の不活性ガスが導入され5反応管内は
不活性ガスで充満されている。−また反応管内は電気炉
7により適切な窒化温度、例えば1000’C乃至10
00℃に設定されている。次に開閉バルブ1゜を閉めて
窒素ガスを止め、真空ポンプ8によりプラズマ発生装置
2と反応管3よりなる系を排気する。真空度が10m 
Torr (ミリ・トー/I/)程度になった時、開閉
バルブ9を開きアンモニアガスをプラズマ発生装置2に
導入し、プラズマを発生させる。プラズマ発生装置は、
通常のプラズマエツチング等で使用されるものと同程度
の出力容量のもので十分である。ガス流量は真空ポンプ
の排気能力により決定されるが1通常毎分数1000乃
至数1oQCCである。減圧状態でアンモニアイオンを
導入して熱窒化する場合、通常の熱窒化方法と同一温度
で行うものとすれば多量に発生したアンモニアイオンが
利用できるので窒化反応は促進され、窒化膜形成に要す
る時間は従来の熱窒化方法の約半分以下にすることが可
能でおる。また本発明の方法を用いると従来方法よりも
温度を低く下げて窒化することも可能で、アンモニアイ
オンの流量、プラズマ発生装置の出力2反応管内の真空
度等を調節することにより1000°C乃至1100°
Cで均一性の良い熱窒化膜が量産性良く得られる。
Furthermore, an example in which the present invention is applied to the formation of a gate insulating film in manufacturing an MO3 field effect transistor using a silicon wafer will be explained. A silicon wafer 〇 on which a thermal nitride film is to be formed is placed on the quartz port 6 in the reaction tube 3. At this time, a branch pipe 11 is connected to the inside of the reaction tube 3.
An inert gas such as nitrogen gas is introduced and the inside of the reaction tube 5 is filled with the inert gas. - Also, the inside of the reaction tube is set at a suitable nitriding temperature by the electric furnace 7, for example, 1000'C to 1000'C.
The temperature is set to 00℃. Next, the on-off valve 1° is closed to stop the nitrogen gas, and the system consisting of the plasma generator 2 and the reaction tube 3 is evacuated using the vacuum pump 8. Vacuum degree is 10m
When the temperature reaches approximately Torr (milli-Torr/I/), the on-off valve 9 is opened and ammonia gas is introduced into the plasma generator 2 to generate plasma. The plasma generator is
An output capacity comparable to that used in ordinary plasma etching is sufficient. The gas flow rate is determined by the evacuation capacity of the vacuum pump, and is usually several thousand to several degrees QCC per minute. When thermal nitriding is performed by introducing ammonia ions under reduced pressure, if the temperature is the same as for normal thermal nitriding, a large amount of generated ammonia ions can be used, which accelerates the nitriding reaction and reduces the time required to form a nitride film. can be reduced to about half or less compared to conventional thermal nitriding methods. Furthermore, by using the method of the present invention, it is possible to perform nitriding at a lower temperature than conventional methods, and by adjusting the flow rate of ammonia ions, the degree of vacuum in the output 2 reaction tube of the plasma generator, etc. 1100°
A thermal nitride film with good uniformity can be obtained with good mass productivity using C.

発明の効果 本発明によると、減圧状態でアンモニアイオンを導入し
て熱窒化する場合1通常の熱窒化方法と同一温度で行な
うものとすれば、多量に発生したアンモニアイオンが利
用できるので、窒化反応は促進され、窒化膜形成に要す
る時間は、従来の熱窒化膜形成方法の約半分の時間に短
縮することが可能である。また1本発明の方法によると
、従来方法よりも低い温度で窒化することも可能である
Effects of the Invention According to the present invention, when thermal nitriding is carried out by introducing ammonia ions under reduced pressure (1) If it is carried out at the same temperature as in a normal thermal nitriding method, a large amount of generated ammonia ions can be used, so that the nitriding reaction is accelerated, and the time required to form a nitride film can be reduced to about half the time of conventional thermal nitride film formation methods. Furthermore, according to the method of the present invention, it is also possible to perform nitriding at a lower temperature than in conventional methods.

以上、アンモニアイオンを用いたシリコン基板の熱窒化
を例に本発明を説明したが、他の材質基板を用いた場合
の熱窒化膜形成方法も、同時に可能であり、熱窒化反応
促進効果が得られることはいうまでもない。
The present invention has been explained above using as an example the thermal nitridation of a silicon substrate using ammonia ions, but it is also possible to form a thermal nitride film using a substrate made of other materials at the same time, and the effect of promoting the thermal nitridation reaction can be obtained. Needless to say, it will happen.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の半導体装置の製造方法を実現するだめ
の模式図である。 1・・・・アンモニアガス発生源(ポンベ)、2・・・
・・・プラズマ発生装置、3・・・・・・反応管、4・
・・・・キャップ、5・・・・・・ボート、6・・・・
・・半導体基板、7・・・・・・電気炉、8・・・・・
・真空ポンプ、9.10・・・・・・開閉バルブ、11
・・・・・・枝配管。
The drawings are schematic diagrams for realizing the method of manufacturing a semiconductor device of the present invention. 1... Ammonia gas generation source (ponbe), 2...
...Plasma generator, 3...Reaction tube, 4.
... Cap, 5 ... Boat, 6 ...
...Semiconductor substrate, 7...Electric furnace, 8...
・Vacuum pump, 9.10...Opening/closing valve, 11
・・・・・・Branch piping.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板を減圧された反応管内に配置すると共に、
同反応管内にプラズマ発生装置により活性化されたアン
モニア・イオンを導入して、前記半導体基板を加熱処理
して前記半導体基板上に窒化膜を生成することを特徴と
する半導体装置の製造方法。
While placing the semiconductor substrate in a reduced pressure reaction tube,
A method for manufacturing a semiconductor device, comprising introducing ammonia ions activated by a plasma generator into the reaction tube and heat-treating the semiconductor substrate to form a nitride film on the semiconductor substrate.
JP15965384A 1984-07-30 1984-07-30 Manufacture of semiconductor device Pending JPS6136937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15965384A JPS6136937A (en) 1984-07-30 1984-07-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15965384A JPS6136937A (en) 1984-07-30 1984-07-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6136937A true JPS6136937A (en) 1986-02-21

Family

ID=15698407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15965384A Pending JPS6136937A (en) 1984-07-30 1984-07-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6136937A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437028A (en) * 1987-08-03 1989-02-07 Japan Synthetic Rubber Co Ltd Manufacture of semiconductor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437028A (en) * 1987-08-03 1989-02-07 Japan Synthetic Rubber Co Ltd Manufacture of semiconductor element

Similar Documents

Publication Publication Date Title
JP4926219B2 (en) Manufacturing method of electronic device material
TWI415193B (en) Method for fabricating a gate dielectric of a field effect transistor
US7622402B2 (en) Method for forming underlying insulation film
US4510172A (en) Technique for thin insulator growth
TW201843733A (en) Etching method and etching device
KR20050004077A (en) Method and apparatus for forming silicon oxide film
JP3578155B2 (en) Oxidation method of the object
JPH01179710A (en) Production of insulating thin film
JP2000100812A (en) Method for forming silicon nitride film
WO2004017396A1 (en) Method of forming insulation film on semiconductor substrate
JPS6136937A (en) Manufacture of semiconductor device
US3498853A (en) Method of forming semiconductor junctions,by etching,masking,and diffusion
JP2003188172A (en) Method for processing substrate
TW202416418A (en) Multi-step process for flowable gap-fill film
JP2766280B2 (en) Processing equipment
KR960036155A (en) P.L.T. Thin film manufacturing method
JP2004342726A (en) Film depositing method
JPS63102232A (en) Dry etching device
JP2002289615A (en) Method and apparatus for forming thin film
JP2000277518A (en) Film forming method
JPH06326087A (en) Method and device for manufacturing semiconductor integrated circuit
JPH05335248A (en) Thin film manufacture
JPS6012726A (en) Cvd apparatus
US20080206968A1 (en) Manufacturing method of semiconductor device
JPS63182825A (en) Formation of insulating film