JPS6136813B2 - - Google Patents

Info

Publication number
JPS6136813B2
JPS6136813B2 JP4279282A JP4279282A JPS6136813B2 JP S6136813 B2 JPS6136813 B2 JP S6136813B2 JP 4279282 A JP4279282 A JP 4279282A JP 4279282 A JP4279282 A JP 4279282A JP S6136813 B2 JPS6136813 B2 JP S6136813B2
Authority
JP
Japan
Prior art keywords
methyl
solvent
phosphoric acid
water
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4279282A
Other languages
Japanese (ja)
Other versions
JPS58162548A (en
Inventor
Takashi Yasunami
Kazunori Yamataka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP4279282A priority Critical patent/JPS58162548A/en
Publication of JPS58162548A publication Critical patent/JPS58162548A/en
Publication of JPS6136813B2 publication Critical patent/JPS6136813B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は一般式[Detailed description of the invention] The present invention is based on the general formula

【式】(Rは水素ま たはアルキル基を示す)で表わされるγ―メチル
―γ―ラクトン類を脱水縮合する3―メチル―2
―シクロペンテノン類の製造方法に関するもので
ある。 3―メチル―2―シクロペンテノン類は香料、
医薬品、農薬などの出発原料として有用な用途が
ある。 従来から知られている2―シクロペンテノン類
の製造方法として次の様なものがある。 (1) γ―ラクトンを五酸化燐と共に加熱する方法
〔J.Am.Chem.Soc.,70,1379,(1948)〕。 (2) 五酸化燐と燐酸の混合液にγ―ラクトンを添
加し、加熱する方法〔J.Indian Chem.
Soc.34,169―77(1957)〕。 (3) γ―ラクトンを固体酸触媒の存在下で加熱す
る方法(特公昭53―18493号公報〕。 (1)の方法では2―シクロペンテノン類の収率が
低く、特にγ―位のアルキル基の炭素数の少ない
γ―ラクトンの場合ではほとんど生成することが
出来ない。(2)の方法では(1)とほぼ同様の問題点が
ある。(3)の方法では(1),(2)に比べて収率の向上が
見られるが、まだ十分なものではなく、特にγ―
位のアルキル基の炭素数が少ないものでは収率が
低く、又、選択率が悪いため数種の生成物ができ
精製が煩雑となり、又、反応が温度で行なわれる
ため設備が煩雑となる等の問題がある。 本発明者らは、先に、上記の様な問題点を解決
すべく、縮合リン酸をX・H2O・y・P2O5で表
わした時のX/y=Rが1.5<R<2.7である縮合
リン酸を触媒として用いて、γ―ラクトン類から
高収率で2―シクロペンテノン類が生成すること
を見いだした。だが、該縮合リン酸は反応中に生
成する水を取り込み、触媒としての作用が低下す
るため、γ―ラクトンに対し多量に使用しなけれ
ばならず、加えて、該縮合リン酸を回収するため
の回収工程は、触媒を含む水層の脱水処理を大気
圧下の加熱と、高真空下の加熱の2段階で行なわ
ねばならず煩雑であり、未だ、充分なものでな
い。 この問題点を解決すべく鋭意研究した結果、水
に溶解しなくかつ反応系に対し不活性な溶媒を用
いることにより、リン酸および/又は縮合リン酸
を触媒として加え、γ―メチル―γ―ラクトン類
を溶媒の沸点近傍に加熱し、生成した水を溶媒と
ともに系外へ除去することで、反応の円滑な進行
が出来、高収率で3―メチル―2―シクロペンテ
ノン類が生成すること、加えて、触媒の回収が触
媒を含む水層を溶媒の沸点近傍に加熱し、溶媒と
ともに水を除去することにより容易に出来ること
を見い出した。 即ち、本発明は一般式
[Formula] (R represents hydrogen or an alkyl group) 3-methyl-2 which is dehydrated and condensed with γ-methyl-γ-lactones
- Concerning a method for producing cyclopentenones. 3-Methyl-2-cyclopentenones are fragrances,
It has useful uses as a starting material for pharmaceuticals, agricultural chemicals, etc. Conventionally known methods for producing 2-cyclopentenones include the following. (1) Method of heating γ-lactone with phosphorus pentoxide [J.Am.Chem.Soc., 70, 1379, (1948)]. (2) Method of adding γ-lactone to a mixture of phosphorus pentoxide and phosphoric acid and heating it [J.Indian Chem.
Soc.34, 169-77 (1957)]. (3) A method in which γ-lactone is heated in the presence of a solid acid catalyst (Japanese Patent Publication No. 18493/1983). In method (1), the yield of 2-cyclopentenones is low, especially at the γ-position. In the case of γ-lactones whose alkyl group has a small number of carbon atoms, it is almost impossible to produce them.Method (2) has almost the same problems as (1).Method (3) has problems such as (1), ( Although the yield is improved compared to 2), it is still not sufficient, especially for γ-
If the number of carbon atoms in the alkyl group at position is small, the yield will be low, and the selectivity will be poor, resulting in several types of products, making purification complicated, and the reaction will be carried out at high temperatures, making the equipment complicated, etc. There is a problem. In order to solve the above problems, the present inventors first discovered that when condensed phosphoric acid is expressed as X・H 2 O・y・P 2 O 5 , X/y=R is 1.5<R. We have found that 2-cyclopentenones can be produced in high yield from γ-lactones using condensed phosphoric acid with <2.7 as a catalyst. However, the condensed phosphoric acid incorporates water generated during the reaction, reducing its catalytic effect, so it must be used in large amounts relative to the γ-lactone.In addition, in order to recover the condensed phosphoric acid, The recovery process is complicated, as it requires dehydration of the aqueous layer containing the catalyst in two stages: heating under atmospheric pressure and heating under high vacuum, and is still not satisfactory. As a result of intensive research to solve this problem, we found that by using a solvent that is insoluble in water and inert to the reaction system, phosphoric acid and/or condensed phosphoric acid was added as a catalyst, and γ-methyl-γ- By heating the lactones to near the boiling point of the solvent and removing the generated water from the system together with the solvent, the reaction can proceed smoothly and 3-methyl-2-cyclopentenones are produced in high yield. In addition, we have found that the catalyst can be easily recovered by heating the aqueous layer containing the catalyst to near the boiling point of the solvent and removing water together with the solvent. That is, the present invention is based on the general formula

【式】(Rは 水素またはアルキル基を示す)で表わされるγ―
メチル―γ―ラクトン類を脱水縮合して、一般式
γ- represented by [Formula] (R represents hydrogen or an alkyl group)
By dehydrating and condensing methyl-γ-lactones, the general formula

【式】で表わされる3―メチル―2―シ クロペンテノン類を製造するに際し、該脱水縮合
を水に溶解しなくかつ反応系に対し不活性な溶媒
中でリン酸および/又は縮合リン酸を加え、溶媒
の沸点近傍に加熱しながら反応によつて生成する
水を溶媒と共に系外へ除去することを特徴とする
ものである。 本発明を具体的に詳述する。 本発明において用いられるγ―メチル―γ―ラ
クトン類としては、特に限定されないが、一般的
なγ―メチル―γ―バレロラクトン、γ―メチル
―γ―ヘキサラクトン、γ−メチル−γ−ヘプタ
ラクトン、γ―メチル―γ―オクタラクトン、γ
―メチル―γ―ノナラクトン、γ―メチル―γ―
デカラクトン等である。特に、γ―メチル―γ―
バレロラクトンについては、従来法に比べて収率
の点から極めて大きく改良されている。 本発明において用いられる水に溶解しなくかつ
反応系に対し不活性な溶媒としては、エチルベン
ゼン、n―プロピルベンゼン、イソ―プロピルベ
ンゼン、n―ブチルベンゼン、イソ―ブチルベン
ゼン、n―アミルベンゼン、n―ヘキシルベンゼ
ン、キシレン、エチルトルエン、トリメチルベン
ゼン等の芳香族炭化水素が挙げられる。 これらの溶媒の使用量は、γ―メチル―γ―ラ
クトン類に対して1重量部以上が反応収率の点よ
り必要である。好ましくは、1〜50重量部であ
る。あまり多量に用いても、反応収率の向上はみ
られず、反応後、溶媒は蒸留によつて回収するた
めに不経済となり好ましくない。 本発明の反応は130℃以上で行なわれることが
好ましい。130℃より低い温度では反応速度が遅
く、生産性が悪い。より好ましい温度は150〜230
℃である。230℃よりも高い温度では反応速度は
速いが、反応の選択性が悪くなり好ましくない。 本発明においては、触媒としてリン酸、縮合リ
ン酸をそれぞれ単独で用いても、又は、混合して
用いても収率の点では全く変らない。触媒の使用
量はγ―メチル―γ―ラクトン類に対して1〜20
倍モルが好ましい。1倍モルよりも少ない量で
は、反応速度が極めて遅く好ましくない。一方、
20倍モルよりも多く用いても、反応収率の向上は
認められず、更に、後述する回収工程での脱水処
理時の溶媒の添加量が増すことになり、不経済で
ある。 本発明の反応後の脱水縮合液は、次の様に処理
される。該脱水縮合液に含まれる触媒に対し0.5
〜5重量部の水を添加して、有機層と水層に分離
し、該有機層からは原料及び生成物を蒸留で回収
する。一方、例えばγ―メチル―γ―バレロラク
トンや、この脱水生成物である3―メチル―2―
シクロペンテノンなどの炭素数の少ないものは水
に易溶であり、水層に多く存在するために、水に
溶解しない有機溶媒を水層に加えて、これらを油
出し、抽出液から蒸留により回収される。ここで
用いられる水に溶解しない有機溶液としては、ク
ロロホルム、ジクロルメタン、ジクロルエタン、
エーテルなどが用いられる。例えばγ―メチル―
γ―デカラクトンや、この脱水生成物である2―
ペンチル―3―メチル―2―シクロペンテノンな
どの炭素数の多いものは水に溶けにくいので反応
に用いた溶媒による抽出でさしさわりない。この
抽出液は、該有機層とともに、含まれる原料及び
生成物を蒸留で回収すべく、回収工程に送られ
る。 原料及び生成物を抽出除去したあとの水層に含
まれる触媒は、単に水層を蒸発せしめて触媒を回
収することはもちろん可能である。が、次の様に
して回収することが好ましい。含まれる触媒量に
対し0.5〜5重量部の反応に用いた溶媒を加え
て、溶媒の沸点近傍に加熱することにより、水を
溶媒とともに除去し回収する。 次に、具体的に実施例を挙げ本発明をより詳細
に説明するが、本発明を限定するものではない。
各成分測定はガスクロマトグラフイ分析によつ
た。 実施例 1 3の4つの口フラスコに温度計、撹拌装置、
凝縮器を取り付けた。85%リン酸450gとメシチ
レン900gを4つ口フラスコに入れ、メシチレン
が還流するまで加熱し、次いでメシチレンととも
に還流してきた水を少量のメシチレンとともに留
去した。留去したメシチレンと水の量は合計で
825gであつた。次にγ―メチル―γ―バレロラ
クトン90gを4つ口フラスコに入れ、内温を165
℃にし、生成した水を少量のメシチレンとともに
留去しながら1時間撹拌した。反応終了後、直ち
に室温まで冷却した。留去したメシチレンと水の
量は合計で11gであつた。次いで760gの水を加
え、撹拌したあと静置し、有機層と水層に分離し
た。次いで水層に150mlのクロロホルムを加え、
溶解している原料および生成物を抽出した。同操
作は3回行なつた。次いで有機層からメシチレン
を留去し、クロロホルム層からクロロホルムを留
去したそれぞれの残液を一緒にし、減圧下で蒸留
して、3―メチル―2―シクロペンテノンおよび
γ―メチル―γ―バレロラクトンをそれぞれ16.4
gと96.4gを得た。γ―メチル―γ―バレロラク
トンの転化率は22.9%であり、3―メチル―2―
シクロペンテノンの選択率は94.3%であつた。 実施例 2 実施例1の原料及び生成物を抽出除去したあと
の水層とメシチレン300gを4つ口フラスコに入
れ、メシチレンが還流するまで加熱し、次いでメ
シチレンとともに還流してきた水をメシチレンと
ともに留去し、触媒を回収した。4つ口フラスコ
に残つた触媒とメシチレンの量は合計で531gで
あつた。次いでメシチレン750gとγ―メチル―
γ―バレロラクトン90gを加え、実施例1と同様
の実験を行ないγ―メチル―γ―バレロラクトン
の転化率21.1%、3―メチル―2―シクロペンテ
ノンの選択率95.5%を得た。 実施例 3 実施例1におけるγ―メチル―γ―バレロラク
トンの代りにγ―メチル―γ―デカラクトンを用
い、更に、抽剤としてのクロロホルムの代りにメ
シチレンを用いた他は実施例1と同様の実験を行
ない、2―ペンチル―3―メチル―2―シクロペ
ンテノンおよびγ―メチル―γ―デカラクトンを
それぞれ32.9gと31.2gを得た。γ―メチル―γ
―デカラクトンの転化率は65.3%であり、2―ペ
ンチル―3―メチル―2―シクロペンテノンの選
択率は62.0%であつた。 実施例 4 85%リン酸450gとキシレン900gを3の4つ
口フラスコに入れ、キシレンが還流するまで加熱
し、次いでキシレンとともに還流してきた水を少
量のキシレンとともに留去した。留去したキシレ
ンと水の量は合計で79.2gであつた。次にγ―メ
チル―γ―バレロラクトン90gを4つ口フラスコ
に入れ、内温を140℃にし、生成した水の少量の
キシレンとともに留去しながら5時間撹拌した。
反応終了後、直ちに室温まで冷却した。留去した
キシレンと水の量は合計で13.1gであつた。次い
で760gの水を加え、撹拌したあと静置し、有機
層と水層に分離した。次いで水層に150mlのクロ
ロホルムを加え、溶解している原料および生成物
を抽出した。同操作は3回行なつた。次いで有機
層からキシレンを留去し、クロロホルム層からク
ロロホルムを留去したそれぞれの残液を一緒に
し、減圧下で蒸留して、3―メチル―2―シクロ
ペンテノンおよびγ―メチル―γ―バレロラクト
ンをそれぞれ13.5gと69.5gを得た。γ―メチル
―γ―バレロラクトンの転化率は22.8%であり、
3―メチル―2―シクロペンテノンの選択率は
78.0%であつた。 実施例 5 実施例4の原料及び生成物を抽出除去したあと
の水層とキシレン300gを3の4つ口フラスコ
に入れ、キシレンが還流するまで加熱し、次いで
キシレンとともに還流してきた水をキシレンとと
もに留去し、触媒を回収した。4つ口フラスコに
残つた触媒とキシレンの量は合計で542.5gであ
つた。次いでキシレン40gとγ―メチル―γ―バ
レロラクトン90gを加え、実施例4と同様の実験
を行ない、γ―メチル―γ―バレロラクトンの転
化率は20.9%、3―メチル―2―シクロペンテノ
ンの選択率は75.1%を得た。 実施例 6 実施例4におけるγ―メチル―γ―バレロラク
トンの代りにγ―メチル―γ―デカラクトンを用
い、撹拌時間は3時間とし、抽剤としてのクロロ
ホルムの代りにキシレンを用いた他は実施例4と
同様の実験を行ない、2―ペンチル―3―メチル
―2―シクロペンテノンおよびγ―メチル―γ―
デカラクトンをそれぞれ48.9gと43-7gを得た。
γ―メチル―γ―デカラクトンの転化率は、51.5
%であり、2―ペンチル―3―メチル―2―シク
ロペンテノンの選択率は60.3%であつた。 実施例 7 正リン酸200gとメシチレン1000gを3の4
つ口フラスコに入れ、内温を165℃にし、γ―メ
チル―γ―バレロラクトン50gを加えた。生成し
た水を少量のメシチレンとともに留去しながら1
時間撹拌した。反応終了後、直ちに室温まで冷却
した。留去したメシチレンと水の量は合計で4.3
gであつた。次いで400gの水を加え、撹拌した
あと静置し、有機層と水層に分離した。次いで水
層に50mlのクロロホルムを加え、溶解している原
料および生成物を抽出した。同操作は3回行なつ
た。次いで有機層からメシチレンを留去し、クロ
ロホルム層からクロロホルムを留去した。それぞ
れの残液を一緒にし、減圧下で蒸留して、3―メ
チル―2―シクロペンテノおよびγ―メチル―γ
―バレロラクトンをそれぞれ7.2gと41gを得
た。γ―メチル―γ―バレロラクトンの転化率は
18.0%であり、3―メチル―2―シクロペンテノ
ンの選択率は95.1%であつた。 実施例 8 五酸化燐142gと水48.6gを3の4つ口フラ
スコに入れ、撹拌し、縮合リン酸をX.H2O・
yP2O5で表わした時のX/y=Rが2.7である縮
合リン酸を得た。次にメシチレン1000gを加え、
内温を165℃にし、γ―メチル―γ―バレロラク
トン50gを加え、生成した水の少量のメシチレン
とともに留去しながら1時間撹拌した。原料およ
び生成物の回収は実施例7に従つた。3―メチル
―2―シクロペンテノンおよびγ―メチル―γ―
バレロラクトンをそれぞれ10.8gと36.2gを得
た。γ―メチル―γ―バレロラクトンの転化率は
27.5%であり、3―メチル―2―シクロペンテノ
ンの選択率は93.3%であつた。 実施例 9 正リン酸150gと縮合リン酸(R=2.7)50gを
3の4つ口フラスコに入れ撹拌した。次にメシ
チレン1000gを加え、内温を165℃にし、γ―メ
チル―γ―バレロラクトン50gを加え、生成した
水を少量のメシチレンとともに留去しながら1時
間撹拌した。原料および生成物の回収は実施例7
に従つた。3―メチル―2―シクロペンテノンお
よびγ―メチル―γ―バレロラクトンをそれぞれ
8.0gと39.8gを得た。γ―メチル―γ―バレロ
ラクトンの転化率は20.4%であり、3―メチル―
2―シクロペンテノンの選択率は94.1%であつ
た。
When producing 3-methyl-2-cyclopentenones represented by the formula, phosphoric acid and/or condensed phosphoric acid is added in a solvent that does not dissolve the dehydration condensation in water and is inert to the reaction system. In addition, the method is characterized in that water generated by the reaction is removed from the system together with the solvent while heating the solvent to near its boiling point. The present invention will be specifically described in detail. The γ-methyl-γ-lactones used in the present invention are not particularly limited, but common examples include γ-methyl-γ-valerolactone, γ-methyl-γ-hexalactone, and γ-methyl-γ-heptalactone. , γ-methyl-γ-octalactone, γ
-Methyl-γ-nonalactone, γ-methyl-γ-
Decalactone, etc. In particular, γ-methyl-γ-
Regarding valerolactone, the yield is significantly improved compared to the conventional method. Examples of solvents that are insoluble in water and inert to the reaction system used in the present invention include ethylbenzene, n-propylbenzene, iso-propylbenzene, n-butylbenzene, iso-butylbenzene, n-amylbenzene, and n-propylbenzene. -Aromatic hydrocarbons such as hexylbenzene, xylene, ethyltoluene, and trimethylbenzene. The amount of these solvents to be used should be 1 part by weight or more based on the γ-methyl-γ-lactone from the viewpoint of reaction yield. Preferably, it is 1 to 50 parts by weight. If too large a quantity is used, no improvement in the reaction yield will be observed, and the solvent will be recovered by distillation after the reaction, which will be uneconomical, which is not preferable. The reaction of the present invention is preferably carried out at 130°C or higher. At temperatures lower than 130°C, the reaction rate is slow and productivity is poor. More preferred temperature is 150-230
It is ℃. At temperatures higher than 230°C, the reaction rate is fast, but the selectivity of the reaction deteriorates, which is not preferable. In the present invention, there is no difference in yield whether phosphoric acid or condensed phosphoric acid is used alone or in combination as a catalyst. The amount of catalyst used is 1 to 20 per γ-methyl-γ-lactone.
Double molar ratio is preferred. If the amount is less than 1 mole, the reaction rate will be extremely slow, which is not preferable. on the other hand,
Even if more than 20 times the mole is used, no improvement in reaction yield is observed, and furthermore, the amount of solvent added during dehydration treatment in the recovery step described later increases, which is uneconomical. The dehydrated condensate solution after the reaction of the present invention is treated as follows. 0.5 to the catalyst contained in the dehydration condensation liquid
~5 parts by weight of water is added to separate the organic and aqueous layers, from which the raw materials and products are recovered by distillation. On the other hand, for example, γ-methyl-γ-valerolactone and its dehydrated product 3-methyl-2-
Substances with a small number of carbon atoms, such as cyclopentenone, are easily soluble in water and are present in large quantities in the aqueous layer. It will be collected. Organic solutions that do not dissolve in water used here include chloroform, dichloromethane, dichloroethane,
Ether etc. are used. For example, γ-methyl-
γ-decalactone and its dehydrated product 2-
Products with a large number of carbon atoms, such as pentyl-3-methyl-2-cyclopentenone, are difficult to dissolve in water, so extraction with the solvent used in the reaction is not a problem. This extract, together with the organic layer, is sent to a recovery step in order to recover the contained raw materials and products by distillation. It is of course possible to recover the catalyst contained in the aqueous layer after the raw materials and products have been extracted and removed by simply evaporating the aqueous layer. However, it is preferable to collect it in the following manner. By adding 0.5 to 5 parts by weight of the solvent used in the reaction based on the amount of catalyst contained and heating to near the boiling point of the solvent, water is removed and recovered together with the solvent. Next, the present invention will be explained in more detail with reference to specific examples, but the present invention is not limited thereto.
Each component was measured by gas chromatography analysis. Example 1 A thermometer, a stirring device,
A condenser was installed. 450 g of 85% phosphoric acid and 900 g of mesitylene were placed in a four-necked flask and heated until the mesitylene refluxed, and then the water that had refluxed together with the mesitylene was distilled off together with a small amount of mesitylene. The total amount of mesitylene and water distilled off is
It weighed 825g. Next, put 90g of γ-methyl-γ-valerolactone into a four-necked flask and bring the internal temperature to 165.
℃ and stirred for 1 hour while the water produced was distilled off along with a small amount of mesitylene. Immediately after the reaction was completed, the mixture was cooled to room temperature. The total amount of mesitylene and water distilled off was 11 g. Next, 760 g of water was added, stirred, and allowed to stand to separate into an organic layer and an aqueous layer. Then add 150ml of chloroform to the aqueous layer,
Dissolved raw materials and products were extracted. The same operation was performed three times. Next, mesitylene was distilled off from the organic layer, and chloroform was distilled off from the chloroform layer. The respective residual liquids were combined and distilled under reduced pressure to obtain 3-methyl-2-cyclopentenone and γ-methyl-γ-valero. 16.4 lactones each
g and 96.4 g were obtained. The conversion rate of γ-methyl-γ-valerolactone was 22.9%, and the conversion rate of 3-methyl-2-
The selectivity for cyclopentenone was 94.3%. Example 2 After extracting and removing the raw materials and products of Example 1, the aqueous layer and 300 g of mesitylene were placed in a four-necked flask and heated until the mesitylene refluxed, and then the water that had refluxed together with the mesitylene was distilled off together with the mesitylene. The catalyst was recovered. The total amount of catalyst and mesitylene remaining in the four-necked flask was 531 g. Next, 750g of mesitylene and γ-methyl
90 g of γ-valerolactone was added and the same experiment as in Example 1 was conducted to obtain a conversion rate of γ-methyl-γ-valerolactone of 21.1% and a selectivity of 3-methyl-2-cyclopentenone of 95.5%. Example 3 Same procedure as Example 1 except that γ-methyl-γ-decalactone was used instead of γ-methyl-γ-valerolactone in Example 1, and mesitylene was used instead of chloroform as the extraction agent. The experiment was conducted and 32.9 g and 31.2 g of 2-pentyl-3-methyl-2-cyclopentenone and γ-methyl-γ-decalactone were obtained, respectively. γ-methyl-γ
-The conversion rate of decalactone was 65.3%, and the selectivity of 2-pentyl-3-methyl-2-cyclopentenone was 62.0%. Example 4 450 g of 85% phosphoric acid and 900 g of xylene were placed in a four-necked flask (No. 3) and heated until the xylene refluxed, and then the water that had refluxed with the xylene was distilled off together with a small amount of xylene. The total amount of xylene and water distilled off was 79.2 g. Next, 90 g of γ-methyl-γ-valerolactone was placed in a four-necked flask, the internal temperature was raised to 140°C, and the mixture was stirred for 5 hours while the produced water was distilled off along with a small amount of xylene.
Immediately after the reaction was completed, the mixture was cooled to room temperature. The total amount of xylene and water distilled off was 13.1 g. Next, 760 g of water was added, stirred, and allowed to stand to separate into an organic layer and an aqueous layer. Then, 150 ml of chloroform was added to the aqueous layer to extract dissolved raw materials and products. The same operation was performed three times. Next, xylene was distilled off from the organic layer, chloroform was distilled off from the chloroform layer, and the respective residual liquids were combined and distilled under reduced pressure to obtain 3-methyl-2-cyclopentenone and γ-methyl-γ-valero. 13.5 g and 69.5 g of lactone were obtained, respectively. The conversion rate of γ-methyl-γ-valerolactone was 22.8%,
The selectivity of 3-methyl-2-cyclopentenone is
It was 78.0%. Example 5 The aqueous layer after extracting and removing the raw materials and products of Example 4 and 300 g of xylene were placed in a four-necked flask (No. 3), heated until the xylene refluxed, and then the water that had refluxed together with the xylene was refluxed together with the xylene. The catalyst was recovered by distillation. The total amount of catalyst and xylene remaining in the four-necked flask was 542.5 g. Next, 40 g of xylene and 90 g of γ-methyl-γ-valerolactone were added and the same experiment as in Example 4 was carried out, and the conversion rate of γ-methyl-γ-valerolactone was 20.9% and 3-methyl-2-cyclopentenone. The selection rate was 75.1%. Example 6 Same as Example 4 except that γ-methyl-γ-decalactone was used instead of γ-methyl-γ-valerolactone, the stirring time was 3 hours, and xylene was used instead of chloroform as the extraction agent. An experiment similar to Example 4 was carried out and 2-pentyl-3-methyl-2-cyclopentenone and γ-methyl-γ-
48.9 g and 43-7 g of decalactone were obtained, respectively.
The conversion rate of γ-methyl-γ-decalactone is 51.5
%, and the selectivity of 2-pentyl-3-methyl-2-cyclopentenone was 60.3%. Example 7 200g of orthophosphoric acid and 1000g of mesitylene in 3/4
The mixture was placed in a neck flask, the internal temperature was brought to 165°C, and 50 g of γ-methyl-γ-valerolactone was added. 1 while distilling off the produced water along with a small amount of mesitylene.
Stir for hours. Immediately after the reaction was completed, the mixture was cooled to room temperature. The total amount of mesitylene and water distilled off was 4.3
It was hot at g. Next, 400 g of water was added, stirred, and allowed to stand to separate into an organic layer and an aqueous layer. Then, 50 ml of chloroform was added to the aqueous layer to extract dissolved raw materials and products. The same operation was performed three times. Next, mesitylene was distilled off from the organic layer, and chloroform was distilled off from the chloroform layer. The respective residual liquids were combined and distilled under reduced pressure to obtain 3-methyl-2-cyclopenteno and γ-methyl-γ.
- Obtained 7.2g and 41g of valerolactone, respectively. The conversion rate of γ-methyl-γ-valerolactone is
The selectivity for 3-methyl-2-cyclopentenone was 95.1%. Example 8 142 g of phosphorus pentoxide and 48.6 g of water were placed in a four-necked flask (No. 3) and stirred to convert condensed phosphoric acid into XH 2 O.
A condensed phosphoric acid in which X/y=R when expressed as yP 2 O 5 was 2.7 was obtained. Next, add 1000g of mesitylene,
The internal temperature was raised to 165°C, 50 g of γ-methyl-γ-valerolactone was added, and the mixture was stirred for 1 hour while the produced water was distilled off along with a small amount of mesitylene. Recovery of raw materials and products followed Example 7. 3-Methyl-2-cyclopentenone and γ-methyl-γ-
10.8g and 36.2g of valerolactone were obtained, respectively. The conversion rate of γ-methyl-γ-valerolactone is
The selectivity for 3-methyl-2-cyclopentenone was 93.3%. Example 9 150 g of orthophosphoric acid and 50 g of condensed phosphoric acid (R=2.7) were placed in a four-necked flask (No. 3) and stirred. Next, 1000 g of mesitylene was added, the internal temperature was raised to 165°C, 50 g of γ-methyl-γ-valerolactone was added, and the mixture was stirred for 1 hour while distilling off the produced water along with a small amount of mesitylene. Recovery of raw materials and products is as in Example 7.
I followed. 3-methyl-2-cyclopentenone and γ-methyl-γ-valerolactone, respectively.
8.0g and 39.8g were obtained. The conversion rate of γ-methyl-γ-valerolactone was 20.4%, and the conversion rate of 3-methyl-γ-valerolactone was 20.4%.
The selectivity for 2-cyclopentenone was 94.1%.

Claims (1)

【特許請求の範囲】 1 一般式【式】(Rは水素またはア ルキル基を示す)で表わされるγ―メチル―γ―
ラクトン類を脱水縮合して、一般式
【式】で表わされる3―メチル―2―シ クロペンテノン類を製造するに際し、該脱水縮合
を水に溶解しなくかつ反応系に対し不活性な溶媒
中で触媒としてリン酸および/又は縮合リン酸を
加え、溶媒の沸点近傍に加熱しながら反応によつ
て生成する水を溶媒と共に系外へ除去することを
特徴とする3―メチル―2―シクロペンテノン類
の製造方法 2 γ―メチル―γ―ラクトン類のRが、アルキ
ル基でかつ炭素数が1〜5である特許請求の範囲
第1項記載の方法 3 γ―メチル―γ―ラクトン類のRが、水素で
ある特許請求の範囲第1項記載の方法 4 溶媒が、芳香族系炭化水素である特許請求の
範囲第1項記載の方法 5 溶媒が、γ―メチル―γ―ラクトン類1重量
部に対して1重量部以上50重量部以下の量で用い
られる特許請求の範囲第1項または第4項記載の
方法 6 触媒が、リン酸である特許請求の範囲第1項
記載の方法 7 リン酸が、脱水縮合液に水を添加して、有機
層と水層の2層に分離したのち、水層より回収し
たものである特許請求の範囲第6項記載の方法 8 該回収が水層に溶媒を添加して加熱し、溶媒
と共に脱水除去することによつて行なわれる特許
請求の範囲第7項記載の方法 9 リン酸および/又は縮合リン酸がγ―メチル
―γ―ラクトン類に対して1倍モル以上20倍モル
以下で用いられる特許請求の範囲第1項または第
6項記載の方法 10 加熱温度が130℃以上である特許請求の範
囲第1項記載の方法 11 加熱温度が150℃以上230℃以下である特許
請求の範囲第10項記載の方法
[Claims] 1 γ-Methyl-γ- represented by the general formula [Formula] (R represents hydrogen or an alkyl group)
When producing 3-methyl-2-cyclopentenones represented by the general formula [formula] by dehydration condensation of lactones, the dehydration condensation is carried out in a solvent that does not dissolve in water and is inert to the reaction system. 3-methyl-2-cyclopene, characterized in that phosphoric acid and/or condensed phosphoric acid is added as a catalyst, and water generated by the reaction is removed from the system together with the solvent while heating near the boiling point of the solvent. Method 2 for producing tenones Method 3 according to claim 1, wherein R of γ-methyl-γ-lactones is an alkyl group and has 1 to 5 carbon atoms Process 3 of γ-methyl-γ-lactones Method 4 according to claim 1, in which R is hydrogen; Method 5 according to claim 1, in which the solvent is an aromatic hydrocarbon; γ-methyl-γ-lactones 1, where the solvent is Method 6 according to claim 1 or 4, wherein the catalyst is used in an amount of 1 part by weight or more and 50 parts by weight or less. The method according to claim 1, wherein the catalyst is phosphoric acid. 7. The method according to claim 6, wherein the phosphoric acid is recovered from the aqueous layer after adding water to the dehydration condensation liquid and separating it into two layers, an organic layer and an aqueous layer. Method 9 according to claim 7, which is carried out by adding a solvent to the aqueous layer, heating it, and dehydrating it together with the solvent. Phosphoric acid and/or condensed phosphoric acid is a γ-methyl-γ-lactone. Method 10 according to claim 1 or 6, which is used in an amount of 1 to 20 times the molar amount, Method 11 according to claim 1, wherein the heating temperature is 130° C. or higher is 150°C or more and 230°C or less, the method according to claim 10
JP4279282A 1982-03-19 1982-03-19 Preparation of 3-methyl-2-cyclopentenone Granted JPS58162548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4279282A JPS58162548A (en) 1982-03-19 1982-03-19 Preparation of 3-methyl-2-cyclopentenone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4279282A JPS58162548A (en) 1982-03-19 1982-03-19 Preparation of 3-methyl-2-cyclopentenone

Publications (2)

Publication Number Publication Date
JPS58162548A JPS58162548A (en) 1983-09-27
JPS6136813B2 true JPS6136813B2 (en) 1986-08-20

Family

ID=12645807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4279282A Granted JPS58162548A (en) 1982-03-19 1982-03-19 Preparation of 3-methyl-2-cyclopentenone

Country Status (1)

Country Link
JP (1) JPS58162548A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3900815A1 (en) * 1989-01-13 1990-07-19 Huels Chemische Werke Ag METHOD FOR PRODUCING 3-METHYL-2-PENTYL-CYCLOPENT-2-EN-1-ON
DE4007925A1 (en) * 1990-03-13 1991-09-19 Basf Ag METHOD FOR PRODUCING CYCLOPENTENONES
CN107083254B (en) * 2017-06-27 2018-11-06 东莞理工学院 A method of utilizing gamma-valerolactone liquid fuel was prepared

Also Published As

Publication number Publication date
JPS58162548A (en) 1983-09-27

Similar Documents

Publication Publication Date Title
US5527969A (en) Process for preparing acetaldehyde diethyl acetal
US2536732A (en) Production of furfural
US2516627A (en) Production of allyl acrylate from acrolein
JPS6168446A (en) Manufacture of hydroxypivalic acid neopentylglycol ester
TWI300408B (en) Process for the separation, by countercurrentwise liquid-liquid extraction, of a glyoxal diacetal from a crude mixture comprising it
JPS6136813B2 (en)
EP0064989B1 (en) Process for the recovery of rhodium catalyst
JPH0511101B2 (en)
US2881198A (en) Preparation of alkyl orthosilicates by reacting silicon dioxide with an alcohol
JPH041734B2 (en)
JPS6136814B2 (en)
JPS6319496B2 (en)
JPH0156058B2 (en)
KR950000637B1 (en) Method of preparing 3-ethylbenzo-phenone
US2551674A (en) Manufacture of beta-phenylpropionic acid
CN109574929A (en) The method of separating-purifying N- methyl caprolactam from the light impurity component of cyclohexanone oxime gas phase beckmann rearrangement product
CN103319355B (en) Separation and purification method of amino glycerol
CN109503531B (en) Preparation method of benzofuran compound
JPS596876B2 (en) 2-(Beta-carboxyethyl)-Cyclohexanoneolactone Kasite 3,4,5,6,7,8,-Hexahydrocoumarin
JPH03123752A (en) Production of 4,4&#39;-dihydroxybenzophenone
JPS5819665B2 (en) Succinyl succinate diester
JPH06157574A (en) Method of producing 1,2-5,6-diacetone-d-glucose
UA48108C2 (en) Process for extracting branched, saturated aliphatic diacids having 6 carbon atoms from admixtures thereof with adipic acid
US1956972A (en) Secondary butyl lactate
US1975843A (en) Purification and hydrogenation of pyridines