JPS6136001B2 - - Google Patents

Info

Publication number
JPS6136001B2
JPS6136001B2 JP52108926A JP10892677A JPS6136001B2 JP S6136001 B2 JPS6136001 B2 JP S6136001B2 JP 52108926 A JP52108926 A JP 52108926A JP 10892677 A JP10892677 A JP 10892677A JP S6136001 B2 JPS6136001 B2 JP S6136001B2
Authority
JP
Japan
Prior art keywords
component
monomer
functional group
polymer
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52108926A
Other languages
Japanese (ja)
Other versions
JPS5443284A (en
Inventor
Hidenori Gonjo
Shinzo Oosumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP10892677A priority Critical patent/JPS5443284A/en
Priority to FR7825968A priority patent/FR2402525A1/en
Priority to DE19782839249 priority patent/DE2839249A1/en
Priority to GB7836391A priority patent/GB2006091B/en
Priority to CA000311027A priority patent/CA1136306A/en
Priority to AU39748/78A priority patent/AU530070B2/en
Publication of JPS5443284A publication Critical patent/JPS5443284A/en
Priority to US06/190,820 priority patent/US4347198A/en
Priority to CA000412101A priority patent/CA1149563A/en
Priority to US06/517,567 priority patent/US4699934A/en
Publication of JPS6136001B2 publication Critical patent/JPS6136001B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Eyeglasses (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は長時間にわたつて連続使用が可能なソ
フトコンタクトレンズを与えるソフトコンタクト
レンズ製造用原液に関する。 コンタクトレンズの連続使用を可能ならしめる
ためには、角膜に十分な量の酸素が常に供給され
るようレンズ設計のなされていることが不可欠の
要件である。そのためには、当然のことながら、
酸素透過性の高い素材を用いることが有効である
が、高含水率のレンズとすることによつても角膜
への酸素の供給を円滑に行なわせることができ
る。既によく知られているポリヒドロキシエチル
メタクリレートを素材とするソフトコンタクトレ
ンズは、含水率が38%と低く酸素透過性も低いた
め、長時間の連続使用はとうてい不可能であつ
た。そこで前述の観点から、ヒドロキシエチルメ
タクリレートとビニルピロリドンとの共重合体を
用いることにより、高含水率のソフトコンタクト
レンズとする提案がなされている。この場合に
は、含水率はほぼ70%にまでなるが、依然として
酸素透過性にやや難点があり、さらには力学的性
質に劣るという問題もある。これらの問題点を解
決すべく、親水性成分と疎水性成分とからなる共
重合体を素材とし、親水性成分のみ架橋させ、こ
の架橋体と疎水性成分(高分子重合体)とを混合
したソフトコンタクトレンズが提案されている
(例えば特開昭50−39566号など)。しかしなが
ら、この場合にも次のような欠点があり、十分に
実用性のあるソフトコンタクトレンズは未だ得ら
れていないのが現状である。 重合収縮率が高いため、泡などが入つていな
い光学的に均質なレンズを、所期の形状通りに
得ることがきわめて難しい。 小さな成型品を光学的に満足できる精度で、
しかも多品種を製造する必要があるため、成型
加工の工程がきわめて煩雑になる。 水中へ溶出する成分、特に架橋されていない
ポリマの溶出速度が低いので、抽出処理に長時
間を必要とする。 重合体を原液の成分とする場合は粘性係数が
高く、脱泡、計量、充填が困難である。 膨潤するとミクロ応力が発生し含水レンズが
硬くなる。 高含水率の場合には、膨潤過程で分子が破壊
されて強度が低下したり、分子が永久変形をし
てレンズが歪むことがある。 含水レンズの強度を高くするために疎水性成
分の割合を高くすると含水率が低下してしまう
という問題がある。 ポリマを含水ゲルにする時の線膨張率と含水
ゲルの含水率にほぼ一定の関係があり、それぞ
れを任意の値に設定することができない。線膨
張率を0にすることはできない。 疎水性成分と親水性成分の比率、疎水性成分
の架橋密度、親水性成分の架橋密度を加減する
ことによつて含水レンズの硬度をある範囲内で
任意に設定できる。反面、線膨張率と含水率が
変化する。 重合収縮のためレンズに空洞が生ずることが
ないようにするために、鋳型のレンズ状空間容
積を減ずるような鋳造方式の場合、鋳型の内部
で原液がかすかに流動し、含水処理のあとその
流動の記憶発現によつて、含水レンズが不規則
に変形することがある。 本発明者らは上述のような従来技術の問題点を
解決すべく鋭意研究した結果、以下に述べるよう
な原液を用いて溶液重合法を採ることにより、前
記の問題点が全て解決され、すぐれた特性を持つ
ソフトコンタクトレンズが得られることを見い出
し、本発明に到達した。 すなわち本発明は、 レンズの引張強度が0.1Kg/cm2以上、かつ該レン
ズを構成するポリマーが下記のA成分とB成分を
主成分とするコポリマーで架橋構造を有するソフ
トコンタクトレンズを製造する原液であつて、該
原液は下記の組成成分からなるとともに、A成分
とB成分の重量比率が85:15〜55:45(ただし
A:B)であることを特徴とする含水ソフトコン
タクトレンズ製造用源液。 A N―ビニルピロリドン、N―ビニルピペリド
ン、N―ビニルラクタム、ヒドロキシアルキル
(メタ)アクリレート、グリセリン―モノ(メ
タ)アクリレートから選ばれた少なくとも1種
以上の親水性単量体と官能基導入可能な単量
体、または前記親水性単量体もしくはこの重合
体と官能基導入可能な単量体とからなる親水性
共重合体。 B (メタ)アクリル酸エステル、不飽和ニトリ
ル、芳香族オレフインから選ばれた少なくとも
1種以上の疎水性単量体と官能基導入可能な単
量体、または前記疎水性単量体もしくはこの重
合体と官能基導入可能な単量体とからなる疎水
性共重合体。 C 架橋剤。 D A〜C成分の全量に対して30〜90%の溶媒。 である。 本発明において、前記A,B成分の官能基導入
可能な単量体は、C成分の架橋剤として機能する
化合物を使用できる。すなわち同一化合物を併用
することができる。しかしこの場合においても官
能基導入可能な単量体としての機能を果たさなけ
ればならない。 ここにA成分が重合して親水性成分を与える単
量体とは、N―ビニルピロリドン、N―ビニルピ
ペリドン、N―ビニルカプロラクタムなどのN―
ビニルラクタム、(メタ)アクリル酸のヒドロキ
シエチルもしくはヒドロキシプロピルエステルの
ようなヒドロキシアルキル(メタ)アクリレー
ト、またはグリセリンモノ(メタ)アクリレート
などである。これらの単量体は1種または2種以
上を用いることができる。 A成分の親水性重合体とは、親水性重合体の相
互閑に架橋結合を形成せしめる(後架橋)に十分
な官能基を有する架橋性の親水性重合体であつ
て、前記の親水性成分を与える単量体の1種また
は2種以上と、要すれば重合体に官能基を導入す
るための単量体(官能基導入用単量体)とを
(共)重合したものを例示することができる。官
能基導入用単量体としてはブトキシアクリルアミ
ド、グリシジルメタクリレート、ビニレンカーボ
ネートなどが用いられる。単量体と官能基導入用
単量体との共重合組成比は一般に1000:1〜10:
1程度とするのが好ましい。これらの中では、N
―ビニルピロリドンとブトキシアクリルアミド等
の官能基導入用単量体と共重合したものが特に好
ましい。これらの場合には後架橋は加熱処理によ
つて行なうことができる。親水性重合体の他の例
としてはポリビニルアルコールをあげることがで
きる。この場合には、重合体中の水酸基が後架橋
反応を可能にするので、新たに官能基を導入する
必要はない。後架橋は多価イソシアネートや多価
アルデヒドを後架橋剤として用いることにより行
なうことができる。 B成分の重合して疎水性成分を与える単量体と
は、高分子化した時に架橋していないにもかかわ
らず、水に膨潤または溶解しないものを指称し、
(メタ)アクリル酸エステル、(メタ)アクリロニ
トリルのような不飽和ニトリル、スチレンのよう
な芳香族オレフインなどの1種または2種以上で
ある。A成分として単量体を用いる場合には、B
成分の単量体はそれらと共重合しにくいものであ
ることが望ましく、その選択にあたつては次のよ
うな基準をおくことができる。すなわち、A成分
の単量体をM1、B成分の単量体をM2とした時の
モノマ反応性比(MRR)が1/γ>1であ
り、かつ1/γ<1であることが望ましい。単
量体の組合せとしては、A成分としてN―ビニル
ピロリドンを、B成分としてメタクリル酸メチル
を用いた場合が最もすぐれたソフトコンタクトレ
ンズを与える。なお、A成分およびB成分の単量
体に加えて、第3の単量体成分として(メタ)ア
クリル酸を全単量体に対し5重量%程度まで添加
すると、レンズの強度を落すことなく含水率を上
げることが可能になる。 B成分の疎水性重合体とは、疎水性重合体の相
互間に架橋結合を形成せしめる(後架橋)に十分
な官能基を有しかつ水に膨潤または溶解しない架
橋性の重合体をいう。かかる架橋性の疎水性重合
体としては、前記の疎水性成分を与える単量体の
1種または2種以上とすれば官能基を導入するた
め単量体(官能基導入用単量体)とを(共)重合
したものを例示することができる。官能基導入用
単量体としてはブトキシアクリルアミド、グリシ
ジルメタクリレート、ビニレンカーボネート、ヒ
ドロキシエチルメタクリレートなどが用いられ
る。単量体と官能基導入用単量体との共重合組成
比は一般に1000:1〜10:1程度とするのが好ま
しい。疎水性重合体としては架橋性のない重合
体、例えばポリビニルブチラール、を混入するこ
とができる。 親水性重合体および疎水性重合体のいずれの場
合にも、官能基として水酸基が含まれている場合
には、これを例えばメタクリル酸でエステル化し
て重合性の炭素−炭素2重結合を導入することに
より、後架橋可能な重合体とすることができる。 成分Aと成分Bとの混合比率は、重量比率で
85:15〜55:45の範囲とする必要がある。A成分
がこの範囲以上に多くなると高強度のレンズが得
られなくなり、またこの範囲以下となると高含水
率のレンズが得られなくなる。 C成分の溶媒は、重合反応や後架橋反応を阻害
しないものであることが必須の要件であり、透明
原液を与えるような溶媒が好ましい。不透明な原
液を与える溶媒を用いると、多くの場合光学的性
質のみならず力学的性質においても不満足なレン
ズしか得られない結果となる。A,B両成分が単
量体である場合には、両成分の重合体を同時に溶
解するような溶媒を用いる必要は必ずしもない。
いずれか一方の重合体を溶解するような溶媒であ
れば使用可能である。溶媒の種類はA,B各成分
の組合せによつて、広い範囲で選択することが可
能であるが、本発明の特に好ましい態様であるN
―ビニルピロリドンとメタクリル酸メチルとを組
合せた場合には、ジメチルスルホキサイドおよ
び/またはエチレンカーボネート、あるいはさら
にこれらに少量のジオキサンを添加した溶媒系が
好ましく用いられる。 溶媒の使用量はA,B,C、およびD成分の総
量に対して30〜90重量%の範囲とする必要があ
る。溶媒量がこれよりも多くなると、原液を重合
および/または架橋させて得られる含溶媒ゲルの
引張強度が低くなるため、含溶媒レンズの取扱が
少し困難となる。因に、含溶媒ゲルの引張強度は
0.1kgf/cm2以上となるよう原液を調整することが
好ましく、そのためには溶媒量を前記の範囲とす
るのみならず、溶媒の種類も慎重に選定する必要
がある。溶媒量が前記の範囲より少なくなると、
含水レンズが膨潤したときに硬かつたり、レンズ
の含水率が低くなつたりするため好ましくない。 次に架橋剤について説明する。A成分またはB
成分として重合体が使用される場合には、重合体
中の官能基と反応して重合体分子間に架橋結合を
形成するような後架橋剤が必要に応じて用いられ
る。後架橋剤としては、重合体の性質を本質的に
変えるようなものでない限り、いかなるものも使
用可能である。水酸基を官能基として含むような
重合体に対しては、多価イソシアネート、多価ア
ルデヒド、多価カルボン酸エステルなどが後架橋
剤として用いられる。A成分またはB成分として
重合性の単量体が使用される場合には、架橋剤が
添加され架橋重合が進められる。架橋剤は同一分
子中に少なくとも2個の重合性不飽和結合を有す
る化合物から選ばれる。架橋剤の好ましい例とし
ては、ジアリルサクシネート、ジアリルフタレー
ト、ジアリルマレート、ジエチレングリコールビ
スアリルカーボネート、トリアリルシアヌレー
ト、トリアリルイソシアヌレート、トリアリルフ
オスフエート、トリアリルトリメリテートのよう
なジ―またはトリ―アリル化合物、ジビニルベン
ゼン、N,N′―メチレンビスアクリルアミド、
エチレングリコールジアクリレート、エチレング
リコールジメタクリレート、ポリエチレングリコ
ールジメタクリレート、ヘキサメチレンビスマレ
イミド、ジビニル尿素、ビスフエノールAビスメ
タクリレート、ジビニルアジペート、グリセリン
トリメタクリレート、トリメチロールプロパント
リアクリレート、トリビニルトリメリテート、
1,5―ペンタジエンのようなジ―またはトリ―
ビニル化合物、アリルアクリレート、アリルメタ
クリレートのようなアリルビニル化合物、ビニル
(メタ)アクリレートをあげることができる。架
橋剤の添加量はA成分およびB成分の重合性単量
体の総量に対して約0.005〜20モル%の範囲とす
る。 架橋重合は必要により重合開始剤の存在下に
熱、光、電子線等の手段によつて行なわれる。重
合開始剤の好ましい例としては、ジターシヤリブ
チルパーオキサイド、ベンゾイルパーオキサイ
ド、2,4―ジクロルベンゾイルパーオキサイ
ド、ターシヤリブチルハイドロパーオキサイド、
過酸、アンモニウムパーサルフエートのような有
機過酸化物、アゾビスイソブチロニトリル、アゾ
ビスシクロヘキサンカーボニトリル、フエニルア
ゾイソブチロニトリル、アゾビスジメチルバレロ
ニトリレのようなアゾ化合物、およびレドツクス
触媒などをあげることができる。開始剤の添加量
は重合性単量体に対して約0.001〜3重量%の範
囲とする。 以上のほかに本発明の原液には架橋助触媒や、
着色料などの添加物を必要に応じて加えることが
できることは言うまでもない。含溶媒ゲルから抽
出することのできるポリマ(例えばポリNビニル
ピロリドン)を添加することもできる。このよう
な抽出しうるポリマのみならず抽出しうる物質
は、溶媒の一部とみなすことが形式的にはでき
る。 上述のような組成を有する本発明のソフトコン
タクトレンズ製造用源液は、好ましくは凹凸2個
のレンズ鋳型内に注入され、熱、光、電子線など
の作用により、重合および/または架橋反応が進
められる。熱による場合には通常室温乃至120℃
の範囲で行なわれる。鋳型内に生成した含溶媒ゲ
ルは、好ましくは液中に浸漬することによつて容
易に鋳型から剥離することができ、ゲル中の溶媒
は液と置換される。次に本発明の原液で得られた
含溶媒ゲルを含水ゲルとなし、乾燥したあと、切
削研摩法によりレンズとなし、これを含水させる
ことによりソフトコンタクトレンズを得ることも
できる。 本発明の効果は次のとおりである。 重合収縮率が低くなり光学的ならびに力学的
性質にすぐれた含水レンズが容易に得られる。 含溶媒ゲルとして成型するので鋳型を大きく
することができ取扱いが容易になる。 鋳型からの剥離性がよく成型が容易になる。 同一の鋳型から種々の寸法の含水レンズが製
造できる。 分子の目が開いた状態で成形されるので抽出
処理が短時間でおわる。 重合体を成分とする場合でも、溶媒で希釈さ
れて粘性係数があまり高くならない。 膨潤したときに含水レンズが硬くなることが
ない。高含水率の場合でも、膨潤過程で分子の
破壊とか永久変形がおこらない。 含水率を低下させることなく疎水性成分の混
合割合を増やすことが可能となり長時間連続使
用可能なソフトコンタクトレンズが得られる。 含水線膨張率、含水率、含水前の含溶媒率、
の間にほぼ一定の関係があるので、含溶媒率を
加減することによつて、線膨張率と含水率をあ
る範囲内で別々の値に設定することができる。
線膨張率を0以下にすることもできる。 親疎比率と架橋密度を加減することによつ
て、含水レンズの硬度をある狭い範囲内で任意
に設定できる。このとき線膨張率または含水率
が変化しないようにすることができる場合があ
る。これらは含溶媒率の加減によつて可能とな
る。 鋳型の内部で、重合収縮に基く流動があつて
も、溶媒の可塑作用のため、流動の記憶が緩和
される。 実施例 1 下記の組成の原液10mlを、室温でガラス試験管
(内径17.5mm)に入れ、表面のなめらかなガラス
玉(直径16mm)を落しこみ、空間を窒素ガスで置
換したあと、シリコーンゴム栓で密閉した。 原液組成 N―ビニルピロリドン(NVP)(A成分中の単
量体) 75g メチルメタクリレート(MMA)(B成分中の
単量体) 25g トリアリルイソシアヌレート(TAIC)(A成
分中の官能基導入単量体(主成分)、及びC成
分の架橋剤) 1g トリエチレングリコールジメタクリレート
(TEGDMA)(B成分中の官能基導入単量体
(主成分)、及びC成分の架橋剤) 1g アゾビスイソブチロニトリル(AIBN)(重合
開始剤) 0.2g ジメチルスルホキシド(DMSO)(D成分の溶
媒) 300g そのまま恒温水槽に入れて熱重合した。反応条
件は30〜150℃/2〜24時間とした。レンズはガ
ラスを破壊して取り出し沸水で可溶物を抽出し
た。上記原液の重合収縮率は6%、含水線膨張率
β(鋳型寸法に対する水抽出のおわつたレンズ
(37℃)の寸法の比から1を減じた値)は0.02だ
つた。レンズの透明性は良好で含水率は75%、引
張強さは3kgf/cm2であつた。なお、レンズを沸
騰水中に入れ可溶性ポリマを抽出したところ5時
間でほぼ抽出されつくした。 実施例 2 下記組成の原液を用いて実施例1と同様の方法
によりソフトコンタクトレンズを製造した。原液
の重合収縮率は6%、β=0.01であつて、レンズ
の透明性は良く、含水率は75%、引張強さは
2kgf/cm2であつた。 原液組成 NVD(A成分中の単量体) 75g ポリN―ビニルピロリドン(PNVP)(A成分
中の親水性単量体からなる重合体であつて、溶
媒D成分としても作用する) 3g MMA(B成分中の単量体) 25g TAIC(A成分中の官能基導入単量体(主成
分、及びC成分の架橋剤) 0.5g TEGDMA(B成分中の官能基導入単量体(主
成分)、及びC成分の架橋剤) 2.5g AIBN(重合開始剤) 1.0g DMSO(D成分の溶媒) 240g ジオキサン(DOX)(D成分の溶媒) 60g 実施例 3 下記組成の原液を用いて実施例1と同様の方法
によりソフトコンタクトレンズを製造した。原液
の重合収縮率は1.6%、β=−0.06であつて、レ
ンズの透明性は良く、含水率は70%、引張強さは
5kgf/cm2であつた。 原液組成 架橋性のポリN―ビニルピロリドン
(PNVP*)(A成分中の親水性共重合体) 75g MMA(B成分中の単量体) 25g TAIC(A成分中の官能基導入単量体(主成
分)、及びC成分の架橋剤) 0.5g TEGDMA(B成分中の官能基導入単量体(主
成分)、及びC成分の架橋剤) 2.5g AIBM(重合開始剤) 1.0g DMSO(D成分の溶媒) 300g なお、PNVP*はNVP100gとブトキシアクリ
ルアミド10gとをDMSO400gに溶解しはじめ40
℃で熱重合し、次第に温度を上げ80℃で反応を終
了させて得た。本実施例では原液の重合に際し最
終温度を140℃としてこの温度に1時間保持し後
架橋させた。 実施例 4 下記組成の原液を用いて実施例1と同様の方法
によりソフトコンタクトレンズを製造した。原液
の重合収縮率は4.8%、β=−0.06であつて、レ
ンズの透明性は良く、含水率は70%、引張強さは
3kgf/cm2であつた。 原液組成 NVP(A成分中の単量体) 75g 架橋性PMMA*(B成分中の疎水性重合体)
25g TAIC(A成分中の官能基導入単量体(主成
分)、及びC成分の架橋剤) 2g AIBN(重合開始剤) 0.2g DMSO(D成分の溶媒) 300g なお、PMMA*はMMA100gとグリシジルメ
タクリレート(GMA)10gとをDMSO400gに溶
解し熱重合して得た。 実施例 5 下記組成の原液を用いて実施例1と同様の方法
によりソフトコンタクトレンズを製造した。原液
の重合収縮率は0.5%、β=−0.15であつて、レ
ンズの透明性は良く、含水率は60%、引張強さは
1kgf/cm2であつた。 原液組成 PNVP*(A成分中の親水性共重合体) 75g PMMA*(B成分中の疎水性共重合体) 25g トルイレンジイソシアネートのアダクト
(TDI)(C成分の架橋剤) 2g DMSO(D成分の溶媒) 300g なお、PNVP*はNVP100gとビニレンカーボ
ナート10gとをDOX400gに溶解し熱重合後アル
カリ加水分解して得た。また、PMMA*
MMA95gと2―ヒドロキシエチルメタクリレー
ト(HEMA)5gとをDMSO400gに溶解し熱重
合して得た。本実施例ではポリマ溶液を100℃に
加熱し後架橋させた。 比較例 1 DMSOを用いない点を除いては実施例1と全く
同様にしてソフトコンタクトレンズを製造した。
この場合には重合収縮率が25%と高く、βも0.47
と大きかつた。またレンズ状物はガラスに付着し
て容易に剥すことができなかつた。 比較例 2 DMSOを用いず、架橋性PMMAにかえて架橋
性のないPMMAを用いる点を除いては実施例4
と全く同様にしてソフトコンタクトレンズを製造
した。この場合には重合収縮率が19%と高く、β
も0.35と大きかつた。なお、鋳型へ充填する際に
気泡をまきこみやすかつた。 実施例 6 実施例1においてDMSOの使用量を変えたとこ
ろ第1表のようにβが変化した。
The present invention relates to a stock solution for producing soft contact lenses that provides soft contact lenses that can be used continuously over a long period of time. In order to enable continuous use of contact lenses, it is essential that the lens be designed so that a sufficient amount of oxygen is always supplied to the cornea. To that end, of course,
Although it is effective to use a material with high oxygen permeability, oxygen can be smoothly supplied to the cornea by using a lens with a high water content. Soft contact lenses made from the already well-known material polyhydroxyethyl methacrylate have a low water content of 38% and low oxygen permeability, making it impossible to use them continuously for long periods of time. Therefore, from the above-mentioned viewpoint, it has been proposed to use a copolymer of hydroxyethyl methacrylate and vinylpyrrolidone to produce a soft contact lens with a high water content. In this case, the water content reaches approximately 70%, but there are still some problems with oxygen permeability and poor mechanical properties. In order to solve these problems, we used a copolymer consisting of a hydrophilic component and a hydrophobic component as a material, crosslinked only the hydrophilic component, and mixed this crosslinked product with a hydrophobic component (high molecular polymer). Soft contact lenses have been proposed (for example, JP-A-50-39566). However, this case also has the following drawbacks, and at present, a sufficiently practical soft contact lens has not yet been obtained. Due to the high polymerization shrinkage rate, it is extremely difficult to obtain optically homogeneous lenses without bubbles in the desired shape. With optically satisfactory accuracy for small molded products,
Moreover, since it is necessary to manufacture a wide variety of products, the molding process becomes extremely complicated. Since the elution rate of components that elute into water, especially non-crosslinked polymers, is low, the extraction process requires a long time. When a polymer is used as a component of the stock solution, the viscosity coefficient is high, making defoaming, measuring, and filling difficult. When it swells, microstress is generated and the hydrated lens becomes hard. If the water content is high, the molecules may be destroyed during the swelling process, resulting in a decrease in strength, or the molecules may be permanently deformed, causing distortion of the lens. If the proportion of hydrophobic components is increased in order to increase the strength of a water-containing lens, there is a problem in that the water content decreases. There is a nearly constant relationship between the coefficient of linear expansion when a polymer is turned into a hydrogel and the water content of the hydrogel, and it is not possible to set each to arbitrary values. The coefficient of linear expansion cannot be made zero. By adjusting the ratio of the hydrophobic component to the hydrophilic component, the crosslinking density of the hydrophobic component, and the crosslinking density of the hydrophilic component, the hardness of the water-containing lens can be arbitrarily set within a certain range. On the other hand, the coefficient of linear expansion and moisture content change. In order to prevent cavities from forming in the lens due to polymerization shrinkage, in the case of a casting method that reduces the volume of the lenticular space in the mold, the stock solution flows slightly inside the mold, and after the water treatment, the flow is reduced. The hydrated lens may deform irregularly due to memory expression. The inventors of the present invention have conducted extensive research to solve the problems of the prior art as described above, and have found that all of the above problems have been solved by adopting a solution polymerization method using the stock solution as described below. The inventors have discovered that a soft contact lens having the following characteristics can be obtained, and have arrived at the present invention. In other words, the present invention provides a stock solution for producing soft contact lenses having a tensile strength of 0.1 Kg/cm 2 or more and a polymer constituting the lens having a crosslinked structure and a copolymer mainly composed of the following components A and B. For manufacturing a water-containing soft contact lens, the stock solution consists of the following compositional components, and the weight ratio of component A to component B is 85:15 to 55:45 (A:B). Source liquid. A At least one hydrophilic monomer selected from N-vinylpyrrolidone, N-vinylpiperidone, N-vinyllactam, hydroxyalkyl (meth)acrylate, glycerin-mono(meth)acrylate and a unit capable of introducing a functional group. or a hydrophilic copolymer consisting of the hydrophilic monomer or its polymer and a monomer into which a functional group can be introduced. B At least one hydrophobic monomer selected from (meth)acrylic acid ester, unsaturated nitrile, aromatic olefin and a monomer into which a functional group can be introduced, or the above hydrophobic monomer or a polymer thereof and a monomer into which a functional group can be introduced. C Crosslinking agent. D 30-90% solvent based on the total amount of components A to C. It is. In the present invention, as the monomer capable of introducing a functional group into components A and B, a compound that functions as a crosslinking agent for component C can be used. That is, the same compound can be used in combination. However, even in this case, it must function as a monomer into which a functional group can be introduced. Here, the monomer that component A polymerizes to give a hydrophilic component is N-vinylpyrrolidone, N-vinylpiperidone, N-vinylcaprolactam, etc.
vinyl lactams, hydroxyalkyl (meth)acrylates such as hydroxyethyl or hydroxypropyl esters of (meth)acrylic acid, or glycerin mono(meth)acrylate. These monomers can be used alone or in combination of two or more. The hydrophilic polymer of component A is a crosslinkable hydrophilic polymer having sufficient functional groups to form mutually crosslinked bonds (post-crosslinking), and is Examples include (co)polymerization of one or more monomers that give be able to. Butoxyacrylamide, glycidyl methacrylate, vinylene carbonate, etc. are used as the monomer for introducing a functional group. The copolymerization composition ratio of the monomer and the monomer for introducing a functional group is generally 1000:1 to 10:
It is preferable to set it to about 1. Among these, N
- Particularly preferred is a copolymer of vinylpyrrolidone and a functional group-introducing monomer such as butoxyacrylamide. In these cases, post-crosslinking can be carried out by heat treatment. Other examples of hydrophilic polymers include polyvinyl alcohol. In this case, since the hydroxyl groups in the polymer enable the post-crosslinking reaction, there is no need to newly introduce a functional group. Post-crosslinking can be carried out by using polyvalent isocyanate or polyvalent aldehyde as a post-crosslinking agent. The monomer that polymerizes to give a hydrophobic component as component B refers to a monomer that does not swell or dissolve in water even though it is not crosslinked when polymerized.
One or more of (meth)acrylic acid esters, unsaturated nitriles such as (meth)acrylonitrile, and aromatic olefins such as styrene. When using a monomer as component A, B
It is desirable that the component monomers are difficult to copolymerize with these monomers, and the following criteria can be used in selecting them. That is, when the monomer of component A is M 1 and the monomer of component B is M 2 , the monomer reactivity ratio (MRR) is 1/γ 1 >1 and 1/γ 2 <1. It is desirable that there be. As for the combination of monomers, the most excellent soft contact lens is obtained when N-vinylpyrrolidone is used as the A component and methyl methacrylate is used as the B component. In addition, in addition to the monomers of component A and component B, adding (meth)acrylic acid as a third monomer component up to about 5% by weight based on the total monomers can improve the strength of the lens without reducing its strength. It becomes possible to increase the moisture content. The hydrophobic polymer of component B refers to a crosslinkable polymer that has sufficient functional groups to form crosslinks between hydrophobic polymers (post-crosslinking) and does not swell or dissolve in water. Such a crosslinkable hydrophobic polymer may be one or more of the monomers that provide the hydrophobic component described above, and in order to introduce a functional group, a monomer (monomer for introducing a functional group) and a monomer for introducing a functional group may be used. An example is a (co)polymerized product. As the monomer for introducing a functional group, butoxyacrylamide, glycidyl methacrylate, vinylene carbonate, hydroxyethyl methacrylate, etc. are used. The copolymerization composition ratio of the monomer and the monomer for introducing a functional group is generally preferably about 1000:1 to 10:1. As the hydrophobic polymer, a non-crosslinkable polymer such as polyvinyl butyral can be mixed. In both hydrophilic and hydrophobic polymers, if a hydroxyl group is included as a functional group, this is esterified with, for example, methacrylic acid to introduce a polymerizable carbon-carbon double bond. By doing so, it is possible to obtain a polymer that can be post-crosslinked. The mixing ratio of component A and component B is the weight ratio.
Must be in the range 85:15 to 55:45. If the amount of the A component exceeds this range, a lens with high strength cannot be obtained, and if it exceeds this range, a lens with a high water content cannot be obtained. It is essential that the solvent for component C does not inhibit the polymerization reaction or the post-crosslinking reaction, and preferably a solvent that provides a transparent stock solution. The use of solvents that give opaque stock solutions often results in lenses that are unsatisfactory not only in optical properties but also in mechanical properties. When both components A and B are monomers, it is not necessarily necessary to use a solvent that simultaneously dissolves the polymers of both components.
Any solvent can be used as long as it dissolves either one of the polymers. The type of solvent can be selected from a wide range depending on the combination of components A and B, but N is a particularly preferred embodiment of the present invention.
- When vinylpyrrolidone and methyl methacrylate are combined, a solvent system containing dimethyl sulfoxide and/or ethylene carbonate, or a small amount of dioxane added thereto, is preferably used. The amount of solvent used must be in the range of 30 to 90% by weight based on the total amount of components A, B, C, and D. When the amount of solvent is larger than this, the tensile strength of the solvent-containing gel obtained by polymerizing and/or crosslinking the stock solution becomes low, making it a little difficult to handle the solvent-containing lens. Incidentally, the tensile strength of the solvent-containing gel is
It is preferable to adjust the stock solution to 0.1 kgf/cm 2 or more, and for this purpose, it is necessary not only to keep the amount of solvent within the above range but also to carefully select the type of solvent. When the amount of solvent is less than the above range,
This is not preferable because when the water-containing lens swells, it becomes hard and the water content of the lens becomes low. Next, the crosslinking agent will be explained. A component or B
When a polymer is used as a component, a post-crosslinking agent that reacts with functional groups in the polymer to form crosslinks between polymer molecules is optionally used. Any post-crosslinking agent can be used as long as it does not essentially change the properties of the polymer. For polymers containing hydroxyl groups as functional groups, polyvalent isocyanates, polyvalent aldehydes, polyvalent carboxylic acid esters, and the like are used as post-crosslinking agents. When a polymerizable monomer is used as component A or component B, a crosslinking agent is added to advance crosslinking polymerization. The crosslinking agent is selected from compounds having at least two polymerizable unsaturated bonds in the same molecule. Preferred examples of cross-linking agents include diallyl succinate, diallyl phthalate, diallyl maleate, diethylene glycol bisallyl carbonate, triallyl cyanurate, triallyl isocyanurate, triallylphosphate, triallyl trimellitate. or tri-allyl compound, divinylbenzene, N,N'-methylenebisacrylamide,
Ethylene glycol diacrylate, ethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, hexamethylene bismaleimide, divinyl urea, bisphenol A bismethacrylate, divinyl adipate, glycerin trimethacrylate, trimethylolpropane triacrylate, trivinyl trimellitate,
Di- or tri- such as 1,5-pentadiene
Examples include vinyl compounds, allyl vinyl compounds such as allyl acrylate and allyl methacrylate, and vinyl (meth)acrylate. The amount of the crosslinking agent added is in the range of about 0.005 to 20 mol % based on the total amount of the polymerizable monomers of component A and component B. Crosslinking polymerization is carried out by means of heat, light, electron beam, etc., if necessary in the presence of a polymerization initiator. Preferred examples of the polymerization initiator include ditertiary butyl peroxide, benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, tertiary butyl hydroperoxide,
Peracids, organic peroxides such as ammonium persulfate, azo compounds such as azobisisobutyronitrile, azobiscyclohexanecarbonitrile, phenyl azoisobutyronitrile, azobisdimethylvaleronitrile, and redoxes. Examples include catalysts. The amount of the initiator added is in the range of about 0.001 to 3% by weight based on the polymerizable monomer. In addition to the above, the stock solution of the present invention also contains a crosslinking promoter,
It goes without saying that additives such as colorants can be added as necessary. Polymers that can be extracted from the solvent-containing gel (eg poly-N vinylpyrrolidone) can also be added. Formally, such extractable polymers as well as extractable substances can be considered as part of the solvent. The source solution for producing soft contact lenses of the present invention having the composition as described above is preferably injected into a lens mold with two concave and convex surfaces, and polymerization and/or crosslinking reactions are caused by the action of heat, light, electron beams, etc. You can proceed. In case of heat, usually room temperature to 120℃
It is carried out within the range of The solvent-containing gel produced within the mold can be easily peeled off from the mold, preferably by immersing it in a liquid, and the solvent in the gel is replaced with the liquid. Next, the solvent-containing gel obtained from the stock solution of the present invention is made into a hydrogel, and after drying, it is made into a lens by a cutting and polishing method, and a soft contact lens can also be obtained by impregnating this with water. The effects of the present invention are as follows. A water-containing lens with low polymerization shrinkage and excellent optical and mechanical properties can be easily obtained. Since it is molded as a solvent-containing gel, the mold can be made larger and easier to handle. It has good peelability from the mold and is easy to mold. Hydrous lenses of various sizes can be manufactured from the same mold. Since the molecules are molded with their eyes open, the extraction process can be completed in a short time. Even when a polymer is used as a component, it is diluted with a solvent and the viscosity coefficient does not become very high. Water-containing lenses do not become hard when swollen. Even with high water content, molecular destruction and permanent deformation do not occur during the swelling process. It is possible to increase the mixing ratio of hydrophobic components without reducing the water content, and a soft contact lens that can be used continuously for a long time can be obtained. coefficient of linear expansion with water, water content, solvent content before water content,
Since there is a substantially constant relationship between them, the coefficient of linear expansion and the water content can be set to different values within a certain range by adjusting the solvent content.
The coefficient of linear expansion can also be made 0 or less. By adjusting the affinity ratio and the crosslinking density, the hardness of the hydrous lens can be arbitrarily set within a certain narrow range. At this time, it may be possible to prevent the linear expansion coefficient or water content from changing. These can be achieved by adjusting the solvent content. Even if there is flow due to polymerization shrinkage inside the mold, the memory of flow is alleviated due to the plasticizing action of the solvent. Example 1 10 ml of the stock solution with the following composition was put into a glass test tube (inner diameter 17.5 mm) at room temperature, a glass ball with a smooth surface (diameter 16 mm) was dropped into it, the space was replaced with nitrogen gas, and then a silicone rubber stopper was inserted. It was sealed with. Stock solution composition N-vinylpyrrolidone (NVP) (monomer in component A) 75g Methyl methacrylate (MMA) (monomer in component B) 25g triallyl isocyanurate (TAIC) (monomer with functional group in component A) (main component) and crosslinking agent for component C) 1g triethylene glycol dimethacrylate (TEGDMA) (functional group-introduced monomer (main component) in component B and crosslinking agent for component C) 1g azobisiso Butyronitrile (AIBN) (polymerization initiator) 0.2 g Dimethyl sulfoxide (DMSO) (solvent for component D) 300 g They were placed directly in a constant temperature water bath for thermal polymerization. The reaction conditions were 30-150°C/2-24 hours. The glass of the lens was broken and removed, and the soluble materials were extracted with boiling water. The polymerization shrinkage rate of the above-mentioned stock solution was 6%, and the hydrous linear expansion coefficient β (value obtained by subtracting 1 from the ratio of the dimension of the lens after water extraction (37° C.) to the mold dimension) was 0.02. The lens had good transparency, water content of 75%, and tensile strength of 3 kgf/cm 2 . When the lens was placed in boiling water to extract the soluble polymer, almost all of it was extracted in 5 hours. Example 2 A soft contact lens was manufactured in the same manner as in Example 1 using a stock solution having the following composition. The polymerization shrinkage rate of the stock solution is 6%, β = 0.01, the transparency of the lens is good, the water content is 75%, and the tensile strength is
It was 2kgf/ cm2 . Stock solution composition NVD (monomer in component A) 75g Poly N-vinylpyrrolidone (PNVP) (a polymer consisting of the hydrophilic monomer in component A, which also acts as solvent D component) 3g MMA ( Monomer in component B) 25g TAIC (monomer with functional group introduced in component A (main component and crosslinking agent in component C)) 0.5g TEGDMA (monomer with functional group introduced in component B (main component) , and crosslinking agent for component C) 2.5 g AIBN (polymerization initiator) 1.0 g DMSO (solvent for component D) 240 g Dioxane (DOX) (solvent for component D) 60 g Example 3 Example 1 using a stock solution with the following composition A soft contact lens was manufactured in the same manner as above.The polymerization shrinkage rate of the stock solution was 1.6%, β = -0.06, the lens had good transparency, water content was 70%, and tensile strength was
It was 5kgf/ cm2 . Stock solution composition: Crosslinkable poly-N-vinylpyrrolidone (PNVP * ) (hydrophilic copolymer in component A) 75g MMA (monomer in component B) 25g TAIC (functional group-introduced monomer in component A) (Main component) and crosslinking agent for component C) 0.5g TEGDMA (Functional group-introduced monomer (main component) in component B and crosslinking agent for component C) 2.5g AIBM (polymerization initiator) 1.0g DMSO (D Component solvent) 300g For PNVP * , start by dissolving 100g of NVP and 10g of butoxyacrylamide in 400g of DMSO.
The polymer was thermally polymerized at 80°C, the temperature was gradually raised, and the reaction was completed at 80°C. In this example, during polymerization of the stock solution, the final temperature was set at 140° C., and this temperature was maintained for 1 hour for post-crosslinking. Example 4 A soft contact lens was manufactured in the same manner as in Example 1 using a stock solution having the following composition. The polymerization shrinkage rate of the stock solution is 4.8%, β = -0.06, the transparency of the lens is good, the water content is 70%, and the tensile strength is
It was 3kgf/ cm2 . Stock solution composition NVP (monomer in component A) 75g Crosslinkable PMMA * (hydrophobic polymer in component B)
25g TAIC (functional group-introduced monomer (main component) in component A, and crosslinking agent for component C) 2g AIBN (polymerization initiator) 0.2g DMSO (solvent for component D) 300g PMMA * stands for 100g of MMA and glycidyl It was obtained by dissolving 10 g of methacrylate (GMA) in 400 g of DMSO and thermally polymerizing it. Example 5 A soft contact lens was manufactured in the same manner as in Example 1 using a stock solution having the following composition. The polymerization shrinkage rate of the stock solution is 0.5%, β = -0.15, the transparency of the lens is good, the water content is 60%, and the tensile strength is
It was 1kgf/ cm2 . Stock solution composition PNVP * (Hydrophilic copolymer in component A) 75g PMMA * (Hydrophobic copolymer in component B) 25g Adduct of toluylene diisocyanate (TDI) (crosslinking agent for component C) 2g DMSO (component D (Solvent) 300g Note that PNVP * was obtained by dissolving 100g of NVP and 10g of vinylene carbonate in 400g of DOX, thermal polymerization, and then alkaline hydrolysis. Also, PMMA * is
It was obtained by dissolving 95 g of MMA and 5 g of 2-hydroxyethyl methacrylate (HEMA) in 400 g of DMSO and thermally polymerizing the solution. In this example, the polymer solution was heated to 100°C for post-crosslinking. Comparative Example 1 A soft contact lens was produced in exactly the same manner as in Example 1, except that DMSO was not used.
In this case, the polymerization shrinkage rate is as high as 25%, and β is also 0.47.
It was big. Further, the lens-like material adhered to the glass and could not be easily removed. Comparative Example 2 Example 4 except that DMSO was not used and non-crosslinkable PMMA was used instead of crosslinkable PMMA.
Soft contact lenses were produced in exactly the same manner. In this case, the polymerization shrinkage rate is as high as 19%, and β
It was also large at 0.35. In addition, it was easy to incorporate air bubbles when filling the mold. Example 6 When the amount of DMSO used in Example 1 was changed, β changed as shown in Table 1.

【表】 比較例 3 比較例1で得られたレンズを旋盤で削つた後含
水させ実施例1と同じ寸法の含水レンズを作成し
た。このレンズから可溶性ポリマを抽出するため
沸騰水中に漬けたところ、抽出されつくすまでに
8時間を要した。得られた含水レンズの含水率は
60%と低く、実施例1で得られたものに比較して
明らかに硬かつた。
[Table] Comparative Example 3 The lens obtained in Comparative Example 1 was cut with a lathe and then soaked in water to produce a water-containing lens having the same dimensions as in Example 1. When the lens was soaked in boiling water to extract the soluble polymer, it took 8 hours to completely extract it. The water content of the obtained water-containing lens is
It was as low as 60% and clearly harder than that obtained in Example 1.

Claims (1)

【特許請求の範囲】 1 レンズの引張強度が0.1Kg/cm2以上、かつ該
レンズを構成するポリマーが下記のA成分とB成
分を主成分とするコポリマーで架橋構造を有する
ソフトコンタクトレンズを製造する原液であつ
て、該原液は下記の組成成分からなるとともに、
A成分とB成分の重量比率が85:15〜55:45(た
だしA:B)であることを特徴とする含水ソフト
コンタクトレンズ製造用原液。 A N―ビニルピロリドン、N―ビニルピペリド
ン、N―ビニルラクタム、ヒドロキシアルキル
(メタ)アクリレート、グリセリン―モノ(メ
タ)アクリレートから選ばれた少なくとも1種
以上の親水性単量体と官能基導入可能な単量
体、または前記親水性単量体もしくはこの重合
体と官能基導入可能な単量体とからなる親水性
共重合体。 B (メタ)アクリル酸エステル、不飽和ニトリ
ル、芳香族オレフインから選ばれた少なくとも
1種以上の疎水性単量体と官能基導入可能な単
量体、または前記疎水性単量体もしくはこの重
合体と官能基導入可能な単量体とからなる疎水
性共重合体。 C 架橋剤。 D A〜C成分の全量に対して30〜90%の溶媒。
[Claims] 1. Produce a soft contact lens whose tensile strength is 0.1 Kg/cm 2 or more and whose polymer is a copolymer mainly composed of the following components A and B and has a crosslinked structure. A stock solution consisting of the following composition components,
A stock solution for producing a water-containing soft contact lens, characterized in that the weight ratio of component A and component B is 85:15 to 55:45 (A:B). A At least one hydrophilic monomer selected from N-vinylpyrrolidone, N-vinylpiperidone, N-vinyllactam, hydroxyalkyl (meth)acrylate, glycerin-mono(meth)acrylate and a unit capable of introducing a functional group. or a hydrophilic copolymer consisting of the hydrophilic monomer or its polymer and a monomer into which a functional group can be introduced. B At least one hydrophobic monomer selected from (meth)acrylic acid ester, unsaturated nitrile, aromatic olefin and a monomer into which a functional group can be introduced, or the above hydrophobic monomer or a polymer thereof and a monomer into which a functional group can be introduced. C Crosslinking agent. D 30-90% solvent based on the total amount of components A to C.
JP10892677A 1977-09-12 1977-09-12 Dope for forming soft contact lens Granted JPS5443284A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP10892677A JPS5443284A (en) 1977-09-12 1977-09-12 Dope for forming soft contact lens
FR7825968A FR2402525A1 (en) 1977-09-12 1978-09-08 PROCESS FOR MANUFACTURING COMPOSITIONS OF SOFT CONTACT LENSES AND NEW PRODUCTS THUS OBTAINED
DE19782839249 DE2839249A1 (en) 1977-09-12 1978-09-08 METHOD OF MANUFACTURING A SOFT CONTACT LENS AND OUTPUT SOLUTION FOR CARRYING OUT THE METHOD
AU39748/78A AU530070B2 (en) 1977-09-12 1978-09-11 Moulding soft contact lens from solution
CA000311027A CA1136306A (en) 1977-09-12 1978-09-11 Soft contact lens composition and method
GB7836391A GB2006091B (en) 1977-09-12 1978-09-11 Process and composition for making soft contact lenses
US06/190,820 US4347198A (en) 1977-09-12 1980-09-25 Producing soft contact lenses
CA000412101A CA1149563A (en) 1977-09-12 1982-09-23 Soft contact lens composition and method
US06/517,567 US4699934A (en) 1977-09-12 1983-07-28 Soft contact composition and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10892677A JPS5443284A (en) 1977-09-12 1977-09-12 Dope for forming soft contact lens

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP28657787A Division JPS63234001A (en) 1987-11-12 1987-11-12 Production of soft contact lens

Publications (2)

Publication Number Publication Date
JPS5443284A JPS5443284A (en) 1979-04-05
JPS6136001B2 true JPS6136001B2 (en) 1986-08-15

Family

ID=14497148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10892677A Granted JPS5443284A (en) 1977-09-12 1977-09-12 Dope for forming soft contact lens

Country Status (2)

Country Link
JP (1) JPS5443284A (en)
CA (1) CA1136306A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234001A (en) * 1987-11-12 1988-09-29 Toray Ind Inc Production of soft contact lens
JPH10101745A (en) * 1996-08-08 1998-04-21 Nippon Shokubai Co Ltd Liquid-absorbing resin and its production
US6224945B1 (en) * 1999-08-02 2001-05-01 Essilor International Compagnie Generale D'optique Process for the manufacture of a crosslinked, transparent, hydrophilic and photochromic polymeric material, and optical and ophthalmic articles obtained
US9140825B2 (en) * 2011-12-23 2015-09-22 Johnson & Johnson Vision Care, Inc. Ionic silicone hydrogels
US9588258B2 (en) * 2011-12-23 2017-03-07 Johnson & Johnson Vision Care, Inc. Silicone hydrogels formed from zero diluent reactive mixtures

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49134345A (en) * 1973-04-26 1974-12-24
JPS503487A (en) * 1973-05-16 1975-01-14
JPS5086588A (en) * 1973-12-03 1975-07-11
JPS50151545A (en) * 1974-05-27 1975-12-05
JPS5191313A (en) * 1975-02-07 1976-08-10

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49134345A (en) * 1973-04-26 1974-12-24
JPS503487A (en) * 1973-05-16 1975-01-14
JPS5086588A (en) * 1973-12-03 1975-07-11
JPS50151545A (en) * 1974-05-27 1975-12-05
JPS5191313A (en) * 1975-02-07 1976-08-10

Also Published As

Publication number Publication date
JPS5443284A (en) 1979-04-05
CA1136306A (en) 1982-11-23

Similar Documents

Publication Publication Date Title
US4536554A (en) Hydrophilic polymers and contact lenses made therefrom
US4866148A (en) Hydrophilic copolymers, the use thereof as biomedical materials and contact-optical articles produced therefrom
US3949021A (en) Cross-linked n-vinyl pyrrolidone polymer composition suitable for contact lenses
NO302478B1 (en) Ophthalmic lens polymer including acyclic monomer, and a soft contact lens containing the polymer
US4430458A (en) Hydrogel-forming polymeric materials
US5965630A (en) Soft contact lens with high moisture content and method for producing the same
US3787380A (en) Polymers of n-vinyl or n-allyl hetero-cyclic compounds with monoethyl-enically unsaturated esters and gly-cidyl esters
JP2004535598A (en) Medical article materials formed from semi-solid precursors
JP4144920B2 (en) Soft intraocular lens material
JPH049166B2 (en)
JPS6136001B2 (en)
JPH08190077A (en) Water-containing soft contact lens
US4829126A (en) High water-absorptive soft contact lens
EP0017512B1 (en) Polymeric materials, process for preparing them and shaped articles and contact lenses formed from them
JPH0433282B2 (en)
JPS5994731A (en) Manufacture of soft contact lens
JP2640752B2 (en) Contact lens material
JP3357135B2 (en) Ophthalmic lens materials
JPH06289331A (en) Hydrous soft contact lens
JPH073518B2 (en) Contact lens material
JPS6326617A (en) Contact lens having moisture content
JP3571503B2 (en) High water content soft contact lens and manufacturing method thereof
JPS63210116A (en) Contact lens material
JPS6330818A (en) Material for soft contact lens
JPS641771B2 (en)