JPS6135546Y2 - - Google Patents

Info

Publication number
JPS6135546Y2
JPS6135546Y2 JP13534980U JP13534980U JPS6135546Y2 JP S6135546 Y2 JPS6135546 Y2 JP S6135546Y2 JP 13534980 U JP13534980 U JP 13534980U JP 13534980 U JP13534980 U JP 13534980U JP S6135546 Y2 JPS6135546 Y2 JP S6135546Y2
Authority
JP
Japan
Prior art keywords
workpiece
thermocouple
cooling tank
thermocouples
quenching furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13534980U
Other languages
Japanese (ja)
Other versions
JPS5759858U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13534980U priority Critical patent/JPS6135546Y2/ja
Publication of JPS5759858U publication Critical patent/JPS5759858U/ja
Application granted granted Critical
Publication of JPS6135546Y2 publication Critical patent/JPS6135546Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【考案の詳細な説明】 本考案は、雰囲気ガス連続焼入炉れ炉のワーク
検知装置に関するものである。
[Detailed Description of the Invention] The present invention relates to a workpiece detection device for an atmospheric gas continuous quenching furnace.

雰囲気ガス連続焼入れ炉は第1図および第2図
に示すようになつていて、雰囲気ガスを充満した
炉a内で加熱されたワークbはブツシヤcで押さ
れ、落下シユートdにより冷却槽eに落下し、こ
こで冷却焼入れされた後ワークコンベヤfにて焼
戻炉gへ供給されるようになつており、この一連
の動作は自動的になされるようになついる。
The atmospheric gas continuous quenching furnace is designed as shown in Figures 1 and 2. A workpiece b heated in a furnace a filled with atmospheric gas is pushed by a pusher c and dropped into a cooling tank e by a falling chute d. The material is dropped, cooled and hardened here, and then supplied to a tempering furnace g via a workpiece conveyor f, and this series of operations is automatically performed.

このような焼入れ炉にはワークbが冷却槽eに
落下したかどうかを検知するワーク検知装置hが
備えられているが、従来のワーク検知装置hは第
2図に示すように、落下シユートdの途中に設け
られ、ワークbが通過することにより回動するよ
うにした回動部材1と、この回動部材1の回動に
より作動するリミツトスイツチjとからなつてい
た。そしてこのワーク検知装置hは落下シユート
dの側壁に設けた蓋kにより組込みあるいは点検
するようになつていた。
Such a quenching furnace is equipped with a workpiece detection device h that detects whether the workpiece b has fallen into the cooling tank e, but the conventional workpiece detection device h detects whether the workpiece b has fallen into the cooling tank e or not, as shown in Fig. 2. It consisted of a rotating member 1, which was provided in the middle and rotated when the workpiece b passed therethrough, and a limit switch j, which was activated by the rotation of the rotating member 1. The workpiece detection device h is installed or inspected through a lid k provided on the side wall of the falling chute d.

このような従来のワーク検知装置では次のよう
な問題点があつた。
Such conventional workpiece detection devices have the following problems.

(1) 回動部材1が回動する際の機械的抵抗が大き
く、ワークbに打痕がつきやすい。
(1) The mechanical resistance when the rotating member 1 rotates is large, and the workpiece b is likely to be dented.

(2) メンテナンスが非常に困難である。ワーク検
知装置の交換、点検は落下シユートdの側壁に
設けた蓋kをはずさなければならないため、こ
れを交換、点検するには炉の操業を停止して炉
内ガスを抜き、さらに炉内温度を降温しなけれ
ばならない。
(2) Maintenance is very difficult. To replace or inspect the workpiece detection device, it is necessary to remove the cover k installed on the side wall of the falling chute d. To replace or inspect this, the furnace operation must be stopped, the gas inside the furnace must be vented, and the temperature inside the furnace must be checked. temperature must be lowered.

(3) 操業中に故障すると操業不能になることもあ
る。
(3) If a failure occurs during operation, it may become impossible to operate.

(4) 一度故障すると復元するのに電力、時間、労
力などに大きなロスが生じる。
(4) Once a failure occurs, there is a large loss in power, time, labor, etc. to restore it.

本考案は上記のことにかんがみなされたもので、
上記従来の問題点を解消できるようにした雰囲気
ガス連続焼入炉のワーク検知装置を提供しようと
するものである。
This invention was developed in consideration of the above.
It is an object of the present invention to provide a workpiece detection device for an atmospheric gas continuous quenching furnace that can solve the above-mentioned conventional problems.

以下そ構成を第3図以下に示した実施例に基づ
いて説明する。
The configuration will be explained below based on the embodiment shown in FIG. 3 and below.

図中1は雰囲気ガス連続焼入れ炉であり、2は
プツシヤーで押されて炉内を移動するワーク、3
は落下シユート、4は冷却槽、5はワーク移動バ
ケツト、6はワークコンベヤであり、落下シユー
ト3より冷却槽4へ落下したワーク2はワーク移
動バケツト5にてワークコンベヤ6へ移動され、
このワークコンベヤ6にて焼戻炉へ運ばれるよう
になつている。7は冷却槽4の冷却液を撹拌すた
めに冷却液を噴出する噴口である。
In the figure, 1 is an atmospheric gas continuous quenching furnace, 2 is a workpiece that is pushed by a pusher and moves inside the furnace, and 3
is a falling chute, 4 is a cooling tank, 5 is a workpiece moving bucket, and 6 is a workpiece conveyor, and the workpiece 2 that has fallen from the falling chute 3 into the cooling tank 4 is moved by the workpiece moving bucket 5 to the workpiece conveyor 6,
The workpiece conveyor 6 transports the workpiece to the tempering furnace. Reference numeral 7 denotes a spout for spouting the cooling liquid in order to stir the cooling liquid in the cooling tank 4.

8は本考案に係るワーク検知装置で、このワー
ク検知装置8は相対熱電対9と、標準熱電対10
と、両熱電対9,10の起電力の差を比較演算す
るミリボルト調節計および操作盤等の計器11と
からなつている。
8 is a workpiece detection device according to the present invention, and this workpiece detection device 8 includes a relative thermocouple 9 and a standard thermocouple 10.
and an instrument 11 such as a millivolt controller and an operation panel for comparing and calculating the difference between the electromotive forces of both thermocouples 9 and 10.

上記相対熱電対9は冷却槽4内のワーク落下位
置付近に設置されており、標準熱電対10は冷却
槽4内のワーク落下位置から離れてワーク2の温
度に影響されない位置に設置されている。そして
この両熱電対9,10は第4図に示すように結線
となり、両熱電対9,10のマイナス端子が相互
に接続し、両熱電対9,10のプラス端子間に上
記ミリボルト調節計等の計器11を接続する。
The relative thermocouple 9 is installed near the workpiece dropping position in the cooling tank 4, and the standard thermocouple 10 is installed at a position away from the workpiece dropping position in the cooling tank 4 so as not to be affected by the temperature of the workpiece 2. . Both thermocouples 9 and 10 are connected as shown in FIG. 4, with the negative terminals of both thermocouples 9 and 10 connected to each other, and the above-mentioned millivolt controller etc. connected between the positive terminals of both thermocouples 9 and 10. Connect the meter 11.

両熱電対9,10を上記のように結線すること
により、相対熱電対9に発生する起電力E9と標
準熱電対10に発生す起電力E10との差が下記の
式で検出される。
By connecting both thermocouples 9 and 10 as described above, the difference between the electromotive force E 9 generated in the relative thermocouple 9 and the electromotive force E 10 generated in the standard thermocouple 10 is detected using the following formula. .

E9−E10=±X 第5図は落下シユート3が複数列である場合の
ワーク検知装置をすもので、各落下シユートに相
対熱電対9a,9b,9c……が設けてある。
E 9 −E 10 =±X FIG. 5 shows a workpiece detection device when there are multiple rows of falling chutes 3, and each falling chute is provided with relative thermocouples 9a, 9b, 9c, . . . .

上記構成において、落下シユート3にワーク2
が落下していないとしには冷却液の温度差がない
ので両熱電対9,10間の起電力差はゼロかある
一定の起電力差がある。そしてワーク2が落下し
てくるとワーク落下位置付近の冷却液の温度が時
間的に上昇し、ここに位置する相対熱電対9が加
熱され、両熱電対間に大きな起電力差が生じ、こ
れをミリボルト調整計等の計器11で検出するこ
とによつてワーク2が落下シユート3を落下した
ことを検知する。そしてこれに基づいてワーク2
を押すプツシヤが後退して次のワークを落下する
準備をする。
In the above configuration, the workpiece 2 is placed on the falling chute 3.
If the thermocouples 9 and 10 are not falling, there is no temperature difference in the coolant, so the difference in electromotive force between the two thermocouples 9 and 10 is either zero or a certain amount. When the workpiece 2 falls, the temperature of the coolant near the workpiece falling position rises over time, and the relative thermocouple 9 located here is heated, creating a large electromotive force difference between the two thermocouples. By detecting this with a meter 11 such as a millivolt adjuster, it is detected that the workpiece 2 has fallen down the drop chute 3. And based on this work 2
The pusher moves back and prepares to drop the next workpiece.

上記ワーク2が落下する付近の冷却水温はワー
ク2の落下と共に瞬間に上昇するが、冷却液は撹
拌されることにより、ワーク2が通りすぎると再
び元の温度に速やかに戻る。
The temperature of the cooling water near where the workpiece 2 falls rises instantaneously as the workpiece 2 falls, but because the cooling liquid is stirred, it quickly returns to its original temperature once the workpiece 2 passes by.

本考案は以上のようになり、雰囲気ガス内で加
熱されたワーク2をプツシヤで順次押して落下シ
ユート3より冷却槽4内へ落下させ、冷却槽4で
焼入れしたワーク2を順次とり出すようにした雰
囲気ガス連続焼入れ炉において、冷却槽4内で、
上記ワーク2の落下位置付近に相対熱電対9を、
またワーク落下位置から離れてワーク2の温度に
影響されない位置に標準熱電対10を設置し、こ
の両熱対9,10のそれぞれのマイナス端子を相
互に接続し、それぞれのプラス端子間に両熱電対
9,10の起電力の差を検出する計器11を接続
して雰囲気ガス連続焼入れ装置のワーク検知装置
を構成したことにより、ワーク2はワーク検知装
置と干渉することながないからワーク2に打痕が
生じることがなくなり、またかりに操業中に故障
したとしても従来のように炉壁を開ける必要が殆
んどなく、メンテナンスが非常に簡単であり、現
場の作業者でも短時間で行なうことができる。さ
らに従来の装置に比較して機械的動作がないた
め、故障率を大幅に軽減することができる。
The present invention is as described above, and the workpieces 2 heated in an atmospheric gas are successively pushed by a pusher to fall into the cooling tank 4 from the drop chute 3, and the workpieces 2 that have been hardened in the cooling tank 4 are taken out one after another. In the atmospheric gas continuous quenching furnace, in the cooling tank 4,
A relative thermocouple 9 is placed near the falling position of the work 2,
In addition, a standard thermocouple 10 is installed at a position away from the workpiece dropping position and is not affected by the temperature of the workpiece 2, and the negative terminals of both thermocouples 9 and 10 are connected to each other, and both thermocouples are connected between the positive terminals of the two thermocouples 9 and 10. By connecting the instrument 11 that detects the difference between the electromotive forces of pairs 9 and 10 to configure the workpiece detection device of the atmospheric gas continuous quenching device, the workpiece 2 does not interfere with the workpiece detection device, so the workpiece 2 There are no dents, and even if something breaks down during operation, there is almost no need to open the furnace wall like in the past, making maintenance extremely easy and can be done in a short amount of time even by on-site workers. Can be done. Furthermore, since there is no mechanical movement compared to conventional devices, failure rates can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は雰囲気ガス連続焼入れ炉の構成を説明
するための平面図、第2図は従来のワーク検知装
置を備えた雰囲気ガス連続焼入れ炉の要部の断面
図、第3図は本考案のワーク検知装置を備えた要
部の断面図。第4図は熱電対の接続図、第5図は
複数の落下シユートを備えた場合の熱電対の接続
図である。 2はワーク、3は落下シユート、4は冷却槽、
9は相対熱電対、10は標準熱電対、11は計
器。
Fig. 1 is a plan view for explaining the configuration of an atmospheric gas continuous quenching furnace, Fig. 2 is a cross-sectional view of the main part of an atmospheric gas continuous quenching furnace equipped with a conventional workpiece detection device, and Fig. 3 is a plan view for explaining the configuration of an atmospheric gas continuous quenching furnace. FIG. 3 is a sectional view of a main part including a workpiece detection device. FIG. 4 is a connection diagram of a thermocouple, and FIG. 5 is a connection diagram of a thermocouple when a plurality of drop chutes are provided. 2 is the workpiece, 3 is the falling chute, 4 is the cooling tank,
9 is a relative thermocouple, 10 is a standard thermocouple, and 11 is a meter.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 雰囲気ガス内で加熱されたワーク2をプツシヤ
で順次押して落下シユート3より冷却槽4内へ落
下させ、冷却槽4で焼入れしたワーク2を順次と
り出すようにした雰囲気ガス連続焼入れ炉におい
て、冷却槽4内で、上記ワーク2の落下位置付近
に相対熱電対9を、またワーク落下位置から離れ
てワーク2の温度に影響されない位置に標準熱電
対10を設置し、この両熱電対9,10のそれぞ
れのマイナス端子を相互に接続し、それぞれのプ
ラス端子間に両熱電対9,10の起電力の差を検
出する計器を接続してなることを特徴とする雰囲
気ガス連続焼入炉のワーク検知装置。
In an atmosphere gas continuous quenching furnace, the work 2 heated in the atmosphere gas is successively pushed by a pusher and dropped into the cooling tank 4 from the drop chute 3, and the work 2 hardened in the cooling tank 4 is taken out one after another. 4, a relative thermocouple 9 is installed near the dropping position of the workpiece 2, and a standard thermocouple 10 is installed at a position away from the workpiece dropping position that is not affected by the temperature of the workpiece 2. Workpiece detection in an atmospheric gas continuous quenching furnace, characterized in that the negative terminals of each thermocouple are connected to each other, and an instrument for detecting the difference in electromotive force of both thermocouples 9 and 10 is connected between the positive terminals of each thermocouple. Device.
JP13534980U 1980-09-25 1980-09-25 Expired JPS6135546Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13534980U JPS6135546Y2 (en) 1980-09-25 1980-09-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13534980U JPS6135546Y2 (en) 1980-09-25 1980-09-25

Publications (2)

Publication Number Publication Date
JPS5759858U JPS5759858U (en) 1982-04-08
JPS6135546Y2 true JPS6135546Y2 (en) 1986-10-16

Family

ID=29495515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13534980U Expired JPS6135546Y2 (en) 1980-09-25 1980-09-25

Country Status (1)

Country Link
JP (1) JPS6135546Y2 (en)

Also Published As

Publication number Publication date
JPS5759858U (en) 1982-04-08

Similar Documents

Publication Publication Date Title
EP2411566A1 (en) System, method and apparatus for measuring electrolysis cell operating conditions and communicating the same
FI87019C (en) Procedure for detecting and recording faults in hot metallurgical semi-finished products
US4024764A (en) Method and apparatus for measuring product surface temperature in a spray cooling chamber
JPS6054138B2 (en) Method for detecting inclusions in cast steel in continuous casting molds
JPS6135546Y2 (en)
CN212321156U (en) Molten metal sampling component detection system
CN206747487U (en) Intermediate-frequency heating furnace temperature sorting device
JPH11207458A (en) Automatic molten metal pouring apparatus for production of mixed small lot
TW202003136A (en) Management system and management method
CN207126837U (en) A kind of workpiece temperature automatic detection device
CN111745685A (en) Sample preparation robot collision detection method and system and sample preparation system
KR100217396B1 (en) Short test apparatus of lithium battery
CN213412047U (en) System appearance robot collision detecting system and system appearance system
JPS55117964A (en) Inspecting object grader in automatic analysis unit
US6473952B1 (en) Deburrer device
JPS54120157A (en) Method of detection trouble of elavator door
US3560123A (en) Method and apparatus for automatically shearing metal plates by supersonic flaw detection
Ferriere New Apparatus for Surface Defect Detection at the Pickling Line of USINOR's Montataire IRSID-USINOR(France)
Muller Detection by Eddy Currents of Surface Defects on Hot Semi-Products
KR100387598B1 (en) Signal Processing Method of Ultrasonic Distance Sensor for Dross Distribution Measurement
KR100302397B1 (en) Apparatus for uniformly cooling upper and lower surfaces of high temperature steel sheet
Wanin In-line metallurgical process control in the steel industry
JPS531585A (en) Ultrasonic flaw detector
JPS6032605Y2 (en) Ultrasonic flaw detection equipment
JP2622593B2 (en) Robot operation recognition device