JPS6135518B2 - - Google Patents

Info

Publication number
JPS6135518B2
JPS6135518B2 JP56078647A JP7864781A JPS6135518B2 JP S6135518 B2 JPS6135518 B2 JP S6135518B2 JP 56078647 A JP56078647 A JP 56078647A JP 7864781 A JP7864781 A JP 7864781A JP S6135518 B2 JPS6135518 B2 JP S6135518B2
Authority
JP
Japan
Prior art keywords
crystal
light
pmt
rectangular
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56078647A
Other languages
Japanese (ja)
Other versions
JPS57194373A (en
Inventor
Katsumi Takami
Tatsuro Hayashi
Takeshi Ueda
Kenichi Okajima
Fumio Kawaguchi
Kenji Ishimatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP7864781A priority Critical patent/JPS57194373A/en
Publication of JPS57194373A publication Critical patent/JPS57194373A/en
Publication of JPS6135518B2 publication Critical patent/JPS6135518B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2002Optical details, e.g. reflecting or diffusing layers

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)

Description

【発明の詳細な説明】 本発明は、γ線検出器特に高分解能、高S/N
のポジトロンCTに適用するγ線検出器に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a gamma ray detector with particularly high resolution and high S/N.
The present invention relates to a gamma ray detector applied to positron CT.

ここで、検出器とは、シンチレータ結晶、光結
合膜、反射膜、および光電子増倍管(以下PMT
と略称する)とよりなるγ線を電気信号に変換す
る機能を有する一体の素子を指す。
Here, the detector refers to a scintillator crystal, a photocoupling film, a reflective film, and a photomultiplier tube (PMT).
Refers to an integrated element that has the function of converting gamma rays into electrical signals.

リング型ポジトロンCTを高分解能に構成する
には、シンチレータ結晶は、可及的小型にしなけ
ればならない。
In order to configure a ring-type positron CT with high resolution, the scintillator crystal must be made as small as possible.

また雑音成分となる散乱γ線の影響を少なく
し、高S/N比のポジトロンCTを得るにはシン
チレータ結晶内で発生した螢光は、可及的大量に
光電子増倍管受光面へ伝達されねばならない。
In addition, in order to reduce the influence of scattered gamma rays, which are noise components, and obtain positron CT with a high S/N ratio, the fluorescence generated within the scintillator crystal is transmitted to the photomultiplier tube light receiving surface in as large a quantity as possible. Must be.

而して、従来のポジトロンCT用γ線検出器は
第1図のように配列されていた。図において、1
はシンチレータ単結晶(Bi4Ge3O12)、2は光電子
増倍管であり、丸形の形状を有する。
The conventional γ-ray detector for positron CT was arranged as shown in FIG. In the figure, 1
2 is a scintillator single crystal (Bi 4 Ge 3 O 12 ), and 2 is a photomultiplier tube, which has a round shape.

ポジトロンCTの位置分解能を向させるために
は、シンチレータ結晶の幅aはシンチレータ単結
晶(例えば511KeV)の幅方向への結晶透過が過
度にならない程度に小さく選ばれる。なお、厚さ
Cを小さく選べば、体軸方向の分解能は向上する
が、γ線の検出領域(a×C)が縮小し、感度が
〓〓〓〓〓
低下するので、幅aのみが縮小されるのが普通で
ある。したがつて結晶形状は必然的に長方形にな
らざるを得ない。
In order to improve the positional resolution of positron CT, the width a of the scintillator crystal is selected to be small enough to prevent excessive crystal transmission in the width direction of the scintillator single crystal (for example, 511 KeV). Note that if the thickness C is selected to be small, the resolution in the body axis direction will improve, but the gamma ray detection area (a x C) will be reduced and the sensitivity will be reduced.
Therefore, it is common that only the width a is reduced. Therefore, the crystal shape must necessarily be rectangular.

他方光電子増倍管は円形であり、製作技術の面
から、これを小型化することは極めて難かしい
(直径13mmが当面の限度)。したがつて結晶幅aよ
りPMT直径bが遥かに大きいのが普通である
り、第1図に示されるように、PMTは結晶の一
部分を覆うに留まる。このような構成を採ると
き、結晶内に発生した螢光は、たとえ反射膜で全
側面(PMT光結合面を除く)を覆つたとして
も、PMTへ伝達される量が減り、検出器のエネ
ルギー分解能は悪化する。したがつて高解像度に
適する検出器ではあつても高S/N比とすること
は期待できない。
On the other hand, photomultiplier tubes are circular, and it is extremely difficult to miniaturize them due to manufacturing technology (13 mm in diameter is the current limit). Therefore, the PMT diameter b is usually much larger than the crystal width a, and as shown in FIG. 1, the PMT only covers a portion of the crystal. When such a configuration is adopted, the amount of fluorescent light generated within the crystal that is transmitted to the PMT is reduced, even if all sides (excluding the PMT optical coupling surface) are covered with a reflective film, and the energy of the detector is reduced. Resolution deteriorates. Therefore, even if a detector is suitable for high resolution, it cannot be expected to have a high S/N ratio.

もし、ここで長方形結晶寸法に丁度同一の寸法
の受光面を有する長方形のPMTが在ると仮定す
れば、螢光収集効率を最大となし得る。
If it is assumed here that there is a rectangular PMT with a light-receiving surface of exactly the same size as the rectangular crystal size, the fluorescence collection efficiency can be maximized.

しかるに、PMT製作上の技術的問題から、長
辺と短辺の長さの違い過ぎる長方形PMTを実現
することは極端に難かしくなる。また、たとえ正
方形受光面としても、小型PMTを実現すること
は円形PMTと同様に困難を極める。
However, due to technical problems in PMT production, it is extremely difficult to realize a rectangular PMT in which the lengths of the long and short sides are too different. Furthermore, even with a square light-receiving surface, it is extremely difficult to realize a compact PMT, just like a circular PMT.

本発明は上記のような従来技術を除去し、高分
解能、高S/N比のポジトロンCTに適合するγ
線検出器を提案することを目的とする。
The present invention eliminates the above-mentioned conventional technology and provides a γ
The purpose of this paper is to propose a line detector.

本発明の一実施例の構成を第2図に示す。1′
及び1″はBi4Ge3O12単結晶であり、PMT側と反
対側、すなわちγ線到来側のみが粗研磨され、他
の全面(5面)が鏡面研磨されたものが望まし
い。ただし、全面が粗研磨された結晶でも差し支
えない。通常、上面一面が粗研磨されていた方が
螢光収集効率が大きいことが実験的に立証されて
いる。
The configuration of one embodiment of the present invention is shown in FIG. 1′
and 1" is a Bi 4 Ge 3 O 12 single crystal, and it is preferable that only the side opposite to the PMT side, that is, the γ-ray arrival side, is roughly polished, and the other entire surface (5 surfaces) is mirror polished. However, A crystal whose entire surface is roughly polished may also be used.It has been experimentally proven that the fluorescent light collection efficiency is generally higher when the entire upper surface is roughly polished.

3はBaSO4等の反射膜であり、後述するように
PMT受光面の外側壁まで含めて結晶の全面、
(PMT側を除く)を覆う。4は結晶とPMTとを
光結合する接着剤で、PMTフエースプレート
の、屈折率より大きく、Bi4Ge3O12のそれより小
さい透明接着剤であればよい。5は長辺側を連結
した2個の結晶の外形寸法とほぼ同一の受光面を
持つ方形PMTを示す。本実施例ではC=2aに選
んであるので、ほぼ正方形の形状を採る。更に本
発明にあつては、方形PMTは、結晶1′,1″の
両方を位置的に区別できるよう位置弁別の機能を
持ち、1′からの螢光量は陽極端子7へ、1″から
の螢光量は陽極端子8へ電気信号として出力され
るよう形成されている。なお位置弁別機能を持つ
PMTの具体的構造については、D.E.Persyk,
etal:IEEE,NS―26,No.1p364/367 1979によ
り公知である。6は方形PMT5のフエースプレ
ートの内壁に蒸着された光電陰極であり、通常バ
イアルカリが用いられる。しかるに、この種の光
電面は屈折率が2以上であり、フエースプレート
の屈折率(1.5程度)をはるかに超えた材料を用
いざるを得ない。この場合、PMTへ伝達された
光の一部は、光電面での表面反射、光電陰極真空
面での全反射によりPMTの外側壁へ伝播して、
光量の損失を惹起する。この間の事情を第3図に
て説明する。結晶1′内で発生したシンチレーシ
ヨン光(螢光)は、指向性が殆んどなく、拡散光
としてフエースプレート9に達する。しかるに光
電面6の屈折率が大きいため光電面に達した光の
うち約7%は表面反射される。また光電陰極に達
した光でも、光電子に変換されなかつた場合に
は、光電陰極と真空との境界で全反射される。こ
れらの光はフエースプレートを光導体として、外
側壁へと伝播し、空気との境界で更に反射拡散し
て外部へと放出される。
3 is a reflective film such as BaSO 4 , as described later.
The entire surface of the crystal, including the outer wall of the PMT light-receiving surface,
(Excluding PMT side). 4 is an adhesive for optically coupling the crystal and PMT, and any transparent adhesive having a refractive index greater than that of the PMT face plate and smaller than that of Bi 4 Ge 3 O 12 may be used. 5 shows a rectangular PMT having a light-receiving surface that is approximately the same as the external dimensions of two crystals whose long sides are connected. In this embodiment, since C=2a is selected, a substantially square shape is adopted. Furthermore, in the present invention, the rectangular PMT has a position discrimination function so that both crystals 1' and 1'' can be distinguished positionally, and the amount of fluorescence from 1' is transferred to the anode terminal 7 and from 1''. The amount of fluorescent light is outputted to the anode terminal 8 as an electrical signal. It also has a position discrimination function.
For the specific structure of PMT, see DEPersyk,
etal: IEEE, NS-26, No. 1p364/367 1979. 6 is a photocathode deposited on the inner wall of the face plate of the rectangular PMT 5, and bialkali is usually used. However, this type of photocathode has a refractive index of 2 or more, which necessitates the use of a material whose refractive index far exceeds that of the face plate (approximately 1.5). In this case, part of the light transmitted to the PMT propagates to the outer wall of the PMT due to surface reflection on the photocathode and total reflection on the photocathode vacuum surface.
Causes loss of light intensity. The situation during this time will be explained with reference to FIG. The scintillation light (fluorescence) generated within the crystal 1' has almost no directivity and reaches the face plate 9 as diffused light. However, since the refractive index of the photocathode 6 is large, about 7% of the light that reaches the photocathode is reflected from the surface. Furthermore, even if the light reaches the photocathode, if it is not converted into photoelectrons, it is totally reflected at the boundary between the photocathode and the vacuum. These lights propagate to the outer wall using the face plate as a light guide, are further reflected and diffused at the boundary with air, and are emitted to the outside.

このような光の外部伝播損失を防ぐために本発
明にあつては、反射膜3は結晶面だけ覆うことな
く、第2図に示すように光電面の位置レベルより
十分下方までPMT側面を覆うよう構成する。こ
のとき、外側壁方向へ伝播して来た光は、外側壁
に塗布されたBaSO4によつて完全拡散反射され再
び光電面側へと伝播する。もし必要であれば、外
側壁反射膜はタングステン鉛などのセプタによつ
てさらに結晶1′及び1″の螢光が効果的にPMT
側へ達するよう1′及び1″の間にも反射膜を形成
するとともに、両結晶からの光のクロストークを
低減するために、光結合膜4を厚くし、第2図に
示すように結晶連結面の下部にくさび状に反射膜
を形成して斜目方向へ反射させることもできる。
In order to prevent such external propagation loss of light, in the present invention, the reflective film 3 does not cover only the crystal plane, but covers the side surface of the PMT sufficiently below the level of the photocathode as shown in FIG. Configure. At this time, the light propagating toward the outer wall is completely diffusely reflected by BaSO 4 coated on the outer wall and propagates toward the photocathode side again. If necessary, the outer wall reflective coating can be further modified by septa such as tungsten lead to effectively reduce the fluorescence of crystals 1' and 1".
A reflective film is also formed between 1' and 1" to reach the side, and the optical coupling film 4 is thickened to reduce the crosstalk of light from both crystals. It is also possible to form a wedge-shaped reflective film on the lower part of the connecting surface to reflect the light in the diagonal direction.

以上本発明にあつては、 (1) 高分解能とするために幅を狭くした長方形結
晶を連結し、正方形に近い大形の結晶外形を形
成してこれに一致するような方形PMTと光結
合させるので、PMTを大形に製作でき、技術
〓〓〓〓〓
的難点が容易に除去される。しかも長方形
PMTでなく、正方形に近いPMTを製作できる
ので製作上の問題、あるいは、歩留りの面から
製造価格を大幅に低減することが可能となる。
As described above, in the present invention, (1) rectangular crystals with narrow widths are connected to achieve high resolution, forming a large crystal outer shape close to a square, and optically coupling with a rectangular PMT that matches the outer shape of the crystal. As a result, PMT can be manufactured in large size, and the technology is
Difficult points are easily removed. And rectangular
Since it is possible to manufacture a PMT that is close to a square instead of a PMT, it is possible to significantly reduce manufacturing costs in terms of manufacturing problems or yield.

さらに結晶群外形と受光面形状とが方形とな
つて全く一致しているので、結晶からの螢光
は、無駄なくPMT側へ伝達される。
Furthermore, since the outer shape of the crystal group and the shape of the light-receiving surface are rectangular and exactly match, the fluorescence from the crystal is transmitted to the PMT side without wasting any waste.

さらに反射膜によつてPMT光電面の外側壁
まで十分に覆われているので、フエースプレー
ト部分より失なわれる光量は大幅に低減され
る。
Furthermore, since the outer wall of the PMT photocathode is sufficiently covered with the reflective film, the amount of light lost from the face plate portion is significantly reduced.

かくして検出器のγ線変換効率が向上する。 Thus, the gamma ray conversion efficiency of the detector is improved.

(2) 検出器の変換効率が向上したとき、検出器系
としてのエネルギー分解能が向上する。
(2) When the conversion efficiency of the detector improves, the energy resolution of the detector system improves.

他方、ポジトロンCTの雑音成分である偶然
同時計数率は、タムウインドを狭くすればする
ほどすなわち時間分解能のよい検出器ほど低減
され、S/N比の向上に役立つ。
On the other hand, the chance coincidence rate, which is a noise component of positron CT, is reduced as the tom window becomes narrower, that is, the detector has better time resolution, which helps improve the S/N ratio.

この時間分解能とエネルギー分解能とは対応
関係にあり、本発明によつて得られた検出器は
当然の結果として高時間分解能検出器として適
用できる。
There is a corresponding relationship between the time resolution and the energy resolution, and the detector obtained by the present invention can naturally be applied as a high time resolution detector.

かくして、本発明に係わる検出器は高解像
力、高S/N比のポジトロンCTに適合するγ
線検出器と解してよい。
Thus, the detector according to the present invention is suitable for positron CT with high resolution and high S/N ratio.
It can be understood as a line detector.

なお、実施例では、Bi4Ge3O12シンチレータ結
晶は2個として例示したが、2個以上複数個の結
晶を連結してもよいのは勿論である。ただし、そ
の際は、方形PMTは、結晶個数に応じた数の位
置検出機能を持たなければならない。
In the embodiment, two Bi 4 Ge 3 O 12 scintillator crystals are illustrated, but it goes without saying that two or more crystals may be connected. However, in that case, the rectangular PMT must have a number of position detection functions corresponding to the number of crystals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のポジトロンCT用γ線検出器
の一例と、その配列構成を示し、第2図は、本発
明に係わる検出器の一実施例の構成を示す図、第
3図は螢光の伝播状態を説明する図である。 〓〓〓〓〓
FIG. 1 shows an example of a conventional gamma ray detector for positron CT and its arrangement configuration, FIG. 2 shows the configuration of an embodiment of the detector according to the present invention, and FIG. It is a figure explaining the propagation state of light. 〓〓〓〓〓

Claims (1)

【特許請求の範囲】[Claims] 1 長方形の光出射面を有し、その周辺部分が連
結された複数個のBi4Ge3O12シンチレータ単結晶
からなる連結結晶と、該連結結晶の光出射面に受
光面が連結された光電子増倍管を備えたポジトロ
ンCT用γ線検出器において、前記光電子増倍管
の受光面は前記連結結晶の光出射面とほぼ同一の
外形寸法を有し、かついずれの単結晶からの受光
かを識別する機能を有する方形光電子増倍管であ
り、上記連結結晶及び連結結晶と光電子増倍管の
連結部分の側方側壁面には連続する反射膜が塗付
されていることを特徴とするポジトロンCT用γ
線検出器。
1 A connected crystal consisting of a plurality of Bi 4 Ge 3 O 12 scintillator single crystals having a rectangular light emitting surface and whose peripheral parts are connected, and a photoelectron whose light receiving surface is connected to the light emitting surface of the connected crystal. In a γ-ray detector for positron CT equipped with a multiplier tube, the light-receiving surface of the photomultiplier tube has approximately the same external dimensions as the light-emitting surface of the connected crystal, and the light is received from which single crystal. It is a rectangular photomultiplier tube having a function of identifying the photomultiplier tube, and is characterized in that a continuous reflective film is coated on the side wall surface of the connecting crystal and the connecting portion of the connecting crystal and the photomultiplier tube. γ for positron CT
line detector.
JP7864781A 1981-05-26 1981-05-26 Gamma ray detector for positron ct Granted JPS57194373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7864781A JPS57194373A (en) 1981-05-26 1981-05-26 Gamma ray detector for positron ct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7864781A JPS57194373A (en) 1981-05-26 1981-05-26 Gamma ray detector for positron ct

Publications (2)

Publication Number Publication Date
JPS57194373A JPS57194373A (en) 1982-11-29
JPS6135518B2 true JPS6135518B2 (en) 1986-08-13

Family

ID=13667649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7864781A Granted JPS57194373A (en) 1981-05-26 1981-05-26 Gamma ray detector for positron ct

Country Status (1)

Country Link
JP (1) JPS57194373A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065290B2 (en) * 1986-09-18 1994-01-19 浜松ホトニクス株式会社 Positron CT system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648560A (en) * 1979-09-29 1981-05-01 Kagaku Gijutsucho Hoshasen Igaku Sogo Kenkyusho Position detector for radiant ray

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648560A (en) * 1979-09-29 1981-05-01 Kagaku Gijutsucho Hoshasen Igaku Sogo Kenkyusho Position detector for radiant ray

Also Published As

Publication number Publication date
JPS57194373A (en) 1982-11-29

Similar Documents

Publication Publication Date Title
US5391878A (en) Multiplexed fiber readout of scintillator arrays
US4816679A (en) Radiation image read-out apparatus
EP0589671B1 (en) Photomultiplier assembly and gamma camera head
CN101504463A (en) Integrated neutron-gamma radiation detector with optical waveguide and neutron scintillating material
JP2003521671A (en) Composite nanoluminescent screen for radiation detection
GB2072452A (en) Apparatus for detecting locating of incident radiation
JP2012088302A (en) Positron radiation tomography (pet) detector module, positron radiation tomography (pet) scanner system, optical fiber plate, and nuclear medicine image photography detector module
US20020014592A1 (en) X-ray detector offering an improved light yield
JPH0511060A (en) Two-dimensional mosaic scintillation detector
US4739168A (en) X-ray detector and method for manufacturing the same
JP2720159B2 (en) Multi-element radiation detector and manufacturing method thereof
JPS6135518B2 (en)
JPH084635Y2 (en) Radiation detector
US5109159A (en) X-ray image sensor
WO2002033723A2 (en) High resolution high output microchannel based radiation sensor
US4970394A (en) Apparatus for reading-out stimulable phosphor, radiographic recording elements
JP2840941B2 (en) Multi-element radiation detector and manufacturing method thereof
JP2941325B2 (en) Photomultiplier tube
JP3704799B2 (en) Manufacturing method of radiation detector array
JPH0961533A (en) Scintillator and scintillation detector
JPH10160852A (en) Radiation detector
EP0535634B1 (en) Radiation detector and its manufacturing method
CN213517578U (en) Array type double-flash detector
CN114690233A (en) Novel ray detector
JPS58216973A (en) Radiation detector block