JPS6135508B2 - - Google Patents

Info

Publication number
JPS6135508B2
JPS6135508B2 JP15658380A JP15658380A JPS6135508B2 JP S6135508 B2 JPS6135508 B2 JP S6135508B2 JP 15658380 A JP15658380 A JP 15658380A JP 15658380 A JP15658380 A JP 15658380A JP S6135508 B2 JPS6135508 B2 JP S6135508B2
Authority
JP
Japan
Prior art keywords
light
test
wavelength
stationary
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15658380A
Other languages
Japanese (ja)
Other versions
JPS5779436A (en
Inventor
Koji Arawaki
Tamotsu Inomata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Zosen KK
Original Assignee
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Zosen KK filed Critical Mitsui Zosen KK
Priority to JP15658380A priority Critical patent/JPS5779436A/en
Publication of JPS5779436A publication Critical patent/JPS5779436A/en
Publication of JPS6135508B2 publication Critical patent/JPS6135508B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N21/3151Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using two sources of radiation of different wavelengths

Description

【発明の詳細な説明】 この発明は、光学系を用いる多項目の分光分析
装置において、機械的操作をともなわずに各項目
ごとの分光分析を行なわしめるように成した分光
検出機構に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a spectral detection mechanism configured to perform spectral analysis for each item without mechanical operation in a multi-item spectroscopic analysis device using an optical system. .

周知のように、液体試料等の分析、たとえば臨
床検査における尿中の被検査成分および濃度を測
定する試験方法としては呈色試験紙法が多用され
ている。この呈色試験紙は、被検査成分と反応し
て、被検査尿の成分および濃度に応じた呈色度合
を示すもので、一般にこの呈色度合を基準色見本
と対比してその濃度を判定するものである。この
呈色試験紙を用いて、被検査尿の成分および濃度
を判定測定する方法として、当該試験紙に光を照
射し、その反射光を分光器に導びいて、その出力
波長によつて試料の呈色特性を読みとる装置が知
られている。従来、この種の装置は、単一光源に
対して、複数の試験項目をもつ試験紙片台を相対
的に順次一試験紙片づつ機械的に移動させて、試
験紙片からの反射光を分光器に導入させるように
した装置として構成されている。この従来の装置
は、単一光源の一照射点に対して、試験紙の試験
項目を一致対応させるように機械的に移動させる
構成、およびプリズム、回折格子等により分光さ
れた反射光の波長を選択して計測するためのスリ
ツト等を操作するための可動部分の構成をとるた
め、機械的な故障が起りやすいこと、および単一
〓〓〓〓〓
光源に対する試験紙の位置設定を的確に行うため
には、かなり複雑な機構を要する等の欠点を有し
ている。
As is well known, the color test paper method is often used as a test method for analyzing liquid samples and the like, for example, measuring test components and concentrations in urine in clinical tests. This color test paper reacts with the component to be tested and shows the degree of coloration depending on the component and concentration of the urine to be tested, and the concentration is generally determined by comparing this degree of coloration with a reference color sample. It is something to do. The method of determining and measuring the components and concentration of urine to be tested using this colored test paper is to irradiate the test paper with light, guide the reflected light to a spectrometer, and use the output wavelength to identify the sample. A device that reads the coloring characteristics of is known. Conventionally, this type of device mechanically moves a test strip stand with multiple test items relative to a single light source, one test strip at a time, and converts the reflected light from the test strips into a spectrometer. It is configured as a device designed to be introduced. This conventional device has a configuration in which the test items on the test strip are mechanically moved to match one irradiation point of a single light source, and the wavelength of the reflected light separated by a prism, diffraction grating, etc. Due to the configuration of movable parts for operating slits, etc. for selection and measurement, mechanical failure is likely to occur, and single
This method has drawbacks such as requiring a fairly complicated mechanism in order to accurately position the test strip with respect to the light source.

この発明の目的は、複数の試験項目をもつ試験
紙を機械的に移動させることなく構成した分光分
析装置を提供することにある。
An object of the present invention is to provide a spectroscopic analysis device configured without mechanically moving test strips having a plurality of test items.

この発明は、上述する目的を達成するにあたつ
て、具体的には、光源からの光を呈色試験紙の試
験紙片へ照射し、その反射光を分光器に導びき、
当該分光波長によつて試料の呈色特性を読みとる
ようにした分光分析装置において、複数の試験項
目を有する試験紙片群に対して、その試験紙片を
それぞれ個別に照射するように配列した複数の静
止光源と、前記各静止光源からの反射光をそれぞ
れ個別に受光するように配列した複数の受光部を
備えていて、前記受光部で受けた光を分光器の光
軸に集光するように導びく導光手段と、前記分光
器からの分光光線を受け呈色特性に見合つたそれ
ぞれの波長における受光光量に対応応する電気信
号を出力する複数の受光素子群により形成される
フオトダイオードアレイとから成る多項目分光分
析装置である。上記の通り、この発明装置は、試
験紙を移動させることなく、試験項目に対応する
複数の静止光源を用意し、当該静止光源を順次点
滅操作し、それによつて、試験紙の試験項目を順
次照射して、その各反射光を各々個別に分光器に
導入するように構成し、各試験項目毎に前以つて
決められている波長の光度をフオトダイオードア
レイの受光素子を選択して、その電流値として計
測することにより、試験片の呈色特性を光電式に
読取る装置である。
In achieving the above-mentioned object, the present invention specifically irradiates light from a light source onto a test paper piece of color test paper, guides the reflected light to a spectrometer,
In a spectroscopic analyzer that reads the color properties of a sample using the spectral wavelength, a plurality of static analyzers are arranged to individually irradiate a group of test paper strips having a plurality of test items. It comprises a light source and a plurality of light receiving sections arranged to individually receive the reflected light from each of the stationary light sources, and guides the light received by the light receiving sections so as to focus it on the optical axis of the spectrometer. a photodiode array formed by a plurality of light receiving element groups that receive the spectral light from the spectroscope and output electrical signals corresponding to the amount of light received at each wavelength commensurate with the coloring characteristics. This is a multi-item spectrometer consisting of: As mentioned above, the device of the present invention prepares a plurality of stationary light sources corresponding to the test items without moving the test strip, and sequentially blinks the stationary light sources, thereby sequentially checking the test items on the test strip. irradiation and each reflected light is introduced into a spectrometer individually, and the light intensity of the wavelength determined in advance for each test item is determined by selecting the light receiving element of the photodiode array. This is a device that photoelectrically reads the coloring characteristics of a test piece by measuring it as a current value.

以下、この発明にかかる多項目分光分析装置に
ついて、図面に示す具体的な実施例にもとづいて
詳細に説明する。
EMBODIMENT OF THE INVENTION Hereinafter, the multi-item spectroscopic analysis apparatus according to the present invention will be described in detail based on specific embodiments shown in the drawings.

試験紙1は、あらかじめその試験目的に応じた
n項目の試験項目数(2a)〜(2n)をもつて構
成される。この試験紙1は、試験紙設定位置に静
止設定される。一方、静止光源3は、前記試験紙
1の各試験項目(2a)〜(2n)および基準エリ
ア4に対応するn+1個のランプ(3a)〜(3n
+1)により構成され、前記静止光源のうちラン
プ(3a)〜(3n)は、前記各検査項目(2a)〜
(2n)をそれぞれ個別に照射することができるよ
うな位置に配置される。また、静止光源のうち一
つのランプ(3n+1)は、後述するフオトダイ
オードアレイの個々の受光素子の波長における光
度一電流感度をチエツクするための基準ランプと
して組まれるものであつて、前記基準エリア4が
当該基準ランプ(3n+1)に対応して、前記試
験紙設定位置に隣接して配置されるようになつて
いる。前記静止光源3は、それぞれ個別にON―
OFF操作が可能なように回路構成されている。
一方、導光手段5は、前記各静止光源3からの反
射光をそれぞれ個別に受光するに適した位置に配
列したn+1個数の受光部(6a)〜(6n+1)
を備えている。さらに、導光手段5は、前記受光
部(6a)〜(6n+1)で受けた光を分光器の光
軸Lに一致する集光部7に導びくように構成され
ている。前記導光手段5の具体例は、前記静止光
源に対応するn+1本のオプチカルフアイバー素
子により構成される。この場合、複数本のオプチ
カルフアイバー素子の各一端を前記受光部配列位
置に設置してn+1の受光部6を形成し、他端を
分光器の光軸Lに一致する点に束ねて集光部7を
構成する。この導光手段の他の例として、受光部
配列位置にそれぞれ配列した受光一反射鏡であつ
て、受光光線を分光器の光軸に向けて反射するよ
うに組立構成したものであつてもよい。前記導光
手段5の集光端設定位置からの光線は、レンズ
8、スリツト9、および分光器たとえばプリズム
10の光軸に沿つて導入される。前記分光器10
の例としては、プリズムの他の回折格子を用いた
ものであつてもよい。一方、前記分光器10の後
段にフオトダイオードアレイ12が設置される。
前記フオトダイオードアレイ12は、複数の受光
素子11の集合体によつて構成される。前記フオ
トダイオードアレイ12の受光素子の数、物理的
配列距離寸法は、試験精度を満足する分解能を得
るに足るものとして決定され、かつ分光器の屈折
分光特性に合せてある。前記分光器10からの各
屈折光線は、各試験項目毎に前以つて決められて
いる波長の光度を前記フオトダイオードアレイ1
2中の受光素子11を選択して、その電流値を計
測することにより試験紙片の呈色特性を読みと
る。前記フオトダイオードアレイ12の出力信号
13は、マルチプレクキ14を介して演算回路1
5に導入される。前記演算回路15では、前記試
験紙片2の反射光信号と、前記基準光源による基
〓〓〓〓〓
準反射率信号とを比較し、試験紙片2の反射率す
なわち、呈色特性を算出する。演算された電気信
号は、出力表示部16において対応する試験紙片
の呈色ランクとして表示される。
The test paper 1 is configured in advance with n test items (2a) to (2n) depending on the purpose of the test. The test strip 1 is set stationary at a test strip setting position. On the other hand, the stationary light source 3 includes n+1 lamps (3a) to (3n) corresponding to each test item (2a) to (2n) of the test paper 1 and the reference area 4.
Among the stationary light sources, the lamps (3a) to (3n) meet each of the inspection items (2a) to
(2n) are placed in such a position that they can be irradiated individually. Furthermore, one lamp (3n+1) among the stationary light sources is assembled as a reference lamp for checking the luminous intensity-current sensitivity at the wavelength of each light-receiving element of the photodiode array, which will be described later. is arranged adjacent to the test strip setting position corresponding to the reference lamp (3n+1). Each of the stationary light sources 3 is turned on individually.
The circuit is configured so that it can be turned off.
On the other hand, the light guiding means 5 includes n+1 light receiving sections (6a) to (6n+1) arranged at positions suitable for individually receiving the reflected light from each of the stationary light sources 3.
It is equipped with Further, the light guiding means 5 is configured to guide the light received by the light receiving sections (6a) to (6n+1) to a light condensing section 7 that coincides with the optical axis L of the spectrometer. A specific example of the light guiding means 5 is constituted by n+1 optical fiber elements corresponding to the stationary light source. In this case, one end of each of the plurality of optical fiber elements is installed at the light receiving part arrangement position to form n+1 light receiving parts 6, and the other ends are bundled at a point that coincides with the optical axis L of the spectrometer to form a light condensing part. 7. As another example of this light guiding means, it may be a light receiving and reflecting mirror arranged at the light receiving part arrangement position, which is assembled so as to reflect the received light beam toward the optical axis of the spectrometer. . The light beam from the condensing end setting position of the light guiding means 5 is introduced along the optical axis of the lens 8, the slit 9, and the spectroscope, such as the prism 10. The spectrometer 10
For example, a diffraction grating other than a prism may be used. Meanwhile, a photodiode array 12 is installed downstream of the spectrometer 10.
The photodiode array 12 is constituted by an aggregate of a plurality of light receiving elements 11. The number of light-receiving elements and the physical arrangement distance of the photodiode array 12 are determined to be sufficient to obtain a resolution that satisfies test accuracy, and are matched to the refraction spectral characteristics of the spectrometer. Each refracted light beam from the spectroscope 10 has a luminous intensity at a wavelength determined in advance for each test item.
The coloring characteristics of the test paper piece are read by selecting the light receiving element 11 in 2 and measuring its current value. The output signal 13 of the photodiode array 12 is sent to the arithmetic circuit 1 via a multiplexer 14.
5 will be introduced. The arithmetic circuit 15 calculates the reflected light signal of the test paper strip 2 and the reference light source by the reference light source.
The reflectance of the test paper piece 2, that is, the coloring characteristics are calculated by comparing the quasi-reflectance signal with the quasi-reflectance signal. The calculated electrical signal is displayed on the output display section 16 as a color rank of the corresponding test paper piece.

この発明によれば、まず、試験紙1が、所定位
置に静止設定され、当該試験紙の試験項目個数に
対応して配列した静止光源を順次点滅操作し、前
記試験紙の試験項目片を一試験紙片づつ照射す
る。この試験項目毎に照射された反射光は、各試
験項目毎に対応して配列した複数の受光部をもつ
導光手段により受光され、順次分光器に導入さ
れ、その波長特性に従つてフオトダイオードアレ
イ中の受光素子を照射してフオトダイオードアレ
イの電気信号13を出力する。この場合、フオト
ダイオードアレイに入力する反射光は、点灯して
いる光源ランプの項目だけであり、他の項目には
影響されない。
According to the present invention, first, the test strip 1 is set stationary at a predetermined position, and the stationary light sources arranged corresponding to the number of test items on the test strip are sequentially blinked, and the test item pieces of the test strip are Irradiate each strip of test paper. The reflected light irradiated for each test item is received by a light guiding means having a plurality of light receiving sections arranged corresponding to each test item, and is sequentially introduced into a spectrometer, and then is sent to a photodiode according to its wavelength characteristics. The light receiving elements in the array are irradiated to output an electric signal 13 from the photodiode array. In this case, the reflected light input to the photodiode array is only from the lit light source lamp and is not affected by other items.

以上の構成に成るこの発明の分光分折装置によ
れば、まず、試験紙を移動させること、および、
分光された反射光の波長を選択して計測するため
のスリツト等を操作させる機械的構成をとらない
ので、装置の機械的故障を防ぎ、かつ試験紙の各
試験項目個数と光源との位置設定が確実に行うこ
とができ、そのうえ、二波長測定方式も簡単に行
えるという利点を有する。
According to the spectroscopic analyzer of the present invention having the above configuration, first, the test paper is moved;
Since there is no mechanical configuration to operate a slit etc. to select and measure the wavelength of the spectrally reflected light, mechanical failure of the device can be prevented, and the number of each test item on the test strip and the position of the light source can be set. can be carried out reliably, and furthermore, it has the advantage that a two-wavelength measurement method can be easily carried out.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、この発明にかかる多項目分光分折装置
の具体的な実施例を示す概略的原理図である。 1……試験紙片台材、2……試験紙片、3……
静止光源、4……基準エリア、5……導光手段、
6……受光部、7……集光部、8……レンズ、9
……スリツト、10……分光器、11……受光素
子、12……フオトダイオードアレイ、13……
出力信号、14……マルチプレクサ、15……演
算回路、16……出力表示部。 〓〓〓〓〓
The drawing is a schematic principle diagram showing a specific embodiment of the multi-item spectroscopy apparatus according to the present invention. 1...Test paper piece base material, 2...Test paper piece, 3...
Stationary light source, 4... Reference area, 5... Light guide means,
6... Light receiving section, 7... Light collecting section, 8... Lens, 9
...Slit, 10...Spectroscope, 11...Photodetector, 12...Photodiode array, 13...
Output signal, 14...Multiplexer, 15... Arithmetic circuit, 16... Output display section. 〓〓〓〓〓

Claims (1)

【特許請求の範囲】 1 光源からの光を呈色試験紙の試験紙片へ照射
し、その反射光を分光器に導びき、当該分光波長
によつて試料の呈色特性を読みとるようにした分
光分析装置において、 複数の試験項目を有する試験紙片群に対して、
その試験紙片をそれぞれ個別に照射するように配
列した複数の静止光源と、 前記各静止光源からの反射光をそれぞれ個別に
受光するように配列した複数の受光部を備えてい
て、前記受光部で受けた光を分光器の光軸に集光
するように導びく導光手段と、 前記分光器からの分光光線を受けそれぞれの分
光光線波長を選択するに適した物理的距離間隔に
複数の受光素子を配したフオトダイオードアレイ
とからな成り、 前記フオトダイオードアレイを用いて選択され
た波長の分光光度を電気信号に変換するようにし
たことを特徴とする多項目分光分析装置。 2 前記静止光源に加えて、前記試験紙片に隣接
する基準エリアを照射する1つの基準静止光源を
備え、該基準静止光源により前記フオトダイオー
ドアレイの各波長におけるそれぞれの光度電流変
換感度をチエツクするようにしたことを特徴とす
る特許請求の範囲第1項に記載の多項目分光分析
装置。
[Scope of Claims] 1. A spectroscopic method in which light from a light source is irradiated onto a piece of color test paper, the reflected light is guided to a spectrometer, and the color characteristics of the sample are read based on the spectral wavelength. In the analyzer, for a group of test strips having multiple test items,
A plurality of stationary light sources arranged so as to individually irradiate the test paper strips, and a plurality of light receiving sections arranged so as to individually receive the reflected light from each of the stationary light sources, and the light receiving section a light guiding means that guides the received light so as to focus it on the optical axis of the spectroscope; and a plurality of light receivers arranged at physical distances suitable for receiving the spectral rays from the spectroscope and selecting the wavelength of each spectral ray. 1. A multi-item spectroscopic analysis device comprising: a photodiode array having elements arranged thereon; and the photodiode array is used to convert spectrophotometric intensity of a selected wavelength into an electrical signal. 2. In addition to the stationary light source, a reference stationary light source is provided that illuminates a reference area adjacent to the test strip, and the photodiode array is checked for its respective phototo-current conversion sensitivity at each wavelength using the reference stationary light source. A multi-item spectroscopic analysis device according to claim 1, characterized in that:
JP15658380A 1980-11-05 1980-11-05 Multiitem spectrochemical analytical device Granted JPS5779436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15658380A JPS5779436A (en) 1980-11-05 1980-11-05 Multiitem spectrochemical analytical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15658380A JPS5779436A (en) 1980-11-05 1980-11-05 Multiitem spectrochemical analytical device

Publications (2)

Publication Number Publication Date
JPS5779436A JPS5779436A (en) 1982-05-18
JPS6135508B2 true JPS6135508B2 (en) 1986-08-13

Family

ID=15630929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15658380A Granted JPS5779436A (en) 1980-11-05 1980-11-05 Multiitem spectrochemical analytical device

Country Status (1)

Country Link
JP (1) JPS5779436A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073343A (en) * 1983-09-30 1985-04-25 Shimadzu Corp Spectrophotometer
JPS60179655A (en) * 1984-02-28 1985-09-13 Tsubosaka Denki Kk Device for inspecting bodily fluid
JPS6246238A (en) * 1985-08-23 1987-02-28 Omron Tateisi Electronics Co Bio-chemical measuring apparatus
JPS6247553A (en) * 1985-08-27 1987-03-02 Omron Tateisi Electronics Co Biochemical measuring instrument
JPS6254165A (en) * 1985-09-02 1987-03-09 Omron Tateisi Electronics Co Biochemical measuring instrument

Also Published As

Publication number Publication date
JPS5779436A (en) 1982-05-18

Similar Documents

Publication Publication Date Title
US3853407A (en) Multiple path spectrophotometer method and apparatus
US6339472B1 (en) Determination of light absorption pathlength in a vertical-beam photometer
JP3994143B2 (en) Pre-test differentiation method and apparatus for rapid spectrophotometry of specimens for hematology analyzers
CA1127865A (en) Method and device for analysis with color identification test paper
US6188476B1 (en) Determination of light absorption pathlength in a vertical-beam photometer
US6388751B1 (en) Apparatus for determining optical properties of liquid samples
US4781456A (en) Absorption photometer
EP0167750A2 (en) Spectrophotometer
KR20110127122A (en) Sample analyzing apparatus
WO2001075420A1 (en) Method and apparatus for detecting mastitis by using visible light and/or near infrared light
US3765775A (en) Optical internal quality analyzer
EP3344978B1 (en) Apparatus and method for performing a light-absorption measurement on a test sample and a compliance measurement on a reference sample
JPH0619079Y2 (en) Spectrometer in automatic analyzer
Uhl et al. A polychromatic flash photolysis apparatus (PFPA)
JPS6135508B2 (en)
EP0176826A2 (en) Method and apparatus for dual-beam spectral transmission measurements
US8717557B2 (en) Spectrophotometer and method for determining performance thereof
KR19990029895A (en) Concentration measuring device and measuring method of specific ingredient
JPH03160344A (en) Device for measuring constitutions of vegetable and fruit
JP2000304694A (en) Method and apparatus for grading of tea leaf
GB2046901A (en) Measurement of blood bilirubin concentration
US6870617B2 (en) Accurate small-spot spectrometry systems and methods
CN201322721Y (en) Symmetrical conjugate optical system for infrared oil measuring instrument
US3561878A (en) Direct reading colorimeter
GB1369146A (en) Chemical analyzer