JPS6135459B2 - - Google Patents

Info

Publication number
JPS6135459B2
JPS6135459B2 JP2348478A JP2348478A JPS6135459B2 JP S6135459 B2 JPS6135459 B2 JP S6135459B2 JP 2348478 A JP2348478 A JP 2348478A JP 2348478 A JP2348478 A JP 2348478A JP S6135459 B2 JPS6135459 B2 JP S6135459B2
Authority
JP
Japan
Prior art keywords
flow
pressure gas
low
temperature
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2348478A
Other languages
Japanese (ja)
Other versions
JPS54116760A (en
Inventor
Yoshihisa Awata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2348478A priority Critical patent/JPS54116760A/en
Publication of JPS54116760A publication Critical patent/JPS54116760A/en
Publication of JPS6135459B2 publication Critical patent/JPS6135459B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 本発明は、ヘリウム液化機、冷凍機など液化冷
凍機の寒冷制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling control method for a liquefaction refrigerator such as a helium liquefaction machine or a refrigerator.

従来の液化冷凍機においては、膨張流の流量お
よび圧力の調節は手動で行ない、膨張幾による寒
冷の発生を制御しているので、負荷の変動に応じ
て、その都度調節してやる必要があつた。
In conventional liquefaction refrigerators, the flow rate and pressure of the expansion flow are manually adjusted to control the generation of refrigeration due to the expansion rate, so it is necessary to adjust them each time according to load fluctuations.

本発明は、最も低温側の熱交換器のJ−T流温
端温度が常に一定になるよう膨張流を制御するこ
とにより液化冷凍機の寒冷を制御しようとするも
のである。
The present invention attempts to control the cooling of a liquefaction refrigerator by controlling the expansion flow so that the J-T stream hot end temperature of the heat exchanger on the lowest temperature side is always constant.

以下、本発明実施の一例を図面によつて説明す
る。原料ガス流18と低圧ガス流17は循環圧縮
機1で規定圧力まで昇圧され、高圧ガス流14と
なり、第1熱交換器8で低圧ガス流17と熱交換
して冷却され、第1熱交換器8の出口でJ−T流
16と膨張流15に分流される。膨張流15は調
節弁2を通り、第1膨張機3で所定圧まで膨張し
て寒冷を発生し、第3熱交換器10を経て、さら
に第2膨張機4で膨張して寒冷を発生し、第5熱
交換器12の温端側で低圧ガス流17に合流す
る。一方、J−T流16は、第2熱交換器9、第
3熱交換器10、第4熱交換器11、第5熱交換
器12で低圧ガス流17と熱交換して冷却され、
J−T弁6にてジユールトムソン効果により一部
が液化し、中間タンク13内に液がためられる。
液化しなかつたガスは、低圧ガス流となつて循環
圧縮機1へ戻る。中間タンク13内の液は、液抜
き弁7を通つて製品流19して抜き出される。な
お、高圧ガス流14の圧力調節は、圧力調節弁2
0によつて行なわれる。また、調節弁2は温度指
示調節計5(以下TICという)によつて制御され
ている。
An example of implementing the present invention will be described below with reference to the drawings. The feed gas stream 18 and the low-pressure gas stream 17 are pressurized to a specified pressure in the circulation compressor 1 to become a high-pressure gas stream 14, which is cooled by exchanging heat with the low-pressure gas stream 17 in the first heat exchanger 8. At the outlet of the vessel 8, the flow is divided into a J-T stream 16 and an expanded stream 15. The expanded flow 15 passes through the control valve 2, expands to a predetermined pressure in the first expander 3 to generate cold, passes through the third heat exchanger 10, and further expands in the second expander 4 to generate cold. , joins the low-pressure gas stream 17 at the warm end of the fifth heat exchanger 12 . On the other hand, the J-T stream 16 is cooled by exchanging heat with the low pressure gas stream 17 in the second heat exchanger 9, the third heat exchanger 10, the fourth heat exchanger 11, and the fifth heat exchanger 12,
A portion of the liquid is liquefied at the J-T valve 6 due to the Joel-Thomson effect, and the liquid is accumulated in the intermediate tank 13.
The unliquefied gas returns to the circulation compressor 1 as a low pressure gas stream. The liquid in the intermediate tank 13 is drawn out through the liquid drain valve 7 as a product stream 19. Note that the pressure of the high-pressure gas flow 14 is controlled by a pressure regulating valve 2.
This is done by 0. Further, the regulating valve 2 is controlled by a temperature indicating controller 5 (hereinafter referred to as TIC).

製品流19の量は、第5熱交換器12の温端温
度T1とT2の温度差とJ−T流16の量により
決まる。ゆえに、装置全体の寒冷の調節は、第5
熱交換器12の温端温度T1とT2の温度差およ
びJ−T流16を調節すればよい。すなわち、製
品流19が少なくてよい場合には、J−T弁6を
しぼればよいが、単にJ−T弁6をしぼつただけ
では、膨張流15は以前のままであるので、J−
T流16と低圧ガス流17の比が大きくなり、第
5熱交換器12の温端温度T1が下り、T2とT
1の温度差が小さくなるため、J−T弁6での液
化率が上ることになり、J−T流16は少なくな
〓〓〓〓
つているが液化率が上がるので、製品流19はほ
とんど変化せず、余分の寒冷が発生することにな
る。この場合、TIC5を作動させておくことによ
り、J−T流16量が減少した分だけ、低圧ガス
流17すなわち膨張流15を減少させるよう調節
弁2を制御することができ、第5熱交換器12の
温端温度T2とT1の温度差を常に保つことがで
きる。高圧ガス流14のJ−T流16、膨張流1
5が減少した分は、圧力調節弁20を通つて再度
循環圧縮機1へ戻される。また、上述とは逆に製
品流19を増やす場合には、その逆でJ−T弁6
を開くことにより、流量調節弁2も開かれ、高圧
ガス流14はJ−T流16、膨張流15に適宜に
分流される。
The amount of the product stream 19 is determined by the temperature difference between the warm end temperatures T1 and T2 of the fifth heat exchanger 12 and the amount of the J-T stream 16. Therefore, the regulation of the cooling of the entire device is the fifth step.
What is necessary is just to adjust the temperature difference between the hot end temperatures T1 and T2 of the heat exchanger 12 and the J-T flow 16. That is, if the product flow 19 needs to be small, the J-T valve 6 can be squeezed, but if the J-T valve 6 is simply squeezed, the expanded flow 15 will remain the same as before, so the J-T valve 6 can be squeezed.
The ratio of the T flow 16 and the low pressure gas flow 17 increases, the hot end temperature T1 of the fifth heat exchanger 12 decreases, and T2 and T
1 becomes smaller, the liquefaction rate at the J-T valve 6 increases, and the J-T flow 16 decreases.
However, since the liquefaction rate increases, the product stream 19 remains largely unchanged and extra refrigeration occurs. In this case, by operating the TIC 5, the control valve 2 can be controlled to reduce the low pressure gas flow 17, that is, the expansion flow 15, by the amount that the J-T flow 16 has decreased, and the fifth heat exchanger The temperature difference between the hot end temperature T2 and T1 of the vessel 12 can be maintained at all times. J-T flow 16 of high pressure gas flow 14, expansion flow 1
The amount reduced by 5 is returned to the circulation compressor 1 through the pressure control valve 20. In addition, when increasing the product flow 19 contrary to the above, the J-T valve 6
By opening, the flow control valve 2 is also opened, and the high pressure gas flow 14 is appropriately divided into a J-T flow 16 and an expansion flow 15.

本発明は以上述べたようにしたものであるか
ら、液化冷凍機における寒冷のバランスは、J−
T弁を調整するだけで自動的に調節することがで
き、高精度の制御を行なうことができる。
Since the present invention is as described above, the cooling balance in the liquefaction refrigerator is J-
It can be automatically adjusted simply by adjusting the T valve, and highly accurate control can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明を実施した装置の一例を示す系統
図である。 1……循環圧縮機、2……流量調節弁、3,4
……膨脹機、5……温度指示調節計、6……J−
T弁、7……液抜き弁、8……第1熱交換器、9
……第2熱交換器、10……第3熱交換器、11
……第4熱交換器、12……第5熱交換器、13
……中間タンク、14……高圧ガス流、15……
膨脹流、16……J−T流、17……低圧ガス
流、18……原料ガス流、19……製品流、20
……圧力調節弁。 〓〓〓〓
The drawing is a system diagram showing an example of an apparatus implementing the present invention. 1... Circulating compressor, 2... Flow control valve, 3, 4
...Expansion machine, 5...Temperature indicating controller, 6...J-
T valve, 7... Liquid drain valve, 8... First heat exchanger, 9
...Second heat exchanger, 10...Third heat exchanger, 11
...Fourth heat exchanger, 12...Fifth heat exchanger, 13
...Intermediate tank, 14...High pressure gas flow, 15...
Expansion flow, 16... J-T flow, 17... Low pressure gas flow, 18... Raw material gas flow, 19... Product flow, 20
...Pressure control valve. 〓〓〓〓

Claims (1)

【特許請求の範囲】[Claims] 1 循環圧縮機で昇圧された高圧ガス流をJ−T
流と膨張流に分流し、J−T流を複数個の熱交換
器を通して冷却した後、J−T弁で膨張液化して
気液分離した低温低圧ガスを前記複数個の熱交換
器を通して温度回復させた後、循環圧縮機に戻す
と共に、膨張流を膨張機を通して寒冷を発生させ
た後前記低温低圧ガスに合流させる液化冷凍機に
おいて、最も低温側の熱交換器の温端側のJ−T
流の温度を検出して膨張流の流量を制御すること
を特徴とする液化冷凍機の寒冷制御方法。
1 The high-pressure gas flow boosted by the circulation compressor is transferred to the J-T
After cooling the J-T stream through a plurality of heat exchangers, the low-temperature low-pressure gas, which is expanded and liquefied in the J-T valve and separated into gas and liquid, is passed through the plurality of heat exchangers to reduce the temperature. After the recovery, the gas is returned to the circulating compressor, and the expanded flow is passed through the expander to generate refrigeration and then merged with the low-temperature, low-pressure gas. T
A cooling control method for a liquefaction refrigerator characterized by controlling the flow rate of an expansion flow by detecting the temperature of the flow.
JP2348478A 1978-03-03 1978-03-03 Coldness control system of liquefying refrigerator Granted JPS54116760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2348478A JPS54116760A (en) 1978-03-03 1978-03-03 Coldness control system of liquefying refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2348478A JPS54116760A (en) 1978-03-03 1978-03-03 Coldness control system of liquefying refrigerator

Publications (2)

Publication Number Publication Date
JPS54116760A JPS54116760A (en) 1979-09-11
JPS6135459B2 true JPS6135459B2 (en) 1986-08-13

Family

ID=12111792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2348478A Granted JPS54116760A (en) 1978-03-03 1978-03-03 Coldness control system of liquefying refrigerator

Country Status (1)

Country Link
JP (1) JPS54116760A (en)

Also Published As

Publication number Publication date
JPS54116760A (en) 1979-09-11

Similar Documents

Publication Publication Date Title
US6032472A (en) Motor cooling in a refrigeration system
US2712738A (en) Method for fractionating air by liquefaction and rectification
JP5529735B2 (en) Control of natural gas liquefaction
KR20070046813A (en) Thermal control system and method
US2280383A (en) Method and apparatus for extracting an auxiliary product of rectification
US3952533A (en) Multiple valve refrigeration system
US5802874A (en) Process and apparatus for liquefying low boiling gas such as nitrogen
US3307370A (en) Cooling device for helium
JPH0148476B2 (en)
US2046894A (en) Refrigerating apparatus
JP4563269B2 (en) Refrigeration capacity control device for turbine-type refrigerator
US3557566A (en) Method and device for producing cold and liquefying gases
JPS6135459B2 (en)
JPH06265230A (en) Method and device for controlling operation of liquefaction-refrigerating device
JPH0420752A (en) Double-element type freezer device
JP3465117B2 (en) Helium refrigeration and liquefaction machine and its operation method
CN110546441A (en) Method for controlling suction pressure based on maximum load cooling entity
JPS6051615B2 (en) water heater
JPH08121892A (en) Operation controlling method for turbine type expansion unit
JPH01244254A (en) Method of controlling auxiliary cold source for cryogenic refrigerating plant
JPH08159584A (en) Helium liquefied refrigerator and operating method therefor
JP2574823B2 (en) Operation control method of cryogenic refrigeration refrigeration system
JPH0425464B2 (en)
SU1537980A1 (en) Method and cryogenic unit for producing cold
JPH01150755A (en) Method of controlling operation of cryogenic refrigerator