JPS6135367B2 - - Google Patents

Info

Publication number
JPS6135367B2
JPS6135367B2 JP8097080A JP8097080A JPS6135367B2 JP S6135367 B2 JPS6135367 B2 JP S6135367B2 JP 8097080 A JP8097080 A JP 8097080A JP 8097080 A JP8097080 A JP 8097080A JP S6135367 B2 JPS6135367 B2 JP S6135367B2
Authority
JP
Japan
Prior art keywords
intake
valve
exhaust
intake valve
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8097080A
Other languages
Japanese (ja)
Other versions
JPS578316A (en
Inventor
Yozo Tosa
Hirohiko Iwamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8097080A priority Critical patent/JPS578316A/en
Publication of JPS578316A publication Critical patent/JPS578316A/en
Publication of JPS6135367B2 publication Critical patent/JPS6135367B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four

Description

【発明の詳細な説明】 本発明は4サイクル内燃機関の吸気装置の改善
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an intake system for a four-stroke internal combustion engine.

従来のこの種装置の概略を第1図に示す。図に
おいて、01はピストン、02はシリンダの燃焼
室、03は排気弁で、図示されない排気カムによ
つて開閉制御される。04は排気通路、05は排
気ターボ過給機のタービンで、排気が導かれ、0
6は排気ターボ過給機のブロワでタービン05と
同一軸上に配置されている。07はスロツトル
弁、08は吸気通路、09は吸気弁で、図示され
ない吸気カムによつて開閉制御される ピストン01の排気行程において、排気は燃焼
室02から排気弁03を通つて排気通路04を経
て、タービン05に導かれる。このとき、排気の
もつエネルギによつてタービン05は回転駆動さ
れ、この出力によつてブロワ06は大気より空気
を圧送して、スロツトル弁07を経て吸気通路0
8に送り込まれる。
A conventional device of this type is schematically shown in FIG. In the figure, 01 is a piston, 02 is a combustion chamber of a cylinder, and 03 is an exhaust valve, which is controlled to open and close by an exhaust cam (not shown). 04 is the exhaust passage, 05 is the turbine of the exhaust turbo supercharger, through which the exhaust gas is guided, and 0
Reference numeral 6 denotes a blower of an exhaust turbo supercharger, which is arranged on the same axis as the turbine 05. 07 is a throttle valve, 08 is an intake passage, and 09 is an intake valve, whose opening and closing are controlled by an intake cam (not shown).In the exhaust stroke of the piston 01, exhaust gas flows from the combustion chamber 02 through the exhaust valve 03 and into the exhaust passage 04. After that, it is guided to turbine 05. At this time, the turbine 05 is rotationally driven by the energy of the exhaust gas, and this output causes the blower 06 to forcefully send air from the atmosphere through the throttle valve 07 and into the intake passage.
Sent to 8.

ピストン01の吸気行程において、上記圧送空
気は吸気弁09を通つて燃焼室02に吸入され
る。
During the intake stroke of the piston 01, the compressed air is drawn into the combustion chamber 02 through the intake valve 09.

ガソリンエンジン等スロツトル弁07にて負荷
調整する機関では、部分負荷時及びアイドリング
時にスロツトル弁07が絞られ、吸気通路08内
の圧力を下げて吸入空気量を減じることにより負
荷を調節する。
In an engine such as a gasoline engine whose load is adjusted by a throttle valve 07, the throttle valve 07 is throttled during partial load and idling, and the load is adjusted by lowering the pressure in the intake passage 08 and reducing the amount of intake air.

しかし上記従来のものには次のような欠点があ
る。
However, the conventional method described above has the following drawbacks.

第2図に従来のものの吸気弁09及び排気弁0
3の開口面積をクランク角度を横軸にして示す。
図中、BDCは下死点、TDCは上死点を示す。
Figure 2 shows the conventional intake valve 09 and exhaust valve 0.
The opening area of No. 3 is shown with the crank angle as the horizontal axis.
In the figure, BDC indicates bottom dead center and TDC indicates top dead center.

1 従来の機関において、吸気弁開弁時期を第3
図に示すように進めて、吸排気弁のオーバラツ
プを増すことにより、機関の中低速域における
全負荷時の出力トルクを増大することができ
る。即ち、 〓〓〓〓
(a) 第4図は中低速域全負荷時の筒内圧(実
線)、排気圧(破線)、吸気圧(一点鎖線)の
吸排気行程中の変化の様子をクランク角度を
横軸にして示したものであるが、図中の下の
Aは第2図の吸気弁開弁タイミングの場合、
上のBは第3図の吸気弁開弁タイミングの場
合を示す。
1 In conventional engines, the intake valve opening timing is set to 3rd.
By proceeding as shown in the figure and increasing the overlap of the intake and exhaust valves, it is possible to increase the output torque at full load in the medium and low speed range of the engine. That is, 〓〓〓〓
(a) Figure 4 shows how the cylinder pressure (solid line), exhaust pressure (dashed line), and intake pressure (dotted chain line) change during the intake and exhaust stroke at full load in the medium and low speed range, with the crank angle as the horizontal axis. However, lower A in the figure is for the intake valve opening timing in Figure 2,
B above shows the case of the intake valve opening timing shown in FIG.

b 中低速域全負荷時には、排気ターボ過給機
のタービン05の絞りが高速域に比べて相対
的に開かれ、かつ排気ターボ過給機の作動効
率も良いため、排気圧の圧力レベルに比べて
吸気圧の圧力レベルが高い。このため、第4
図に示すように、排気行程(BDCよりTDC
までの期間)の後半では、吸気圧力よりも筒
内圧力が低く、Bの第3図のカムのように吸
気弁開き始めタイミングを進めてオーバラツ
プを増すことにより、Bに示した斜線部分の
期間に吹抜けを生ぜしめることができる。
b At full load in the medium and low speed range, the throttle of the turbine 05 of the exhaust turbocharger is relatively open compared to the high speed range, and the operating efficiency of the exhaust turbocharger is also good, so the pressure level is lower than that of the exhaust pressure. The pressure level of the intake pressure is high. For this reason, the fourth
As shown in the figure, the exhaust stroke (BDC to TDC
In the latter half of the period shown in Figure 3), the in-cylinder pressure is lower than the intake pressure, and by advancing the timing of the intake valve opening and increasing the overlap, as shown in the cam in Figure 3 of B, the period shown in the shaded area shown in B is It can create an atrium.

(c) 第5図にこのときの第2図及び第3図のカ
ムの場合の吸排気弁の通過ガス流量の変化を
それぞれA及びBに示す。Aに比べてBは
TDC付近に斜線部で示す吹抜きを生じ、こ
れによつて燃焼室内にたまつた残留排気を掃
除するために、吸入効率が高くなり、吸気量
が増えた分だけ機関の出力トルクを増大する
ことができる。
(c) In FIG. 5, changes in the gas flow rate passing through the intake and exhaust valves in the case of the cams shown in FIGS. 2 and 3 are shown as A and B, respectively. B compared to A
A blowout shown by the shaded area is created near TDC, which cleans the residual exhaust gas accumulated in the combustion chamber, increasing the intake efficiency and increasing the engine's output torque by the increased amount of intake air. be able to.

2 しかし、第3図のオーバラツプの大きいカム
では、高速時の出力低下や燃焼性能の悪化並び
に部分負荷時及びアイドリング時の燃焼性能の
悪化を生じる。すなわち、 (a) 第6図は機関の高速時の筒内圧、排気圧及
び吸気圧の変化の様子を第4図と同様にして
示したもので、Aは第2図の吸気弁開弁タイ
ミングの場合、Bは第3図のオーバラツプの
大きい吸気弁開閉タイミングの場合を示す。
2. However, the cam with large overlap shown in FIG. 3 causes a decrease in output and deterioration of combustion performance at high speeds, as well as deterioration of combustion performance at partial load and idling. That is, (a) Figure 6 shows how the cylinder pressure, exhaust pressure, and intake pressure change when the engine is running at high speed, in the same way as Figure 4, and A indicates the intake valve opening timing in Figure 2. In the case of , B shows the case of the intake valve opening/closing timing with a large overlap as shown in FIG.

(b) 高速時には排気ターボ過給機のタービン0
5が低速に比べて相対的に絞られるので排気
圧の圧力レベルは吸気圧の圧力レベルに比べ
て高く、このためオーバラツプの大きいBで
は斜線部に示すようにオーバラツプ期間中の
筒内圧が吸気圧よりも高く、筒内の排気が吸
気通路に吹返しを生じる。
(b) At high speed, the exhaust turbocharger turbine 0
5 is relatively throttled compared to low speed, the pressure level of the exhaust pressure is higher than the pressure level of the intake pressure. Therefore, at B where the overlap is large, the in-cylinder pressure during the overlap period is lower than the intake pressure, as shown in the shaded area. The exhaust gas inside the cylinder blows back into the intake passage.

(c) 第7図に、このときの第2図及び第3図の
吸気弁開弁タイミングの場合の吸排気弁の通
過ガス流量の変化をそれぞれA及びBに示
す。Aに比べてBではTDC付近に斜線部で
示すような吹返しを生じ、これによつて排気
が吸気通路08に流入するので、吸入空気量
が減少し、また残留排気の量も増すので、高
速域での出力トルクの低下や燃焼性能の悪化
をもたらす。
(c) In FIG. 7, changes in the flow rate of gas passing through the intake and exhaust valves are shown in A and B, respectively, for the intake valve opening timings shown in FIGS. 2 and 3 at this time. Compared to A, B blows back near TDC as shown by the shaded area, and this causes exhaust to flow into the intake passage 08, reducing the amount of intake air and increasing the amount of residual exhaust. This results in a decrease in output torque at high speeds and deterioration in combustion performance.

(d) 機関の部分負荷時やアイドリング時には、
スロツトル弁07にて負荷調節する機関で
は、スロツトル弁07によつて吸気通路08
内の圧力が低下し、排気圧よりも低くなるの
で、高速時と同様第7図に示すように、第3
図のようなオーバラツプの大きいカムではB
のような吹返しが生じ、残留排気の量が増し
て燃焼性能が悪化する。
(d) When the engine is under partial load or idling,
In an engine whose load is adjusted by the throttle valve 07, the intake passage 08 is controlled by the throttle valve 07.
As the internal pressure decreases and becomes lower than the exhaust pressure, the third
For cams with large overlap as shown in the figure, B
Blowback occurs, increasing the amount of residual exhaust gas and deteriorating combustion performance.

3 このため、従来の機関では、第3図に示すよ
うに、吸気弁の開タイミングを進めオーバラツ
プを増して、中低速域全負荷での出力トルクの
増大を計ることはできない。
3. Therefore, in the conventional engine, as shown in FIG. 3, it is not possible to advance the opening timing of the intake valve and increase the overlap to increase the output torque at full load in the medium and low speed range.

4 また、従来の機関において、吸気弁の閉弁時
期を、第8図に示すように、進めて、吸気行程
の下死点後できるだけ早く閉じることにより、
機関の中低速域における全負荷時の出力トルク
を増大することができる。すなわち、 (a) 第5図Bに示すように、中低速域では吸気
行程の下死点(BDC)後、吸気弁が閉じる
までの期間に筒内に吸入した空気が再び吸気
通路に戻される吸気の押しもどしを生じてい
る。このため、吸気弁の閉時期を第5図Bに
点線で示したように早く閉じてやることによ
り、それだけ多量の空気を筒内に充てんする
ことができ、機関の出力トルクを増大するこ
とができる。
4 In addition, in conventional engines, the closing timing of the intake valve is advanced as shown in Figure 8, and the intake valve is closed as soon as possible after the bottom dead center of the intake stroke.
It is possible to increase the output torque at full load in the medium and low speed range of the engine. In other words, (a) As shown in Figure 5B, in the medium and low speed range, the air sucked into the cylinder is returned to the intake passage after the bottom dead center (BDC) of the intake stroke until the intake valve closes. This causes the intake air to be pushed back. Therefore, by closing the intake valve earlier as shown by the dotted line in Figure 5B, a larger amount of air can be filled into the cylinder and the output torque of the engine can be increased. can.

5 しかし、第8図のように、吸気弁閉タイミン
グを進めたカムでは、機関の高速域では出力の
低下を伴なう。すなわち、 (a) 第7図Bに示すように、高速域では吸気行
程中のピストンの下降速度が早く下死点
BDC付近ではまだ充分吸気の充てんが行わ
れておらず、点線で示すように吸気弁の閉タ
イミングを進めることによつてBDC付近で
斜線で示すような吸気の充てん不足を生じ、
このため機関の出力低下を伴なうことにな
る。
5. However, as shown in FIG. 8, with the cam that advances the intake valve closing timing, the output is reduced in the high speed range of the engine. In other words, (a) As shown in Figure 7B, in the high-speed range, the piston descends quickly during the intake stroke and reaches the bottom dead center.
Sufficient intake air has not yet been filled near BDC, and by advancing the closing timing of the intake valve as shown by the dotted line, an insufficient amount of intake air is filled near BDC as shown by the diagonal line.
This results in a decrease in engine output.

〓〓〓〓
6 このため、従来の機関では、第8図に示すよ
うに、吸気弁閉タイミングを進めて中低速域全
負荷での出力トルクの増大を計ることはできな
い。
〓〓〓〓
6. Therefore, in the conventional engine, as shown in FIG. 8, it is not possible to advance the intake valve closing timing to increase the output torque at full load in the medium and low speed range.

本発明の目的は、4サイクル内燃機関におい
て、高速域での出力の低下や燃焼性能の悪化並び
に部分負荷時及びアイドリング時の燃焼性能の悪
化を生じることなく、機関の中低速域全負荷時の
出力トルクを増大させることのできる吸気装置を
提供することであり、その特徴とするところは次
の通りである。
An object of the present invention is to provide a 4-cycle internal combustion engine with a high speed engine that can operate at full load in the medium and low speed range without causing a decrease in output in the high speed range, deterioration of combustion performance, or deterioration of combustion performance at partial load and idling. The object of the present invention is to provide an intake device that can increase output torque, and its features are as follows.

4サイクル内燃機関において、吸気通路より分
岐して、補助吸気通路及び補助吸気弁を設け、こ
の補助吸気通路内にシリンダへの吸気流れのみを
許容する逆止弁を設ける。さらに、補助吸気弁の
開閉タイミングを上記吸気弁の開閉タイミングと
異ならしめ、 (1) 補助吸気弁の開タイミングを吸気弁開タイミ
ングより進めて、 機関の中低速全負荷時に補助吸気弁を通し
て吸気の吹抜けを生ぜしめ、その掃除効果に
よつて吸入効率を高め機関の出力トルクの増
大を得ると共に、 機関の高速域や部分負荷及びアイドリング
時には逆止弁によつて排気の補助吸気弁から
の吹返しを生じないようにし、出力の低下や
燃焼性能の悪化を防ぐようにしたこと、 (2) 補助吸気弁の閉タイミングを従来の機関の吸
気弁閉タイミングと同程度のタイミングとし、
かつ吸気弁閉タイミングを従来の機関の吸気弁
閉タイミングより進めることによつて、 機関の中低速域においては、ピストン吸入
行程下死点BDC後の吸気の押しもどしを逆
止弁によつて生じないようにし、吸気の充て
ん量を増し機関の出力トルクの増大を実現
し、 機関の高速域においては、補助吸気弁を通
して下死点後の吸気の補充を行わしめること
によつて、高速域の出力低下を防ぐようにし
たことである。
In a four-stroke internal combustion engine, an auxiliary intake passage and an auxiliary intake valve are provided branching off from the intake passage, and a check valve that only allows intake air to flow into the cylinder is provided within the auxiliary intake passage. Furthermore, the opening/closing timing of the auxiliary intake valve is made to be different from the opening/closing timing of the above-mentioned intake valves. This creates a blow-through, and its cleaning effect increases suction efficiency and increases the engine's output torque.At the same time, when the engine is at high speed, under partial load, or when idling, the check valve prevents the exhaust from blowing back from the auxiliary intake valve. (2) The closing timing of the auxiliary intake valve is set to the same timing as the intake valve closing timing of a conventional engine.
In addition, by advancing the intake valve closing timing from the intake valve closing timing of conventional engines, in the medium and low speed range of the engine, the check valve can push back the intake air after the bottom dead center BDC of the piston intake stroke. By increasing the intake air filling amount and increasing the engine's output torque, and by replenishing the intake air after bottom dead center through the auxiliary intake valve in the engine's high-speed range, This is to prevent a drop in output.

以下図面を参照して本発明による実施例につき
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

第9図は本発明による第1実施例の吸気装置を
設けた機関の要部を示す説明図、第10図は第9
図の装置の吸気カムとタペツトローラを示す説明
図である。
FIG. 9 is an explanatory diagram showing the main parts of an engine provided with the intake system of the first embodiment according to the present invention, and FIG.
FIG. 3 is an explanatory diagram showing an intake cam and a tappet roller of the device shown in the figure.

図において、1はピストン、2はシリンダの燃
焼室、3は排気弁で、図示されない排気カムによ
つて開閉制御される。4は排気通路、5は排気タ
ーボ過給機のタービンで、排気通路4を通して排
気が導かれ、6は排気ターボ過給機のブロワでタ
ービン5と同一軸上に配されている。7はスロツ
トル弁、8は吸気通路、9は吸気弁で、吸気カム
13により吸気弁タペツトローラ14を介して図
示されていないロツカアームにより開閉制御され
る。
In the figure, 1 is a piston, 2 is a combustion chamber of a cylinder, and 3 is an exhaust valve, which is controlled to open and close by an exhaust cam (not shown). 4 is an exhaust passage, 5 is a turbine of an exhaust turbo supercharger, through which exhaust gas is guided, and 6 is a blower of the exhaust turbo supercharger, which is disposed on the same axis as the turbine 5. 7 is a throttle valve, 8 is an intake passage, and 9 is an intake valve, which are controlled to open and close by an intake cam 13 via an intake valve tappet roller 14 by a rocker arm (not shown).

10は補助吸気弁で、吸気カム13により補助
吸気弁タペツトローラ15を介して、図示されて
いない補助吸気弁ロツカアームにより開閉制御さ
れる。また、補助吸気弁タペツトローラ15は吸
気弁タペツトローラ14に対し、第10図に示す
ように、角度θだけ吸気カム13の回転に対して
進められた位置に配されている。なお、本実施例
では、吸気カム13を吸気弁9及び補助吸気弁1
0の開閉制御に共用しているが、新たに補助吸気
弁10の開閉制御専用の補助吸気弁カムを設けて
もよい。
Reference numeral 10 denotes an auxiliary intake valve whose opening and closing are controlled by an auxiliary intake valve rocker arm (not shown) by an intake cam 13 via an auxiliary intake valve tappet roller 15. Further, the auxiliary intake valve tappet roller 15 is arranged at a position advanced relative to the intake valve tappet roller 14 by an angle θ relative to the rotation of the intake cam 13, as shown in FIG. In this embodiment, the intake cam 13 is connected to the intake valve 9 and the auxiliary intake valve 1.
Although the auxiliary intake valve cam is commonly used for the opening/closing control of the auxiliary intake valve 10, a new auxiliary intake valve cam may be newly provided exclusively for the opening/closing control of the auxiliary intake valve 10.

11は補助吸気通路で、吸気通路8より分岐し
て設けられ、補助吸気弁10部に導かれている。
Reference numeral 11 denotes an auxiliary intake passage, which is branched from the intake passage 8 and led to the auxiliary intake valve 10 section.

12は逆止弁で、補助吸気通路11内に配置さ
れ、シリンダの燃焼室への吸気流れのみを許容す
るような、例えばリード弁のような構造となつて
いる。
Reference numeral 12 denotes a check valve, which is disposed within the auxiliary intake passage 11 and has a structure such as, for example, a reed valve that only allows intake air to flow into the combustion chamber of the cylinder.

上記構成の場合の作用について述べる。 The operation in the case of the above configuration will be described.

第11図に本実施例による場合の排気弁3、吸
気弁9及び補助吸気弁10の開口面積をクランク
角度に対して示す。
FIG. 11 shows the opening areas of the exhaust valve 3, intake valve 9, and auxiliary intake valve 10 in this embodiment with respect to the crank angle.

補助吸気弁10の開タイミングは吸気弁9の開
タイミングよりもクランク角度で2θだけ進めら
れている。
The opening timing of the auxiliary intake valve 10 is advanced by 2θ in terms of crank angle than the opening timing of the intake valve 9.

本実施例において得られる従来のものと異なる
作用は次の通りである。
The effects obtained in this embodiment that are different from the conventional ones are as follows.

1 機関の中低速域全負荷時には、第4図に示す
ように、排気行程の後半にて、吸気圧力に比べ
て排気圧力は低下しているため、第11図に斜
線で示す補助吸気弁10によるオーバラツプに
より第5図Bに示すような吸気の吹抜けが得ら
れ、燃焼室2内に残留していた排気が掃除さ
〓〓〓〓
れ、吸入効率が高くなつて充てん吸気量が増
す。
1 When the engine is under full load in the medium-low speed range, the exhaust pressure is lower than the intake pressure in the latter half of the exhaust stroke, as shown in Figure 4, so the auxiliary intake valve 10 shown with diagonal lines in Figure 11 is closed. Due to the overlap caused by this, a blow-through of the intake air as shown in Fig. 5B is obtained, and the exhaust gas remaining in the combustion chamber 2 is cleaned out.
This increases suction efficiency and increases the amount of intake air to be filled.

2 機関の高速域及び部分負荷時やアイドリング
時には、第6図に示すように、排気行程後半の
排気圧力は吸気圧力に比べて高いが、補助吸気
通路11内に設けられた逆止弁12によつて排
気の吹返しは阻止され、従来機関においてオー
バラツプを増した場合に生じるような吸入空気
量の減少や残留排気の増大は生じることはな
い。
2. When the engine is at high speed, under partial load, or idling, the exhaust pressure in the latter half of the exhaust stroke is higher than the intake pressure, as shown in Figure 6, but the check valve 12 installed in the auxiliary intake passage 11 As a result, blowback of exhaust gas is prevented, and the intake air amount does not decrease or the residual exhaust gas increases, which would occur if the overlap was increased in a conventional engine.

上述のような本実施例による場合は次の効果が
ある。
The present embodiment as described above has the following effects.

(1) 機関の中低速域全負荷時に、吸入空気量の増
大によつて、出力トルクの増大が得られる。
(1) When the engine is under full load in the medium and low speed range, the output torque can be increased by increasing the amount of intake air.

(2) かつ、高速域での空気量の減少や残留排気の
増大によつて生じる出力の低下や部分負荷時及
びアイドリング時での残留排気の増大によつて
生じる燃焼性能の悪化を伴なうことはない。
(2) In addition, this is accompanied by a decrease in output due to a decrease in air volume and an increase in residual exhaust gas at high speeds, and a deterioration in combustion performance due to an increase in residual exhaust gas during partial load and idling. Never.

本発明による第2実施例につき説明する。 A second embodiment of the present invention will be described.

第9図に示した第1実施例の場合と同一の構造
において、補助吸気弁10を図示されていない補
助吸気弁カムにより開閉制御し、また、その弁閉
止タイミングを従来機関の吸気弁閉止タイミング
とほぼ同一のタイミングとし、かつ、吸気弁9の
閉止タイミングをこれよりも進めたタイミングと
する。
In the same structure as the first embodiment shown in FIG. 9, the opening and closing of the auxiliary intake valve 10 is controlled by an auxiliary intake valve cam (not shown), and the valve closing timing is set to the intake valve closing timing of the conventional engine. The closing timing of the intake valve 9 is set to be approximately the same timing as the timing shown in FIG.

上記構成の場合の作用について述べる。 The operation in the case of the above configuration will be described.

第12図に本実施例による場合の排気弁3、吸
気弁9及び補助吸気弁10の開口面積をクランク
角度に対して示す。
FIG. 12 shows the opening areas of the exhaust valve 3, intake valve 9, and auxiliary intake valve 10 in accordance with this embodiment with respect to the crank angle.

本実施例において得られる従来のものと異なつ
た作用は以下の通りである。
The effects obtained in this embodiment that are different from the conventional ones are as follows.

(1) 機関の中低速域では、吸気弁9の閉止タイミ
ングが従来機関よりも進められており、かつ補
助吸気弁10が第12図斜線のように下死点
BDC後も開いているが、逆止弁が吸気の逆流
を阻止するために、第5図Bの吸気行程下死点
後に斜線で示したような吸気の押しもどしは生
じず、それだけ吸気の充てん量が増す。
(1) In the medium and low speed range of the engine, the closing timing of the intake valve 9 is advanced compared to the conventional engine, and the auxiliary intake valve 10 is closed at the bottom dead center as shown by the diagonal line in Figure 12.
Although it remains open after BDC, since the check valve prevents the intake air from flowing backward, the intake air is not pushed back as shown by the diagonal line after the bottom dead center of the intake stroke in Figure 5B, and the intake air is filled to that extent. The amount increases.

(2) 機関の高速域では、吸気行程下死点より早く
吸気弁が閉じられるが、補助吸気弁が開いてい
るために、第7図Bの吸気行程後半に見られる
ような吸気の充てん不足は生じず、下死点後も
補助吸気弁10を通して吸気の補充が行われる
ため充てん空気量の減少は生じない。
(2) In the high-speed range of the engine, the intake valve closes earlier than the bottom dead center of the intake stroke, but because the auxiliary intake valve is open, there is insufficient intake air filling as seen in the latter half of the intake stroke in Figure 7B. This does not occur, and since intake air is replenished through the auxiliary intake valve 10 even after bottom dead center, the amount of filled air does not decrease.

上述の実施例の場合には次の効果がある。 The above embodiment has the following effects.

(1) 機関の中低速域においては、吸入空気量の増
大によつて出力トルクの増大が得られる。
(1) In the medium and low speed range of the engine, an increase in the output torque can be obtained by increasing the amount of intake air.

(2) かつ、高速域での吸入空気量の減少を生じな
いために、高速域での出力の低下を伴なうこと
はない。
(2) Furthermore, since there is no reduction in the amount of intake air in the high-speed range, there is no reduction in output in the high-speed range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の4サイクル内燃機関の吸気装置
を示す説明図、第2図は第1図の機関の排気弁及
び吸気弁の開口面積を示す線図、第3図は第1図
の機関の吸気弁開弁時期を進めた場合の排気弁及
び吸気弁の開口面積を示す線図、第4図は機関の
中低速全負荷時の筒内圧、排気圧及び吸気圧の吸
排気行程中の変化を示す線図、第5図は第4図の
場合の吸排気弁部の通過ガス流量を示す線図、第
6図は機関の高速時の筒内圧、排気圧及び吸気圧
の吸排気行程中の変化を示す線図、第7図は第6
図の場合の吸排気弁部の通過ガス流量を示す線
図、第8図は吸気弁の開閉タイミングを進めた場
合の弁開口面積を示す線図、第9図は本発明によ
る第1実施例の吸気装置を設けた機関の要部を示
す説明図、第10図は第9図の機関の吸気カムと
タペツトローラとを示す説明図、第11図は第9
図の機関の排気弁、吸気弁及び補助吸気弁の開口
面積を示す線図、第12図は本発明による第2実
施例の吸気装置を設けた機関の排気弁、吸気弁及
び補助吸気弁の開口面積を示す線図である。 1…ピストン、2…燃焼室、3…排気弁、4…
排気通路、5…排気ターボ過給機のタービン、6
…排気ターボ過給機のブロワ、8…吸気通路、9
…吸気弁、10…補助吸気弁、11…補助吸気通
路、12…逆止弁。 〓〓〓〓
Figure 1 is an explanatory diagram showing the intake system of a conventional four-stroke internal combustion engine, Figure 2 is a diagram showing the opening areas of the exhaust valve and intake valve of the engine in Figure 1, and Figure 3 is the engine in Figure 1. Figure 4 is a diagram showing the opening areas of the exhaust valve and intake valve when the intake valve opening timing is advanced. Figure 5 is a diagram showing the flow rate of gas passing through the intake and exhaust valve section in the case of Figure 4. Figure 6 is a diagram showing the cylinder pressure, exhaust pressure, and intake pressure during the intake and exhaust stroke of the engine at high speed. A diagram showing the changes in the middle, Figure 7 is the 6th
Figure 8 is a diagram showing the flow rate of gas passing through the intake/exhaust valve section in the case shown in Fig. 8, Figure 8 is a diagram showing the valve opening area when the opening/closing timing of the intake valve is advanced, and Figure 9 is a diagram showing the first embodiment according to the present invention. FIG. 10 is an explanatory diagram showing the intake cam and tappet roller of the engine shown in FIG. 9, and FIG.
FIG. 12 is a diagram showing the opening areas of the exhaust valve, intake valve, and auxiliary intake valve of the engine shown in FIG. FIG. 3 is a diagram showing the opening area. 1...Piston, 2...Combustion chamber, 3...Exhaust valve, 4...
Exhaust passage, 5... Turbine of exhaust turbo supercharger, 6
...Exhaust turbo supercharger blower, 8...Intake passage, 9
...Intake valve, 10...Auxiliary intake valve, 11...Auxiliary intake passage, 12...Check valve. 〓〓〓〓

Claims (1)

【特許請求の範囲】[Claims] 1 シリンダに開口する吸気通路を開閉する吸気
弁と、上記シリンダに開口する排気通路を開閉す
る排気弁と、排気の導入により出力するタービン
と同タービンに駆動されて上記吸気通路へ空気を
圧送するブロワとにてなる排気ターボ過給機とを
有する4サイクル内燃機関において、上記吸気通
路より分岐して上記シリンダに開口する補助吸気
通路、開弁タイミングを上記吸気弁の開弁タイミ
ングより進めて同吸気弁の開閉タイミングと異な
る開閉タイミングにて上記補助吸気通路を開閉す
る補助吸気弁、上記補助吸気通路に設けられ上記
シリンダへの吸気流れのみを許容する逆止弁を備
えたことを特徴とする4サイクル内燃機関の吸気
装置。
1. An intake valve that opens and closes the intake passage that opens to the cylinder, an exhaust valve that opens and closes the exhaust passage that opens to the cylinder, and a turbine that outputs output by introducing exhaust gas and is driven by the same turbine to forcefully send air to the intake passage. In a four-stroke internal combustion engine having an exhaust turbocharger consisting of a blower, an auxiliary intake passage branching from the intake passage and opening into the cylinder, the opening timing of which is advanced from the opening timing of the intake valve, and the opening timing of the intake valve is the same. The present invention is characterized by comprising an auxiliary intake valve that opens and closes the auxiliary intake passage at an opening and closing timing different from the opening and closing timing of the intake valve, and a check valve that is provided in the auxiliary intake passage and allows only intake air to flow into the cylinder. Intake system for 4-stroke internal combustion engine.
JP8097080A 1980-06-17 1980-06-17 Intake device for 4-cycle internal combustion engine Granted JPS578316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8097080A JPS578316A (en) 1980-06-17 1980-06-17 Intake device for 4-cycle internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8097080A JPS578316A (en) 1980-06-17 1980-06-17 Intake device for 4-cycle internal combustion engine

Publications (2)

Publication Number Publication Date
JPS578316A JPS578316A (en) 1982-01-16
JPS6135367B2 true JPS6135367B2 (en) 1986-08-13

Family

ID=13733365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8097080A Granted JPS578316A (en) 1980-06-17 1980-06-17 Intake device for 4-cycle internal combustion engine

Country Status (1)

Country Link
JP (1) JPS578316A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122533U (en) * 1984-01-25 1985-08-19 マツダ株式会社 Intake valve control device for diesel engine with supercharger
JP2674077B2 (en) * 1988-04-12 1997-11-05 トヨタ自動車株式会社 Non-linear feedback control method for internal combustion engine

Also Published As

Publication number Publication date
JPS578316A (en) 1982-01-16

Similar Documents

Publication Publication Date Title
US5224460A (en) Method of operating an automotive type internal combustion engine
JP5116465B2 (en) Method for operating an internal combustion engine and internal combustion engine implementing the method
JP3446910B2 (en) 4 cycle engine
US5372108A (en) Engine charge control system and method
JPS6135367B2 (en)
JPH07127403A (en) Valve system for internal combustion engine
JP2662799B2 (en) Engine intake control device
JP3261328B2 (en) Variable cycle internal combustion engine
JPS6229612B2 (en)
JPS5851376Y2 (en) Scavenging device for crank chamber compression type 2-stroke engine
JPS58148227A (en) Intake device of multi-cylinder engine
JPS6030430Y2 (en) Internal combustion engine starting accelerator
JP3536519B2 (en) Intake valve control device and control method for internal combustion engine
JP3163587B2 (en) Valve train control device for internal combustion engine
US2737162A (en) Opposed piston two-stroke cycle internal combustion engines
JPS6131145Y2 (en)
JPS6123622Y2 (en)
JPS60147534A (en) Suction device for internal-combustion engine
JPH0619807Y2 (en) Engine scavenger
JPS5819307Y2 (en) 2-cycle engine intake system
JPH04365930A (en) Two cycle uniflow scavenging engine having two-step scavenging port
JPH07293255A (en) Intake structure of engine
JPH0223688B2 (en)
JPS5840270Y2 (en) Residual gas amount control device for internal combustion engines
KR790000950B1 (en) Method of controling the swirling air layers in the cylinder and combustion chamber of an air compressing mulfi-cylinder reciprocating internal combustion engine