JPS6135274Y2 - - Google Patents

Info

Publication number
JPS6135274Y2
JPS6135274Y2 JP9082382U JP9082382U JPS6135274Y2 JP S6135274 Y2 JPS6135274 Y2 JP S6135274Y2 JP 9082382 U JP9082382 U JP 9082382U JP 9082382 U JP9082382 U JP 9082382U JP S6135274 Y2 JPS6135274 Y2 JP S6135274Y2
Authority
JP
Japan
Prior art keywords
oxygen
water
settler
gas
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9082382U
Other languages
Japanese (ja)
Other versions
JPS583993U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9082382U priority Critical patent/JPS583993U/en
Publication of JPS583993U publication Critical patent/JPS583993U/en
Application granted granted Critical
Publication of JPS6135274Y2 publication Critical patent/JPS6135274Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

この考案は、種々の液体中に溶存する酸素を除
去するために使用される装置に関するものであ
る。ここで「溶存酸素の除去」とは、液面が空気
と接触した状態で到達する平衡状態における液相
中の酸素と窒素の含有率の比を基準として、酸素
の含有率を相対的に減少させることを指す。空気
との平衡状態において、常温の水は10〜15ppm
の窒素と5〜9ppmの酸素とを溶解状態で含有し
ており、したがつて酸素と窒素との比は重量で約
1:3〜1:1である。この考案によれば、酸素
の含有率を8ppm〜0まで減少させることができ
る。またこの窒素は他の不活性ガスたとえばヘリ
ウム、アルゴン、ネオンなど、またはこれらの混
合物によつて代替してもよい。 水を使用する多くの分野において、水中に溶存
する酸素が好ましくない影響をもたらすことか
ら、酸素含有率の低い水を得ることが望まれてい
る。たとえばボイラ用水の場合、溶存酸素はボイ
ラ内壁面の腐食を促進するので、ヒドラジン、
NaSO3等を加へて還元処理することによつて脱酸
素することが行われている。またジユース、牛乳
などの液体食品の場合には、溶存酸素による腐敗
の促進を防ぐために、加熱による脱酸素、低温滅
菌処理、炭酸水化あるいは防腐剤の添加などの処
理を欠かすことができない。清酒あるいはブドー
酒などの醸造製品の場合には、発酵によつて多少
の脱酸素が行われるが、その効果はわずかである
から、長期保存のためには防腐剤の添加が必要で
ある。すなわち食品の場合にも、充分な脱酸素が
行われ、あるいは脱酸素された水が使用できれ
ば、異物質の添加を必要とせずに、安全に長期保
存することができる。 この考案の目的は、液体中に溶存する酸素を除
去するための有効で経済的な装置を提供すること
である。この考案の装置においては、溶存酸素の
除去は、基本的には処理すべき液体に高純度窒素
ガスのような高純度不活性ガスを接触させること
によつて、溶存酸素を該不活性ガスで置換するこ
とによつて行われる。 つぎにこの考案の一実施例について図面を参照
して説明する。図中の符号1は軸心が垂直になる
ように配置された筒状の気密なバブラーを示し、
このバブラー1内に、その下端部のパイプ2か
ら、被処理液、すなわち溶存酸素を除去すべき液
体(以下「原水」という)が導入されるようにな
つている。またバブラー1の上端部に開口するパ
イプ3は、筒状をなす気密な筒体からなるセトラ
ー4の上端部に連通し、したがつてパイプ2から
バブラー1の底部に導入された原水は、バブラー
1内を上昇したのち、パイプ3を通つてセトラー
4内に流入する。またバブラー1内には、その上
端から下方に向けてパイプ5が突入し、このパイ
プ5の先端から、バブラー1内の原水に対して気
泡が送り込まれるようになつている。パイプ5か
ら送られるガスは、後で詳細に述べるように、高
濃度で窒素を含有し、かつ酸素をほとんど含有し
ないもので、したがつてバブラー1内の原水は、
この含窒素ガスと接触しながらバブラー1内を上
昇することになり、この過程で溶存酸素と窒素ガ
スとの置換が行われる。 バブラー1からパイプ3を通つてセトラー4内
に移行した原水は、すでに溶存酸素が高度に除去
されたものであり、したがつてセトラー4内で小
さい気泡を除去したのちにその下端部からパイプ
6を経て取出されたときには、酸素含有量のきわ
めて低い低酸素水となつている。なおパイプ6の
上端の高さは、セトラー4内における液面の高さ
を決定する。 一方、バブラー1内で原水から分離されたガス
は、パイプ7を経てセトラー4の上端部に導か
れ、セトラー4内で原水から分離されたガスとと
もにパイプ8を介して取出されたのち、高純度の
水素ガスの添加を受け、ついで水添触媒を充填し
た反応器9に導入される。この水素ガスの添加量
は、パイプ8内を流れるガスが含有している酸素
の含有量を酸素計10によつて測定し、この酸素
と反応して水を生成するのに必要な値を化学量論
的に算出し、この値を厳密に維持するように微量
調節されるようになつている。したがつて反応器
9内では、ガス中の酸素と水素とが過不足なく反
応して水を生成する反応が行われ、この反応生成
物がパイプ11を経てコンデンサ12に導入され
る。なお反応器9から出たガスがなお遊離の酸素
を含有しているかどうかを確認するために、パイ
プ11には酸素計13が設けられている。 コンデンサ12は、パイプ11を経て反応器9
から送られたガス中の水分を凝縮させるためのも
ので、凝縮した水は、トラツプ14で分離された
のちパイプ15を経てドレン溜り16に送られ、
残つたガスはポンプ17を有するパイプ5を経て
バブラー1内に高純度窒素ガスとして再循環供給
される。したがつてこの高純度窒素ガスは、実質
的に酸素および水素をほとんど含有していない。 なお処理水中の酸素含有量を監視するためにパ
イプ18、ポンプ19および酸素計20が、また
セトラー4内の圧力調整のためにパイプ21およ
び容器22が設けられ、系内への高純度窒素ガス
の補給はバルブ23を有するパイプ24から行わ
れる。 反応器9内における水添反応による酸素の除去
効率は、同一触媒では反応器9内に入るガス中の
酸素含有量に対する水素添加量に依存するので、
この水素添加量を増加させていけば、バブラー5
に供給される高純度窒素ガス中の酸素濃度が低下
し、したがつて処理水中の溶存酸素濃度も低下す
るが、水素添加量が過度になると、ガス中に水素
が蓄積する。処理水中の水素含有量が検出限界以
下であることを確めながら、図に示した溶存酸素
除去装置を使用して、 原水流入速度 2.22/分 溶存酸素濃度 7.96ppm 水 温 27℃ ガス循環量 10/分 の条件を一定とし、水素添加量だけを変化させた
ときのガス中の酸素濃度および処理水中の溶存酸
素濃度の変化を求める実験を行つた。実験結果を
下記の第1表に示す。
This invention relates to a device used to remove oxygen dissolved in various liquids. Here, "removal of dissolved oxygen" refers to a relative reduction in the oxygen content based on the ratio of the oxygen and nitrogen content in the liquid phase in the equilibrium state reached when the liquid surface is in contact with air. Refers to causing. In equilibrium with air, water at room temperature has a concentration of 10 to 15 ppm.
of nitrogen and 5 to 9 ppm of oxygen in solution, so that the oxygen to nitrogen ratio is about 1:3 to 1:1 by weight. According to this invention, the oxygen content can be reduced from 8 ppm to 0. The nitrogen may also be replaced by other inert gases such as helium, argon, neon, etc., or mixtures thereof. In many fields where water is used, it is desirable to obtain water with a low oxygen content, since oxygen dissolved in water has undesirable effects. For example, in the case of boiler water, dissolved oxygen promotes corrosion of the boiler inner wall surface, so hydrazine,
Deoxygenation is performed by adding NaSO 3 or the like to perform a reduction treatment. In addition, in the case of liquid foods such as juice and milk, in order to prevent accelerated spoilage due to dissolved oxygen, treatments such as deoxygenation by heating, low temperature sterilization, carbonation, or addition of preservatives are essential. In the case of brewed products such as sake or grape wine, some deoxidation occurs through fermentation, but the effect is small and preservatives must be added for long-term storage. That is, even in the case of food, if sufficient deoxidation is performed or deoxygenated water can be used, it is possible to safely store the food for a long period of time without the need to add foreign substances. The purpose of this invention is to provide an effective and economical device for removing oxygen dissolved in liquids. In the device of this invention, dissolved oxygen is basically removed by contacting the liquid to be treated with a high-purity inert gas such as high-purity nitrogen gas. This is done by substituting. Next, an embodiment of this invention will be described with reference to the drawings. Reference numeral 1 in the figure indicates a cylindrical airtight bubbler arranged so that its axis is vertical.
A liquid to be treated, that is, a liquid from which dissolved oxygen is to be removed (hereinafter referred to as "raw water") is introduced into the bubbler 1 from a pipe 2 at its lower end. Further, a pipe 3 that opens at the upper end of the bubbler 1 communicates with the upper end of a settler 4 made of an airtight cylindrical body, so that the raw water introduced from the pipe 2 to the bottom of the bubbler 1 is After ascending in 1, it flows into settler 4 through pipe 3. A pipe 5 extends downward from the upper end of the bubbler 1, and air bubbles are fed into the raw water in the bubbler 1 from the tip of the pipe 5. As will be described in detail later, the gas sent from the pipe 5 contains a high concentration of nitrogen and almost no oxygen, so the raw water in the bubbler 1 is
It rises in the bubbler 1 while coming into contact with this nitrogen-containing gas, and in this process, dissolved oxygen is replaced with nitrogen gas. The raw water that has passed from the bubbler 1 through the pipe 3 into the settler 4 has already had dissolved oxygen removed to a high degree. When the water is taken out after passing through the process, it becomes hypoxic water with extremely low oxygen content. Note that the height of the upper end of the pipe 6 determines the height of the liquid level in the settler 4. On the other hand, the gas separated from the raw water in the bubbler 1 is led to the upper end of the settler 4 through the pipe 7, and is taken out through the pipe 8 together with the gas separated from the raw water in the settler 4, and is then purified to high purity. of hydrogen gas, and then introduced into a reactor 9 filled with a hydrogenation catalyst. The amount of hydrogen gas to be added is determined by measuring the oxygen content of the gas flowing in the pipe 8 using an oxygen meter 10, and calculating the value necessary for reacting with this oxygen to produce water. It is calculated stoichiometrically and minutely adjusted to maintain this value strictly. Therefore, in the reactor 9, oxygen and hydrogen in the gas react in just the right amount to generate water, and this reaction product is introduced into the condenser 12 via the pipe 11. An oxygen meter 13 is provided in the pipe 11 in order to check whether the gas discharged from the reactor 9 still contains free oxygen. The condenser 12 is connected to the reactor 9 via the pipe 11.
The condensed water is separated by a trap 14 and then sent to a drain sump 16 via a pipe 15.
The remaining gas is recirculated as high purity nitrogen gas into the bubbler 1 via a pipe 5 with a pump 17. Therefore, this high purity nitrogen gas contains substantially no oxygen or hydrogen. In addition, a pipe 18, a pump 19, and an oxygen meter 20 are provided to monitor the oxygen content in the treated water, and a pipe 21 and a container 22 are provided to adjust the pressure in the settler 4. Replenishment takes place through a pipe 24 with a valve 23. The efficiency of removing oxygen by the hydrogenation reaction in the reactor 9 depends on the amount of hydrogen added to the oxygen content in the gas entering the reactor 9 with the same catalyst.
If this amount of hydrogen addition is increased, bubbler 5
The oxygen concentration in the high-purity nitrogen gas supplied to the reactor decreases, and therefore the dissolved oxygen concentration in the treated water also decreases, but if the amount of hydrogen added becomes excessive, hydrogen accumulates in the gas. While making sure that the hydrogen content in the treated water is below the detection limit, using the dissolved oxygen removal device shown in the figure, raw water inflow rate: 2.22/min Dissolved oxygen concentration: 7.96ppm Water temperature: 27℃ Gas circulation amount: 10 An experiment was conducted to determine the changes in the oxygen concentration in the gas and the dissolved oxygen concentration in the treated water when only the amount of hydrogen added was changed under the condition of 1/min. The experimental results are shown in Table 1 below.

【表】 以上の結果から、最終到達溶存酸素濃度は
66ppbであり、このときの水素添加量は32.6c.c./
分であることがわかる。 さらに、同様の構成を有する2基の溶存酸素除
去装置を水流に関して直列に並置し、一方の装置
で得られた処理水を原水として他方の装置で同様
の処理を行つた場合には、溶存酸素濃度を検出限
界以下まで低下させることが可能である(1段で
7.8ppm→50ppb、2段で50ppb→0)。このこと
は、本考案者等が先に発明した水素を用いない流
通系装置を4段もしくはそれ以上の多段に縦設し
たときに得られる溶存酸素除去効果が1段で可能
であり、10段以上でも不可能な検出限界以下の性
能が本考案では2段の装置で得られるということ
を示しており、又前発明で水素を用いた場合とく
らべても、本考案はほぼ完全に窒素を密閉系にし
た装置の場合の優秀性を示している。 以上に説明したようにこの考案によれば、還元
剤などの薬品を使用することなく高度な溶存酸素
除去率が達成され、特に2段程度の多段で検出限
界以下にしうるので広汎な分野に適用でき、とく
に食品および医薬品の製造にきわめて有用であ
る。しかも液体を機械的に撹拌することなく行え
るので、動力の点でも経済性が高い。
[Table] From the above results, the final dissolved oxygen concentration is
66ppb, and the amount of hydrogen added at this time was 32.6cc/
It turns out that it is a minute. Furthermore, if two dissolved oxygen removal devices with similar configurations are arranged in series in terms of water flow, and the treated water obtained by one device is used as raw water and the same treatment is performed in the other device, the dissolved oxygen It is possible to reduce the concentration to below the detection limit (in one step).
7.8ppm→50ppb, 2-stage 50ppb→0). This means that the dissolved oxygen removal effect obtained when the flow system device that does not use hydrogen, which was previously invented by the present inventors, is installed vertically in four or more stages, can be achieved in one stage, and it can be achieved in 10 stages. The above shows that the present invention can achieve performance below the detection limit, which is impossible to achieve, with a two-stage device.Also, compared to the previous invention, which used hydrogen, the present invention almost completely eliminates nitrogen. This shows the superiority of a closed system device. As explained above, this invention achieves a high degree of dissolved oxygen removal without using chemicals such as reducing agents, and can be applied to a wide range of fields, especially since it can be reduced to below the detection limit with as many as two stages. It is particularly useful in the production of food and medicine. Furthermore, since this can be done without mechanically stirring the liquid, it is highly economical in terms of power.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの考案の一実施例による溶存酸素除去
装置の構成を示す系統図である。 1……バブラー、3……パイプ、4……セトラ
ー、9……反応器、12……コンデンサ、14…
…トラツプ。
The drawing is a system diagram showing the configuration of a dissolved oxygen removal device according to an embodiment of this invention. 1...Bubbler, 3...Pipe, 4...Settler, 9...Reactor, 12...Condenser, 14...
...Trap.

Claims (1)

【実用新案登録請求の範囲】 (1) 内部に収容された原水中に高純度不活性ガス
を吹込む手段を有し、かつ原水を取入れる取入
れ口を有する気密なバブラーと、このバブラー
から取出された原水を貯留する気密なセトラー
と、このセトラーから酸素含有量の低い処理水
を取出す手段と、上記セトラーから取出したガ
スが含有している酸素量を測定する酸素計と、
上記セトラーから取出したガスに、上記酸素計
で測定された量の酸素と反応して水を生成する
のに必要で、かつ過剰でない量の超高純度水素
を添加する手段と、この混合ガス中に含まれて
いる酸素と水素とを反応させて水を生成させる
ための反応器と、この反応器を出たガス中の水
を除去する手段と、水を除去されたガスを上記
バブラーに高純度不活性ガスとして再循環する
手段と、上記バブラー内のガスを上記セトラー
内に移行させる手段とを備えた溶存酸素除去装
置。 (2) 上記溶存酸素除去装置を2基設け、一方の溶
存酸素除去装置のセトラーから取出した処理水
を他方の溶存酸素除去装置に原水として供給す
るように構成した実用新案登録請求の範囲第1
項記載の溶存酸素除去装置。
[Claims for Utility Model Registration] (1) An airtight bubbler having a means for blowing high-purity inert gas into the raw water contained therein and having an intake port for introducing the raw water, and an airtight settler for storing the treated raw water; a means for extracting treated water with a low oxygen content from the settler; and an oxygen meter for measuring the amount of oxygen contained in the gas extracted from the settler;
means for adding to the gas taken out from the settler an amount of ultra-high purity hydrogen that is necessary and not excessive to react with the amount of oxygen measured by the oxygen meter to produce water; a reactor for producing water by reacting oxygen and hydrogen contained in the reactor; a means for removing water from the gas exiting the reactor; Dissolved oxygen removal apparatus comprising means for recycling as a pure inert gas and means for transferring gas within said bubbler into said settler. (2) Utility model registration claim No. 1 in which two dissolved oxygen removal devices are provided, and the treated water taken out from the settler of one dissolved oxygen removal device is supplied as raw water to the other dissolved oxygen removal device.
Dissolved oxygen removal device as described in section.
JP9082382U 1982-06-17 1982-06-17 Dissolved oxygen removal equipment Granted JPS583993U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9082382U JPS583993U (en) 1982-06-17 1982-06-17 Dissolved oxygen removal equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9082382U JPS583993U (en) 1982-06-17 1982-06-17 Dissolved oxygen removal equipment

Publications (2)

Publication Number Publication Date
JPS583993U JPS583993U (en) 1983-01-11
JPS6135274Y2 true JPS6135274Y2 (en) 1986-10-14

Family

ID=29885925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9082382U Granted JPS583993U (en) 1982-06-17 1982-06-17 Dissolved oxygen removal equipment

Country Status (1)

Country Link
JP (1) JPS583993U (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4959742B2 (en) * 2009-03-26 2012-06-27 株式会社神鋼環境ソリューション Digestion gas deoxygenation method and apparatus
JP4909371B2 (en) * 2009-03-31 2012-04-04 株式会社神鋼環境ソリューション Digestion gas deoxygenation method and apparatus
JP5662686B2 (en) * 2010-01-25 2015-02-04 パナソニックIpマネジメント株式会社 Plant cultivation equipment

Also Published As

Publication number Publication date
JPS583993U (en) 1983-01-11

Similar Documents

Publication Publication Date Title
US5180403A (en) Method for vacuum deaeration
US5017348A (en) Treatment of nitrogen oxides
DK166194B (en) METHOD AND PLANT FOR TREATMENT OF LIQUID GAS MIXTURES
JPS5929521B2 (en) Manufacturing method of purified hydrochloric acid
JPS6135274Y2 (en)
EP0788999B1 (en) Process for the manufacture of nitric oxide
US4900336A (en) Method of preferentially removing oxygen from ozonated water
KR101675947B1 (en) Device for producing high purity sulfuric acid
US2047550A (en) Regeneration of copper ammonia solutions used to absorb carbon oxides and oxygen
JPH03119975A (en) Method and apparatus for treating product by gas
ES245964A1 (en) Vertical tube evaporators with downward pressure liquid flow
US2927028A (en) Impregnating liquids with gas
JPS63224785A (en) Hydrolysis of urea
US3494737A (en) Process for the preparation of hydrazine by tray column fractionation
KR100860779B1 (en) Apparatus producing chlorine dioxide and method for chlorine dioxide production using the same
US5061302A (en) Dissolved gas stripping apparatus
US2361695A (en) Method for the fermentationless conservation of fruit-, grape-, and greens-juices
GB1577214A (en) Production of deoxygenated water for use in brewing
KR102574793B1 (en) Propylene purification method and purification equipment
JPH11262782A (en) Highly concentrated ozone water making apparatus
WO1989001042A1 (en) Process for concentrating and purifying alcohol and apparatus therefor
JPS6168107A (en) Deaeration apparatus
US1935658A (en) Method for purifying ether
EP0343512B1 (en) Process for the oxidation of hydrocarbons utilizing partitioning of oxidizing gas
US3172724A (en) Production of stannous fluoride