JPS6135239B2 - - Google Patents

Info

Publication number
JPS6135239B2
JPS6135239B2 JP12510377A JP12510377A JPS6135239B2 JP S6135239 B2 JPS6135239 B2 JP S6135239B2 JP 12510377 A JP12510377 A JP 12510377A JP 12510377 A JP12510377 A JP 12510377A JP S6135239 B2 JPS6135239 B2 JP S6135239B2
Authority
JP
Japan
Prior art keywords
arsenic
catalyst
oxidation
gasoline
experiment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12510377A
Other languages
Japanese (ja)
Other versions
JPS5460302A (en
Inventor
Shoichiro Mori
Nobuhiro Sakaguchi
Hideyuki Takahashi
Yoshizo Ozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP12510377A priority Critical patent/JPS5460302A/en
Publication of JPS5460302A publication Critical patent/JPS5460302A/en
Publication of JPS6135239B2 publication Critical patent/JPS6135239B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本願発明は砒素を含有する石油留分を、貴金属
を触媒とする反応工程に使用する場合の、該含砒
素石油留分の砒素の酸化処理に関するものであ
る。その目的は上記石油留分中に含まれる砒素の
貴金属触媒に対する毒作用を軽減した反応工程を
新規に提供するにある。 本願明細書に記載の石油留分とは石油、直留ナ
フサ、灯油、軽油、減圧留出物、常圧残渣油など
の他エチレンプラントの熱分解装置で副生された
熱分解ガソリン、又コーカー及びビスブレーカー
などにより熱処理を受けた炭化水素油、さらには
接触分解装置で生成されたナフサ留分、リサイク
ル油など幅広い炭化水素油を意味する。 又本願明細書に記載の砒素とは、砒素元素を一
つの構成元素とする化合物を意味するものであ
る。但し本願明細書に記載された次の文言、即砒
素元素、砒素化合物、砒素濃度及び砒素付着量に
おける砒素は勿論砒素自身を意味し、砒素化合物
を意味するものではない。 石油留分には微量の砒素が含有されるものが多
い。その形態は留分により差があるがアルシン及
び有機砒素化合物などが考えられる。石油留分よ
り種々の石油化学原料或は石油化学製品を製造す
る工程において、この微量の砒素はその含量にも
よるが、触媒に対する毒物として作用するとか、
或は水蒸気熱分解する際のコーキングを促進する
等、各種の工程に支障を及ぼす場合が多い。例え
ば直留ナフサ又は灯軽油の熱分解副生ガソリン
(以下分解ガソリンと略称する)より芳香族化合
物のベンゼン、トルエン及びキシレンを製造する
工程において、砒素は分解ガソリン中に含まれる
〓〓〓〓〓
ジオレフインのオレフインへの水添処理に使用す
るパラジウム触媒に対して毒物として作用し、そ
の活性を急激に低下せしめる如きである。一般に
砒素は触媒に対して大きな毒性を有し、特に水素
化、脱水素等に用いられるPt,Pdのような貴金
属系触媒の活性を著しく低下せしめる。従つて特
に貴金属系触媒を用いる処理プロセスにおいては
前もつて原料中の砒素を除去することが不可欠で
あつた。 従来石油留分中の脱砒素方法に関し次に述べる
様な各種の技術が開示されている。 (1) 水素化脱硫処理を行なつて硫黄と共に砒素を
除去する方法。 (2) 塩基性化合物との接触方法(USP
2779715)。この方法では塩基性化合物としてア
ルカリ金属或はアルカリ土類金属の化合物を使
用する。 (3) 銅及び(或は)起電力が銅より低い金属の塩
との接触方法(USP 2781297) (4) 3個の付加した基と1個の不対電子を含有す
る窒素化合物(例えば水性アンモニア、ヒドラ
ジン、アルカノルアミン)との接触方法(USP
2867577) (5) 酸を含浸した担体との接触方法 (USP 3093574) (6) 活性炭との接触方法(USP 3542669) 本発明者は石油留分に含有される砒素の貴金属
触媒に対する毒作用につき鋭意研究を取進めた結
果、次の事実を見出し本発明を完成した。即それ
は石油留分中に含まれる砒素を適当な方法で酸化
処理すれば、これを除去しないでも該含砒素石油
留分を貴金属触媒を利用する反応工程に使用した
場合、意外にも貴金属触媒に対する毒作用が著し
く減少することである。 本発明における酸化の手段は、第1に酸素を含
むガス体例えば空気を使用する方法である。この
方法につき含砒素分解ガソリンを例にとつて以下
説明する。 まず分解ガソリンを適当な容器で空気と接触さ
せて、空気中の酸素により砒素を酸化生成物に直
接変化せしめる。又同時に酸素が分解ガソリン中
に含まれているオレフイン、ジオレフインなどと
反応し、過酸化物を副生し、その副生過酸化物が
砒素の酸化に寄与することもある。またごく微量
のラジカル開始剤として、例えばアゾビスイソブ
チロニトリル等を、あるいは酸素と容易に反応し
過酸化物を容易に生成するものとして、例えばア
セトアルデヒドやアセトン等を添加すると、酸化
は一層円滑に進行する。反応温度は常温〜150℃
程度で、砒素除去率見合で調節すればよい。酸化
後は石油留分中に溶存する空気を脱気するのが好
ましい。 石油留分中の砒素を酸化する第2の手段は、有
機過酸化物を使用する方法である。ここで言う有
機過酸化物とは―O―O―結合を有する有機化合
物を総称するものであり、ヒドロ過酸化物、過カ
ルボン酸、過酸化ジアルキル、過酸化ジアシル、
過酸化エステルなどをさす。これらの有機過酸化
物はその物性に応じて適当な溶媒で希釈して使用
することも出来る。有機過酸化物としては例えば
クメン・ハイドロパーオキサイド(以下CHPと
略記する)、ラウロイル・パーオキサイド、ジイ
ソプロピルベンゼン・ハイドロパーオキサイド、
P―メンタン・ハイドロパーオキサイドなどであ
る。これらを使用する場合はガムと呼ばれる重合
物の生成も少ない。従つて有機過酸化物を用いて
酸化する方法は好ましい方法である。特にCHP
はクメン法のフエノール製造の中間体として容易
に入手することができ、また熱的にも比較的に安
定な化合物で好ましい酸化剤である。 石油留分中の砒素を酸化するその他の手段とし
て、一般の無機酸化剤を使用し、常温〜200℃で
処理する方法がある。無機酸化剤としては、
H2O2、次亜塩素酸、KMnO4、無機過酸化物など
があげられる。 本発明による含砒素石油留分の貴金属触媒に対
する毒作用を軽減する方法は砒素を除去する方法
に比しはるかに経済的で画期的な方法ということ
が出来る。 以下本発明をその実施例につき説明する。 モデル 実験 酸化処理した砒素の触媒に対する毒性をみる為
に次に記載する一連のモデル実験(実験1〜3)
を行い本発明の反応機構を確かめた。 実験1ではエチレンプラントから製出した熱分
解ガソリン(ジエン値DV18、臭素価Br.No.41、全
硫黄100wt ppm、砒素検出されず)100mlをSUS
製オートクレープに仕込みパラジウム触媒
〓〓〓〓〓
(Pd0.3wt%、担体γ―Al2O3)1gを用いて反応
温度50℃、反応圧力50Kg/cm2―G(H2加圧下)、
反応時間20分の条件下で水添処理し、水添油のジ
エン値を測定した。 (ジエン値の測定は、無水マレイン酸法によつ
た。以下同様である。) 実験2ではトリフエニルアルシン(Asφ
濃度300wt ppmを有するトルエン溶液100mlを調
製し、この液を実験1で用いたオートクレーブに
仕込み、この液でパアラジウム触媒1gを60℃、
50Kg/cm2―G(H2加圧下)で2時間被毒処理し
た。次ぎにオートクレーブから触媒被毒に用いた
トリフエニルアルシンのトルエン溶液を完全に抜
き出し(但し被毒した触媒はオートクレーブ中に
残しておく)、実験1で用いたのと同じ熱分解ガ
ソリンを100ml仕込み実験1と同一条件で水添処
理を行い、水添油のジエン値及び触媒に吸着され
た砒素含素量を測定した。 実験3ではトリフエニルアルシン(Asφ
濃度300wt ppmを有するトルエン溶液100mlの入
つたフラスコにクメンハイドロパーオキサイドを
750wtppm(CHP/As=5モル/モル)になる
様に添加し、常圧、60℃H2気流中で2時間、ト
リフエニルアルシンとクメンハイドロパーオキサ
イドを反応させた。次ぎにこの液を用いて実験2
と同じ方法で触媒被毒処理を行つた後、熱分解ガ
ソリンの水添処理を行い、水添油のジエン値の測
定及び触媒に吸着された砒素元素量を測定した。 なお実験2及び実験3では液の仕込み、抜き出
し操作及び触媒の取り扱いはアルゴンあるいは
H2気流中で行い空気に触れないよう注意した。 表―1に各実験で得られた水添油のジエン値及
び使用触媒から検出された砒素元素量、さらに触
媒活性を比較するため、ジエン値の減少率(DV0
―DV)/DV0(DV0は原料油のジエン値、DVは
水添油のジエン値)を示した。
The present invention relates to arsenic oxidation treatment of an arsenic-containing petroleum fraction when the petroleum fraction containing arsenic is used in a reaction step using a noble metal as a catalyst. The purpose is to provide a new reaction process in which the poisonous effect of arsenic contained in the petroleum fraction on the noble metal catalyst is reduced. The petroleum fractions described in this specification include petroleum, straight-run naphtha, kerosene, light oil, vacuum distillate, atmospheric residual oil, etc., as well as pyrolysis gasoline by-produced in the pyrolysis equipment of an ethylene plant, and coker. It refers to a wide range of hydrocarbon oils, including hydrocarbon oils that have been heat-treated using vis-breakers, naphtha fractions produced in catalytic crackers, and recycled oils. Furthermore, the term "arsenic" as used herein refers to a compound containing elemental arsenic as one of its constituent elements. However, the arsenic in the following phrases, i.e., arsenic element, arsenic compound, arsenic concentration, and arsenic adhesion amount described in this specification, of course means arsenic itself and does not mean an arsenic compound. Many petroleum distillates contain trace amounts of arsenic. Although its form differs depending on the fraction, arsine and organic arsenic compounds can be considered. In the process of manufacturing various petrochemical raw materials or petrochemical products from petroleum fractions, this trace amount of arsenic may act as a poison to the catalyst, depending on its content.
Alternatively, it often interferes with various processes, such as promoting coking during steam pyrolysis. For example, in the process of producing aromatic compounds benzene, toluene, and xylene from straight-run naphtha or kerosene byproduct gasoline (hereinafter referred to as cracked gasoline), arsenic is contained in the cracked gasoline.
It appears to act as a poison to the palladium catalyst used in the hydrogenation process of diolefin to olefin, rapidly reducing its activity. Generally, arsenic is highly toxic to catalysts, and in particular it significantly reduces the activity of noble metal catalysts such as Pt and Pd used for hydrogenation, dehydrogenation, etc. Therefore, it has been essential to remove arsenic from the raw materials in advance, especially in treatment processes using noble metal catalysts. Conventionally, various techniques as described below have been disclosed regarding methods for removing arsenic from petroleum fractions. (1) A method of removing arsenic along with sulfur through hydrodesulfurization treatment. (2) Method of contact with basic compounds (USP
2779715). In this method, an alkali metal or alkaline earth metal compound is used as the basic compound. (3) Method of contacting copper and/or salts of metals with lower electromotive force than copper (USP 2781297) (4) Nitrogen compounds containing three additional groups and one unpaired electron (e.g., aqueous Ammonia, Hydrazine, Alkanolamines) (USP)
2867577) (5) Method of contact with acid-impregnated carrier (USP 3093574) (6) Method of contact with activated carbon (USP 3542669) As a result of conducting research, the following facts were discovered and the present invention was completed. That is, if the arsenic contained in the petroleum fraction is oxidized by an appropriate method, even if it is not removed, when the arsenic-containing petroleum fraction is used in a reaction process that uses a precious metal catalyst, it will be surprisingly effective against the precious metal catalyst. The toxic effect is significantly reduced. The means of oxidation in the present invention is firstly a method using a gas containing oxygen, such as air. This method will be explained below using arsenic-containing decomposed gasoline as an example. First, the cracked gasoline is brought into contact with air in a suitable container, and the oxygen in the air converts the arsenic directly into oxidation products. At the same time, oxygen reacts with olefins, diolefins, etc. contained in the cracked gasoline, producing peroxide as a by-product, and the by-product peroxide may contribute to the oxidation of arsenic. In addition, the oxidation process can be further facilitated by adding a very small amount of a radical initiator, such as azobisisobutyronitrile, or a substance that easily reacts with oxygen to easily generate peroxides, such as acetaldehyde or acetone. Proceed to. Reaction temperature is room temperature to 150℃
It may be adjusted according to the arsenic removal rate. After oxidation, it is preferable to degas the air dissolved in the petroleum fraction. A second means of oxidizing arsenic in petroleum fractions is the use of organic peroxides. The organic peroxide referred to here is a general term for organic compounds having an -O-O- bond, and includes hydroperoxides, percarboxylic acids, dialkyl peroxides, diacyl peroxides,
Refers to peroxide esters, etc. These organic peroxides can also be used after being diluted with an appropriate solvent depending on their physical properties. Examples of organic peroxides include cumene hydroperoxide (hereinafter abbreviated as CHP), lauroyl peroxide, diisopropylbenzene hydroperoxide,
Examples include P-menthane hydroperoxide. When these are used, the formation of a polymer called gum is also reduced. Therefore, oxidation using an organic peroxide is a preferred method. Especially CHP
It is easily available as an intermediate for the production of phenol using the cumene process, and is also a relatively thermally stable compound and is a preferred oxidizing agent. Another method for oxidizing arsenic in petroleum fractions is to use a common inorganic oxidizing agent and treat the arsenic at room temperature to 200°C. As an inorganic oxidizing agent,
Examples include H 2 O 2 , hypochlorous acid, KMnO 4 , and inorganic peroxides. The method of reducing the poisonous effect of arsenic-containing petroleum fractions on noble metal catalysts according to the present invention can be said to be a much more economical and innovative method than the method of removing arsenic. The present invention will be explained below with reference to its embodiments. Model Experiment A series of model experiments (Experiments 1 to 3) are described below to examine the toxicity of oxidized arsenic to the catalyst.
The reaction mechanism of the present invention was confirmed. In Experiment 1, 100ml of pyrolyzed gasoline produced from an ethylene plant (diene value DV18, bromine value Br.No.41, total sulfur 100wt ppm, no arsenic detected) was used as SUS.
Palladium catalyst prepared in autoclave
Using 1 g of (Pd0.3wt%, carrier γ-Al 2 O 3 ), the reaction temperature was 50°C, the reaction pressure was 50 Kg/cm 2 -G (under pressure of H 2 ),
Hydrogenation was performed under conditions of a reaction time of 20 minutes, and the diene value of the hydrogenated oil was measured. (The diene value was measured by the maleic anhydride method. The same applies hereinafter.) In Experiment 2, triphenylarsine (Asφ 3 )
Prepare 100 ml of a toluene solution with a concentration of 300 wt ppm, charge this solution into the autoclave used in Experiment 1, and use this solution to heat 1 g of paraladium catalyst at 60°C.
It was poisoned with 50Kg/cm 2 -G (under pressure of H 2 ) for 2 hours. Next, the toluene solution of triphenylarsine used for catalyst poisoning was completely extracted from the autoclave (however, the poisoned catalyst remained in the autoclave), and 100 ml of the same pyrolysis gasoline used in Experiment 1 was charged into the experiment. Hydrogenation treatment was performed under the same conditions as in Example 1, and the diene value of the hydrogenated oil and the arsenic content adsorbed on the catalyst were measured. In experiment 3, triphenylarsine (Asφ 3 )
Add cumene hydroperoxide to a flask containing 100 ml of toluene solution with a concentration of 300 wt ppm.
Triphenylarsine and cumene hydroperoxide were added to give a concentration of 750 wtppm (CHP/As = 5 mol/mol), and reacted with triphenylarsine in a H 2 stream at 60° C. for 2 hours at normal pressure. Next, experiment 2 using this solution
After the catalyst was poisoned in the same manner as above, the pyrolyzed gasoline was hydrogenated, and the diene value of the hydrogenated oil and the amount of arsenic adsorbed on the catalyst were measured. In Experiments 2 and 3, liquid charging and extraction operations and catalyst handling were performed using argon or argon gas.
The test was carried out in a H 2 stream, and care was taken not to expose it to air. Table 1 shows the diene value of hydrogenated oil obtained in each experiment, the amount of arsenic detected in the catalyst used, and the reduction rate of diene value (DV 0
-DV)/DV 0 (DV 0 is the diene value of the feedstock oil, DV is the diene value of the hydrogenated oil).

【表】 以上のモデル実験結果を総合すると、石油留分
に含有される有機砒素化合物は酸化処理により、
その貴金属水添触媒に対する毒作用が著しく弱め
られることが明らかである。 以下比較例及び実施例により本発明の構成及び
効果を一層明らかにする。 比較例 砒素濃度1.2wt ppmを有するエチレンプラン
トから製出した熱分解ガソリン(ジエン値20、臭
素価42、ベンゼン32wt%、トルエン23wt%、C8
芳香族18.5%、C9芳香族2.5wt%、全硫黄含有量
150wtppm、実在ガム量12mg/100ml)を流通式
高圧反応器(SUS製)を用いてパラジウム触媒で
連続的に水添反応処理した。条件は下記の通りで
あつた。 触媒:パラジウム触媒 (Pd0.3wt%、担体γ―Al2O3) 反応温度:90℃ 反応圧力:50Kg/cm2―G(H2気流中) LHSV:3hr-1 通油時間:30日間 運転開始から終了までの触媒活性の経時的変化
は原料熱分解ガソリンのジエン値DV0と水添処理
油のジエン値DVから求められるジエン値の減少
率(DV0―DV)/DV0から判断した。 実施例 比較例で用いた熱分解ガソリンを下記の通り酸
化処理し、得られた処理油を用いて比較例と同じ
反応条件下で連続水添反応実験をおこなつた。 熱分解ガソリンの酸化処理は、円筒型の容器に
〓〓〓〓〓
熱分解ガソリンを仕込み、撹拌しながら容器の底
より、空気を常温常圧下で10/Hrの流速で1
時間吹き込むことにより行つた。 熱分解ガソリンは酸化処理により油中の実在ガ
ム分が17mg/100mlオイルに増加したが、それ以
外の性状には変化が認められなかつた。 表―2に比較例及び実施例で求められた運転開
始から5日目、10日目、15日目、30日目それぞれ
におけるジエン値の減少率(DV0―DV)/DV0
を示す。
[Table] Combining the above model experiment results, organic arsenic compounds contained in petroleum fractions are reduced by oxidation treatment.
It is clear that its poisonous effect on noble metal hydrogenation catalysts is significantly weakened. The structure and effects of the present invention will be further clarified by the following comparative examples and examples. Comparative example Pyrolysis gasoline produced from an ethylene plant with an arsenic concentration of 1.2 wt ppm (diene value 20, bromine value 42, benzene 32 wt%, toluene 23 wt%, C 8
Aromatic 18.5%, C9 aromatic 2.5wt%, total sulfur content
150 wtppm, actual gum amount 12 mg/100 ml) was subjected to a continuous hydrogenation reaction treatment with a palladium catalyst using a flow type high pressure reactor (made of SUS). The conditions were as follows. Catalyst: Palladium catalyst (Pd0.3wt%, support γ-Al 2 O 3 ) Reaction temperature: 90℃ Reaction pressure: 50Kg/cm 2 -G (in H 2 gas flow) LHSV: 3hr -1 Oil passage time: 30 days Operation Changes in catalyst activity over time from the start to the end were determined from the diene value reduction rate (DV 0 - DV)/DV 0 , which was determined from the diene value DV 0 of the raw material pyrolysis gasoline and the diene value DV of the hydrogenated oil. . Example The pyrolysis gasoline used in the comparative example was oxidized as described below, and the resulting treated oil was used to conduct a continuous hydrogenation reaction experiment under the same reaction conditions as in the comparative example. The oxidation treatment of pyrolysis gasoline is carried out in a cylindrical container.
Pyrolyzed gasoline is charged, and while stirring, air is pumped in from the bottom of the container at a flow rate of 10/Hr at room temperature and normal pressure.
This was done by injecting time. The actual gum content of the pyrolyzed gasoline increased to 17mg/100ml oil through oxidation treatment, but no other changes were observed in the properties. Table 2 shows the reduction rate of diene value (DV 0 - DV)/DV 0 on the 5th day, 10th day, 15th day, and 30th day from the start of operation determined in the comparative example and the example.
shows.

【表】 比較例の結果は触媒の活性が経時的に低下して
いることを示す。実施例の結果は運転開始当初は
若干触媒活性の低下が認められるが10日目以降は
ほぼ一定で活性の低下は認められない。 なお比較例及び実施例で用いた触媒の砒素付着
量を測定したが前者で890wt ppm 後者で
1030wt ppm であつた。 〓〓〓〓〓
[Table] The results of the comparative example show that the activity of the catalyst decreases over time. The results of the examples show that a slight decrease in catalyst activity is observed at the beginning of operation, but after the 10th day, the activity remains almost constant and no decrease in activity is observed. The amount of arsenic deposited on the catalysts used in the comparative examples and examples was measured, and the amount of arsenic deposited on the catalysts was 890 wt ppm in the former and 890 wt ppm in the latter.
It was 1030wt ppm. 〓〓〓〓〓

Claims (1)

【特許請求の範囲】 1 石油留分中の砒素を酸化処理した後、該含砒
素石油留分を、貴金属を触媒とする反応工程に使
用する方法。 2 酸化に、酸素を含むガスを使用する特許請求
の範囲第1項記載の方法。 3 酸化に、有機過酸化物を使用する特許請求の
範囲第1項記載の方法。 4 酸化に、無機酸化剤を使用する特許請求の範
囲第1項記載の方法。
[Scope of Claims] 1. A method of oxidizing arsenic in a petroleum fraction and then using the arsenic petroleum fraction in a reaction step using a noble metal as a catalyst. 2. The method according to claim 1, wherein a gas containing oxygen is used for oxidation. 3. The method according to claim 1, wherein an organic peroxide is used for the oxidation. 4. The method according to claim 1, wherein an inorganic oxidizing agent is used for the oxidation.
JP12510377A 1977-10-20 1977-10-20 Treatment of arsenic-containing petroleum cut Granted JPS5460302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12510377A JPS5460302A (en) 1977-10-20 1977-10-20 Treatment of arsenic-containing petroleum cut

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12510377A JPS5460302A (en) 1977-10-20 1977-10-20 Treatment of arsenic-containing petroleum cut

Publications (2)

Publication Number Publication Date
JPS5460302A JPS5460302A (en) 1979-05-15
JPS6135239B2 true JPS6135239B2 (en) 1986-08-12

Family

ID=14901914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12510377A Granted JPS5460302A (en) 1977-10-20 1977-10-20 Treatment of arsenic-containing petroleum cut

Country Status (1)

Country Link
JP (1) JPS5460302A (en)

Also Published As

Publication number Publication date
JPS5460302A (en) 1979-05-15

Similar Documents

Publication Publication Date Title
US6827845B2 (en) Preparation of components for refinery blending of transportation fuels
US3341448A (en) Desulphurization of hydrocarbons using oxidative and hydro-treatments
KR101432857B1 (en) Oxidative Desulfurization And Denitrogenation of Petroleum Oils
US3719589A (en) Asphalt separation in desulfurization with an oxidation step
KR890003657B1 (en) Continuous process for mercaptan extraction from a highly olefinic feed stream
US6673230B2 (en) Process for oxygenation of components for refinery blending of transportation fuels
US2116061A (en) Purification of mineral oils, tars, their distillation products, and the like
US6469223B2 (en) Selective hydrogenation of dienes
JP3841226B2 (en) Method for recovering ruthenium catalyst activity
US20020148754A1 (en) Integrated preparation of blending components for refinery transportation fuels
US2779715A (en) Process for removing arsenic from a hydrocarbon feed oil used in a reforming process employing a noble metal as a catalyst
KR950006798B1 (en) Preparation of cyclohexanone and cyclohexanol
US3617505A (en) Hydroconversion of asphaltenes with a coke promoter
AU746315B2 (en) Esterification of acidic crudes
JPS6135239B2 (en)
AU2004293779B2 (en) Preparation of components for refinery blending of transportation fuels
US3953323A (en) Process for reduction of olefinic unsaturation of pyrolysis naphtha (dripolene)
JPS609549B2 (en) Method for removing arsenic from petroleum fractions
JP2001322953A (en) Method for removing organic sulfur compound
US3105812A (en) Process of removing nitrogen compounds by oxidation
EP0213026B1 (en) Process to regenerate a catalyst used in a hydrocarbon feedstock sweetening process
EP1205531A1 (en) Process for hydrotreatment of hydrocarbon mixtures rich in olefines and aromatics
US3162595A (en) Cracking of heavy hydrocarbons
US3198843A (en) Purification of glycerine
JP3851372B2 (en) Desulfurization method for catalytic cracking gasoline