JPS6134997A - Method of producing radio wave absorber - Google Patents
Method of producing radio wave absorberInfo
- Publication number
- JPS6134997A JPS6134997A JP5044484A JP5044484A JPS6134997A JP S6134997 A JPS6134997 A JP S6134997A JP 5044484 A JP5044484 A JP 5044484A JP 5044484 A JP5044484 A JP 5044484A JP S6134997 A JPS6134997 A JP S6134997A
- Authority
- JP
- Japan
- Prior art keywords
- radio wave
- paint
- parts
- thickness
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Aerials With Secondary Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はマイクロ波帯の電波を吸収し、その反射を抑制
し得る電波吸収体に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a radio wave absorber capable of absorbing microwave band radio waves and suppressing their reflection.
(従来技術とその問題点)
従来から、船舶・航空機・車輌・建築物あるいは鉄塔等
の電波反射体の反射電波を抑制する目的を持って、刻反
射体上に磁性体板、抵抗体板等の接着、あるいけフェラ
イト等の磁性粉末、カーボンブラック等の導電性粉末を
樹脂または樹脂溶液中に分散せしめた電波吸収材を規定
の厚さに塗布あるいけ接着等の手段で構造物表面に装着
して、前記目標を達成する試みがなされている。(Prior art and its problems) Traditionally, magnetic plates, resistor plates, etc. have been placed on the reflector for the purpose of suppressing reflected radio waves from radio wave reflectors such as ships, aircraft, vehicles, buildings, or steel towers. A radio wave absorbing material made by dispersing magnetic powder such as ferrite or conductive powder such as carbon black in a resin or resin solution is applied to the surface of a structure by means such as applying or adhering to a specified thickness. Attempts have been made to achieve this goal.
所定の電波吸収性能を得るためには、電波吸収材の組成
とともに特開昭1”’55−36987 J 、特許願
「56−109686 J に記載されているように電
波吸収材を規定厚みに制御することが必要である。In order to obtain a predetermined radio wave absorption performance, the composition of the radio wave absorbing material and the thickness of the radio wave absorbing material are controlled to a specified value as described in Japanese Patent Application Laid-open No. 1"'55-36987 J and Patent Application "56-109686 J. It is necessary to.
たとえば特許願「56−109686 J 記載の二層
形電波吸収体においては、膜厚の変化は10チ以内に抑
えなければならない。For example, in the two-layer radio wave absorber described in Patent Application No. 56-109686 J, the change in film thickness must be suppressed to within 10 inches.
第1図は積層膜厚4,5■、8−13GH2で −20
dB以上の吸収能を示したものが、】5チ厚くなること
により、第2図に示すごとく、11.2〜13σhの周
波数帯における吸収能を低下させている。Figure 1 shows a laminated film thickness of 4.5cm, 8-13GH2 -20
As shown in FIG. 2, the absorption ability in the frequency band of 11.2 to 13σh is reduced by increasing the thickness of the material showing an absorption ability of dB or more by 5 cm.
同様に、積層膜厚が15チ薄くなることにより、第2図
に示すごとく、8〜’ 9.7 GHzの周波数帯にお
ける吸収能を低下させている。Similarly, by reducing the thickness of the laminated film by 15 inches, the absorption capacity in the frequency band of 8 to 9.7 GHz is reduced, as shown in FIG.
特に塗料状電波吸収材は電波反射体に直接塗布して電波
吸収性能を発揮させることができる利点がある反面、現
地施工においてけ膜厚の管理が困難であること、神塗布
面が水平面でない場合には塗膜が流れて膜厚を変動させ
る等の問題があり、電波吸収性能を充分に発揮すること
ができなかった。In particular, paint-like radio wave absorbing materials have the advantage of being able to be applied directly to radio wave reflectors to exhibit radio wave absorption performance, but on the other hand, it is difficult to control the film thickness during on-site construction, and when the coated surface is not horizontal. However, there were problems such as the coating film flowing and changing the film thickness, and the radio wave absorption performance could not be fully demonstrated.
(発明の目的)
本発明は、塗料状電波吸収材を塗布する際の膜厚の管理
を容易にし、かつ塗料の流れによる膜厚の変動をなくし
、現地施工においても所定の電波吸収性能を得ることを
可能にする電波吸収体の施工方法を提供することにある
。(Objective of the invention) The present invention facilitates the management of film thickness when applying a paint-like radio wave absorbing material, eliminates variations in film thickness due to paint flow, and achieves a specified radio wave absorption performance even during on-site construction. The purpose of the present invention is to provide a method for constructing a radio wave absorber that makes it possible to do this.
(発明の構成)
本発明によれば、塗膜厚みを管理するために面状スペー
サーを用いる。面状スペーサーとけ、繊維上物質を格子
状に編んであるもの、または、これと同等の形状を有す
るネット状のものである。(Structure of the Invention) According to the present invention, a planar spacer is used to control the coating film thickness. It is a planar spacer, a fibrous material woven into a lattice shape, or a net-like material having an equivalent shape.
面状スペーサー厚みは電波吸収材塗膜の厚みとし、その
開口部を電波吸収性能で充填することにより、電波吸収
塗膜を形成する。この場合、電波吸収塗膜は面状スペー
サーの厚みと等しくなるので面状スペーサーの厚みを管
理することによシミ波吸収塗膜の厚みが管理される。面
状スペーサーの厚みを電波吸収塗膜厚みの許容範囲内に
管理することは容易である。面状スペーサーを二枚以上
重ねて所定の厚みとすることも勿論可能である。この場
合、面状スペーサーを構成する材料が導電性を有すると
電磁波を反射し、電波吸収塗膜とならないので非導電性
材質による面状スペーサーを使用しなければならない。The thickness of the planar spacer is the thickness of the radio wave absorbing material coating film, and the radio wave absorbing coating film is formed by filling the openings with radio wave absorbing properties. In this case, since the thickness of the electromagnetic wave absorbing coating film is equal to the thickness of the planar spacer, the thickness of the stain wave absorbing coating film can be controlled by controlling the thickness of the planar spacer. It is easy to control the thickness of the planar spacer within the allowable range of the radio wave absorbing coating thickness. Of course, it is also possible to stack two or more planar spacers to obtain a predetermined thickness. In this case, if the material constituting the planar spacer has conductivity, it will reflect electromagnetic waves and will not form a radio wave absorbing coating, so a planar spacer made of a non-conductive material must be used.
以上の方法によれば、たとえば垂直面の反射体に施工し
た場合でも塗料の流れは面状スペーサーの格子で抑制さ
れ、電波吸収塗膜の厚みの変動を避けるととができる。According to the above method, even when applied to a vertical reflector, the flow of the paint is suppressed by the lattice of planar spacers, and variations in the thickness of the radio wave absorbing coating can be avoided.
(構成の詳細な説明)
面状スペーサー、およびこれを用いた施工方法について
詳細に述べる。(Detailed explanation of the structure) The planar spacer and the construction method using the same will be described in detail.
面状スペーサーは、その材質が導電性を有すると電磁波
を反射し、その開口部に電波吸収塗料を充填しても電波
吸収性能を発揮しない。従って面状スペーサーの材質は
導電性に乏しいことが要求される。市販のスペーサー材
料としては、合成樹脂製のラス類、ネット、ニットある
いはガラスファイバー製のテロップストランドマット、
フィラメントマット、ロービングクロス、ガラスクロス
等があり、これらは入手が容易で、かつ経済的観点から
使用しやすいものである。ガラスファイバーについては
、平織、あや織、朱子織、模写織、からみ織な−といず
れの織り方のものでも使用可能である。また電波吸収用
塗料との親和性をよくする目的で、これらのスペーサー
表面を表面処理してもよい。If the material of the planar spacer is conductive, it will reflect electromagnetic waves, and even if its opening is filled with a radio wave absorbing paint, it will not exhibit radio wave absorbing performance. Therefore, the material of the planar spacer is required to have poor conductivity. Commercially available spacer materials include synthetic resin laths, nets, knits, and glass fiber telop strand mats.
There are filament mats, roving cloths, glass cloths, etc., which are easily available and easy to use from an economical point of view. As for the glass fibers, any weaving methods such as plain weave, twill weave, satin weave, imitation weave, and leno weave can be used. Furthermore, the surfaces of these spacers may be subjected to surface treatment for the purpose of improving compatibility with the electromagnetic wave absorbing paint.
スペーサーの開口率(スペーサー材料で占有されている
部分と否占有部分との体積比)は、スペーサーが電波吸
収用塗膜と同質の材料を使用して作成したものでたい限
り、電波を吸収する性質を有さないので出来るだけ大き
い方が望ましい。通常は5〜99.5%のものが使用可
能で、好ましくは80〜99チである。またスペーサー
の格子形状は膜厚標準として利用することの効率性から
、たとえば四角形の場合にあたっては05cmx O”
5Crnないしは5α×5(m程度が望ましい。Q、5
cInX Q、5cWL以下の場合、開孔率を上げるた
めには、スペーサー格子中を著しく細くしなければなら
ず、膜厚標準として十分な強度が得られなくなる欠点が
ある。他方5cIrL×5α以上の場合、膜厚標準とし
ての利用効率が下がることにより均一な膜厚精度が得ら
れなく々る。また、スペーサーの開孔率が5−以下であ
ることは被塗物表面がスペーサーで大部分おおわれるこ
とになり、電波吸収能の点から望ましくない。The aperture ratio of the spacer (the volume ratio of the area occupied by the spacer material to the area not occupied) will absorb radio waves as long as the spacer is made using the same material as the radio wave absorbing coating. Since it has no properties, it is desirable that it be as large as possible. Generally, 5 to 99.5% can be used, preferably 80 to 99%. In addition, the lattice shape of the spacer is efficiently used as a film thickness standard, so for example, in the case of a square spacer, it is 0.5 cm
5Crn or 5α×5 (about m is desirable. Q, 5
When cInX Q is 5cWL or less, the spacer lattice must be made extremely thin in order to increase the porosity, and there is a drawback that sufficient strength as a film thickness standard cannot be obtained. On the other hand, if it is 5cIrL×5α or more, the efficiency of use as a film thickness standard decreases, making it impossible to obtain uniform film thickness accuracy. Furthermore, if the porosity of the spacer is 5 or less, most of the surface of the object to be coated will be covered with the spacer, which is undesirable from the viewpoint of radio wave absorption ability.
(実施例) 次に施工方法について詳細に述べる。(Example) Next, we will discuss the construction method in detail.
スペーサーを被塗物表面に接着させる場合、本発明で用
いる電波吸収塗料自体、粘着性を有しているため、該塗
料を刷癲などで予め被塗物表面に薄く塗布し、その上に
スペーサーを容易に接着せしめることがで11本発明の
好適な手段である。When adhering the spacer to the surface of the object to be coated, since the radio wave absorbing paint used in the present invention itself has adhesive properties, the paint is applied thinly to the surface of the object to be coated by brushing, etc., and then the spacer is attached on top of that. 11 is a preferred means of the present invention.
勿論、従来から公知の接着剤を用いることもできるし、
接着剤を用いないでスペーサーを被塗物表面に置きその
上から直接ローラー塗装して接着させることも可能であ
る。Of course, conventionally known adhesives can also be used,
It is also possible to bond the spacer by placing it on the surface of the object to be coated and directly applying roller coating thereon without using an adhesive.
塗装の際に使用されるスペーサーは除去しても構わ々い
が、通常は塗膜中にそのまま残存せしめて、ガラス繊維
強化プラスチックの如く塗膜自体の強度を向上せしめる
方が好ましい。Although the spacer used during painting may be removed, it is usually preferable to leave it as is in the coating film to improve the strength of the coating film itself, such as in the case of glass fiber reinforced plastics.
また本発明に使用される塗料の塗装方法としては、ロー
ラー塗装、スプレー塗装ともに可能である。Further, as a coating method for the paint used in the present invention, both roller coating and spray coating are possible.
以下に二層形の電波の数体の実施例を示すが、本発明は
たとえば一層形電波吸収体であっても勿論適応できるも
のである。Several embodiments of two-layer radio wave absorbers will be shown below, but the present invention can of course be applied to, for example, single-layer radio wave absorbers.
吸収層用塗料の基本配合および比較用配合は表1および
表2に従い、基材A1およびA4、硬化剤A2、A3、
A5およびA6を作成した。すなわち樹脂、副生フェラ
イトもしくはニッケル粉を混合した後、3本ロールミル
で分散させ、吸収層用塗料基材A1もしくは、A4を得
た。次に硬化剤樹脂、搗砕銅粉を混合した後、ニーグー
で混練し、吸収層用硬化剤A2を得た。同様の方法で吸
収層用硬化剤A3、八6を得た。次に変成層用塗料の基
本配合は表3および表4に示す配合に従い混合した後3
本ロールミルで副生フェライトを分散し、変成層用塗料
の基材M1、およびM3を得た。The basic formulation and comparative formulation of the coating for the absorption layer are according to Tables 1 and 2, base materials A1 and A4, curing agents A2, A3,
A5 and A6 were created. That is, after mixing the resin, by-product ferrite, or nickel powder, the mixture was dispersed in a three-roll mill to obtain the absorbent layer coating material A1 or A4. Next, the hardening agent resin and the crushed copper powder were mixed and kneaded using a niegu to obtain a hardening agent A2 for an absorbent layer. Absorbent layer curing agents A3 and 86 were obtained in the same manner. Next, the basic composition of the paint for the modified layer is mixed according to the composition shown in Table 3 and Table 4.
By-product ferrite was dispersed using this roll mill to obtain base materials M1 and M3 of paints for modified layers.
(以下余μ)゛・
ゝ′−−1
表1.吸収層用塗料の基本配合(実施例1および2)表
Z 吸収層用比較塗料の配合(比較例1.および2)秦
1 副生フェライト : ン、ライト法による廃水処
理にょシ得られる平均粒子径0.25Jll11の7a
jイト粉末。(Hereafter, the remainder μ) ゛・ ゝ′−−1 Table 1. Basic composition of paint for absorbing layer (Examples 1 and 2) Table Z Comparison of comparative paint for absorbing layer (Comparative Examples 1 and 2) 1 By-product ferrite: Average particles obtained from wastewater treatment by the Wright method Diameter 0.25Jll11 7a
jite powder.
※2 搗 砕 銅 粉 : 電気鋼管スタンプミルで
搗砕して得もねる平均粒子径80ml5hの片状粉末。*2 Pulverized copper powder: Flaky powder with an average particle size of 80ml/5h obtained by grinding with an electric steel tube stamp mill.
秦3 11tJN鉛粉 : 電気亜鉛を不活性ガス中
て噴霧して得ら力る平均粒子径100m5sbの涙滴状
の粉末。Hata 3 11tJN lead powder: A teardrop-shaped powder with an average particle size of 100m5sb obtained by spraying electrolytic zinc in an inert gas.
※4 ニッケル粉 ; 這元二?タルをスタンプミル
て搗砕して得らめる平均粒子径325B@@hの片状粉
末。*4 Nickel powder; Higenji? A flaky powder with an average particle size of 325B@@h obtained by crushing tar with a stamp mill.
※5′黄銅ファイバー 二 良さ3鴫径60μm程度
の真餉の切Jくず。*5' Brass fiber 2 Quality 3 Cuttings of brass with a diameter of about 60 μm.
表3 変成層用塗料の基本配合(実施例1)表4.変成
層用塗料の基本配合(実施例2)*1 副生7−イト
: フ!フイ、ト法による廃水処理により祷られる平
均粒子径Oj5IIImの78ツイト粉末。Table 3 Basic formulation of paint for modified layer (Example 1) Table 4. Basic formulation of paint for modified layer (Example 2) *1 By-product 7-ite
: centre! 78 tweet powder with an average particle size of Oj5IIIm that can be obtained by wastewater treatment using the F, T method.
実施例1
吸収層用塗料基材A 1443重量部と硬化剤A299
重量部を混合し、400x400X32++wのサンド
ブラスト銅板上にハケ塗りし、日東結社製品チせツブス
トランドマットMC900Gをスポンジローラーでおさ
え塗装し、1.1mの規定の厚さの吸収層塗膜を得た。Example 1 1443 parts by weight of coating material A for absorbing layer and 299 parts by weight of curing agent A
The weight parts were mixed and brushed onto a 400x400x32++w sandblasted copper plate, and Nitto Keisha's Chisetsubu Strand Mat MC900G was pressed down with a sponge roller to obtain an absorption layer coating with a specified thickness of 1.1 m.
さらに24時間放置後、変成層用塗料基材Ms197重
量部に対し、硬化剤M!50重景部全景部して吸収層塗
膜の上にハケ塗りし、日東結社製品ガラスクロスWS3
50Dを3枚重ねし、 スポンジローラーでおさえ塗装
し、2日間室温に放置して乾燥硬化させ、電波吸収材用
複合塗膜を得た。作成した塗装鋼板についてその電波吸
収能を8〜13GHzについて評価した結果を第4図に
示す。After leaving it for another 24 hours, hardening agent M! 50 full view area and brushed on top of absorption layer coating, Nitto Keisha product glass cloth WS3
Three sheets of 50D were layered, pressed down with a sponge roller, and left to dry and harden at room temperature for 2 days to obtain a composite coating for radio wave absorbers. FIG. 4 shows the results of evaluating the electromagnetic wave absorption ability of the prepared coated steel plate in the range of 8 to 13 GHz.
実施例2゜
吸収層用塗料基材A 1443 重量部と硬化剤A4
379重量部を混合し400X 400x 3.2箇
の脱脂研磨アルミ板上にハケ塗りし、日東結社製品ガラ
スファイバーロービングクロスWR860B eプラ
スチックおさえローラーで含浸させながら塗装し、1.
1■の規定の厚さの吸収層塗膜を得た。Example 2゜Paint base material for absorption layer A 1443 parts by weight and curing agent A4
Mix 379 parts by weight, 400X 400x 3.2 parts
Paint with a brush on a degreased polished aluminum plate, and apply while impregnating it with Nitto Keisha's glass fiber roving cloth WR860B e plastic pressing roller.1.
An absorbent layer coating having a specified thickness of 1.5 mm was obtained.
さらに24時間放置後、変成層用塗料基材Ms227.
6重量部に対して硬化剤Ma9.4重量部を混合して、
前記吸収層塗膜の上にハケ塗りし、日東結社製品ガラス
クロスWS350Dを3枚重ねし、プラスチックおさえ
ローラーで含浸させながら塗装し、3.51111の規
定の厚さの変成層塗膜を得た。After leaving it for another 24 hours, paint base material for modified layer Ms227.
Mixing 9.4 parts by weight of hardening agent Ma with 6 parts by weight,
The absorbent layer coating was applied with a brush, three sheets of glass cloth WS350D manufactured by Nitto Keisha were layered, and the coating was applied while impregnated with a plastic pressure roller to obtain a modified layer coating with a specified thickness of 3.51111. .
さらに2日間室温に放置して、乾燥硬化させ電波吸収材
用複合塗膜を得た。作成した塗装アルミ板について、電
波吸収能を測定した結果を第5図に示す。Further, the mixture was left at room temperature for two days to dry and harden to obtain a composite coating film for radio wave absorbing material. Figure 5 shows the results of measuring the radio wave absorption ability of the painted aluminum plate prepared.
比較例1゜
吸収層用塗料基材A4593重量部と硬化剤A450重
量部を混合し、400X400X3.2 mのサンドブ
ラスト銅板上にハケ塗、シし、日東結社製品ガラスファ
イバーロービングクロスWR860B をjラスチッ
クおさえローラーで含浸させながら塗装し、1.111
11の厚さの吸収層塗膜を作成した。さらに、24時間
放置後、変成層用塗料基材Mt197重量部に対して、
硬化剤M250重量部を混合して、吸収層塗膜の上にハ
ケ塗りし、日東結社製品ガラスクロスWS350Dを3
枚重ねし、名ポンジローラーでおさえ塗装し、2日間室
温に放置して乾燥硬化させ、電波吸収材用複合塗膜を得
た。作成した塗装鋼板について、電波吸収能を測定した
結果を第6図に示す。Comparative Example 1 Mix 4,593 parts by weight of paint base material A for the absorption layer and 450 parts by weight of curing agent A, apply the mixture with a brush on a 400 x 400 x 3.2 m sandblasted copper plate, and apply glass fiber roving cloth WR860B manufactured by Nitto Seisha with a plastic press. Paint while impregnating with a roller, 1.111
Absorbent layer coatings with a thickness of 11 were prepared. Furthermore, after standing for 24 hours, based on 197 parts by weight of the modified layer coating base Mt,
Mix 250 parts by weight of hardening agent M, apply it with a brush on the absorption layer coating, and apply 3 parts of Nitto Keisha's glass cloth WS350D.
The layers were stacked one on top of the other, pressed down with a punch roller, and left to stand at room temperature for two days to dry and harden to obtain a composite coating for radio wave absorbers. Figure 6 shows the results of measuring the radio wave absorption ability of the prepared painted steel plate.
比較例2
吸収層用塗料基材Ar443重景部と硬化剤A6150
重量部を混合し、400X400X3.2+m のサン
ドブラスト鋼板上にハケ塗りし、日東結社製品チョップ
ストランドマットMC900Gをスポンジローラーでお
さえ塗装[7、−1,11111の厚さの吸収層塗膜を
得た。さらに、24時間放置後、変成層用塗料基材M1
197重量部に対し、硬化剤M250重量部を混合し、
吸収層塗膜の上にハケ塗装し、日東結社製品ガラスクロ
スW8850Dを3枚重ねし、スポンジローラーでおさ
え塗装し、2日間室温に放置して、乾燥硬化させ、電波
吸収材用複合塗膜を得た。作成l−た塗装鋼板について
電波吸収能を測定した結果を第3図に示す。Comparative Example 2 Absorbent layer paint base Ar443 heavy background part and hardening agent A6150
The weight parts were mixed and brushed onto a 400 x 400 x 3.2 + m 2 sandblasted steel plate, and Nitto Keisha's Chop Strand Mat MC900G was pressed down with a sponge roller to obtain an absorbent layer coating with a thickness of 7, -1,11111. Furthermore, after leaving it for 24 hours, the paint base material for modified layer M1
Mixing 250 parts by weight of curing agent M with 197 parts by weight,
Brush paint on top of the absorption layer coating, layer 3 sheets of Nitto Keisha product glass cloth W8850D, apply pressure with a sponge roller, and leave at room temperature for 2 days to dry and harden to form a composite coating for radio wave absorbers. Obtained. Figure 3 shows the results of measuring the radio wave absorption ability of the prepared painted steel plate.
(発明の効果)
前記各実施例の電波吸収特性を示す第3図、第4図、第
5図、第6図から明らかなように、第3図では試料表面
に入射する電磁波の電界成分が試料面内の異なる2つの
方向にある場合、電波吸収能に差が生じることが示され
ている。(Effects of the Invention) As is clear from FIGS. 3, 4, 5, and 6 showing the radio wave absorption characteristics of each of the above examples, in FIG. 3, the electric field component of the electromagnetic wave incident on the sample surface It has been shown that there is a difference in radio wave absorption ability when the sample is located in two different directions within the sample plane.
このような差は、本発明の実施例である第4図、施工膜
厚精度のよい方法として有効なことを実証している。さ
らに、本発明の方法をメ11用し、100mesh以下
の金属粉を用いた比較例である第6図では、7 Q w
t%以上配合しているにもかかわらず規定の高周波誘
導率が得られず、吸収性能、吸収周波数領域が劣ってい
る。Such a difference proves that the method shown in FIG. 4, which is an embodiment of the present invention, is effective as a method with high precision in applied film thickness. Furthermore, in FIG. 6, which is a comparative example in which the method of the present invention was applied to mesh 11 and metal powder of 100 mesh or less was used, 7 Q w
Despite containing t% or more, the specified high frequency inductivity cannot be obtained, and the absorption performance and absorption frequency range are poor.
第1図は、墳層臥厚45闘における電波吸収特性を示し
、第2図は積層膜厚が±15%変化した際の電波吸収特
性を示し1、第3図は入射電波の電界ベクトルが試料面
内で異なる2つの方向にある場合の電波吸収特性を示し
く比較例2)、第4図は実施例1.第5図は実施例2お
【び第6図は比較例1の電波吸収特性を示す。
\−J、〉ノ
ア1−1 図
71−2 図
FREQUENCY [MH2]
オ 3 図
第4図
FREQUENCY [:MH2]
71−5 図
FREQUENCY [MH2]
オ 6 図
FREQUENCY [MH2]
手続補正書(方式)
29発明の名称
電波吸収体の施工方法
3、補正をする者
事件との関係 出願人
東京都港区芝五丁目33番1号
(423) 日本電気株式会社
代表者 関本忠弘
(lFl兄〕
4、代理人
〒108東京都港区芝五丁目37番8号住友三田ビル5
、補正命令の日付
昭和60年7月30日(発送日)
6、補正の対象
明細書の発明の詳細な説明の欄
7、補正の内容
(1)明細書の第9頁以降を、添附のものと差し換えま
す。
(補正の対象に記載した事項以外内容に変更なし)代理
人弁理士内原 、窮+:、J’、”’ ”j・、み′
表1.吸収層用塗料の基本配合(実施例1.および2.
)表2.吸収層用比較塗料の配合(比較例1.および2
.)*1副生フェライト粉:フエライト法による廃水処
理により得られる平均粒子径
0.25pmのフェライト粉末。
*2搗砕銅粉:電気銅をスタンプミルで搗砕して得られ
る平均粒子径80meshの片状粉末。
*3噴霧亜鉛粉:電気亜鉛を不活性ガス中で噴霧して得
られる平均粒子径100meshの涙滴状の粉末。
*4ニッケル粉:還元ニッケルをスタンプミルで搗砕し
て得られる平均粒子径325meshの片状粉末。
*5黄銅ファイバー:長さ3mm、径60pm程度の真
剣の切りくず。
表3.変成層用塗料の基本配合(実施例1)表4.変成
層用塗料の基本配合(実施例2)剤
*1副生フェライト:フェライト法による廃水処理によ
り得られる平均粒子径
0.25pmのフェライト粉末。
実施例1
吸収層用塗料基材A1443重量部と硬化剤A299重
量部を混合し、400 X 400 X 3.2mmの
サンドブラスト銅板上にハケ塗りし、日東結社製品チョ
ップストランドマットMO900Gをスポンジローラー
でおさえ塗装し、1.1mmの規定の厚さの吸収層塗膜
を得た。さらに24時間放置後、変成層用塗料基材M1
197重量部に対し、硬化剤M250重量部を混合して
吸収層塗膜の上にハケ塗りし、日東結社製品ガラスクロ
スWS350Dを3枚重ねし、スポンジローラーでおさ
え塗装し、2日間室温に放置して乾燥硬化させ、電波吸
収材用複合塗膜を得た。作成した塗装鋼板についてその
電波吸収能を8〜13GHzについて評価した結果を第
4図に示す。
実施例2゜
吸収層用塗料基材A1443と硬化剤Aa379重量部
を混合し400X400X3.2mmの脱脂研磨アルミ
板上にハケ塗りし、日東結社製品ガラスファイバーロー
ビングクロスWR860Bをプラスチックおさえローラ
ーで含浸させながら塗装し、1.1mmの規定の厚さの
吸収層塗膜を得た。さらに24時間放置後、変成層用塗
料基材Ma227.6重量部に対して硬化剤M49゜4
重量部を混合して、前記吸収層塗膜の上にハケ塗りし、
日東結社製品ガラスクロスWS350Dを3枚重ねし、
プラスチックおさえローラーで含浸させながら塗装し、
3.5mmの規定の厚さの変成層塗膜を得た。さらに2
日間室温に放置して、乾燥硬化させ電波吸収材用複合塗
膜を得た。作成した塗装アルミ板について、電波吸収能
を測定した結果を第5図に示す。
比較例1
吸収層用塗料基材A4593重量部と硬化剤A450重
量部を混合し、400X400X3.2mmのサンドブ
ラスト銅板上にハケ塗りし、日東結社製品ガラスファイ
バーロービングクロスWR860Bをプラスチックおさ
えローラーで含浸させながら塗装し、1.1mmの厚さ
の吸収層塗膜を作成した。さらに、24時間放置後、変
成層用塗料基材Mz197重量部に対して、硬化剤M2
50重量部を混合して、吸収層塗膜の上にハケ塗りし、
日東結社製品ガラスクロスWS350Dを3枚重ねし、
スポンジローラーでおさえ塗装し、2日間室温に放置し
て乾燥硬化させ、電波吸収用複合塗膜を得た。作成した
塗装鋼板について、電波吸収能を測定した結果を第6図
に示す。
比較例2
吸収層用塗料基材A1443重量部と硬化剤A6150
重量部を混合し、400X400X3.2mmのサンド
ブラスト銅板上にハケ塗りし、日東結社製品チョップス
トランドマットM0900Gをスポンジローラーでおさ
え塗装し、1.1mmの厚さの吸収層塗膜を得た。さら
に、24時間放置後、変成層用塗料基材M1197重量
部に対し、硬化剤M250重量部を混合し、吸収層塗膜
の上にハケ塗りし、日東結社製品ガラスクロスWS35
0Dを3枚重ねしスポンジローラーでおさえ塗装し、2
日間室温に放置して、乾燥硬化させ、電波吸収用複合塗
膜を得た。作成した塗装鋼板について電波吸収能を測定
した結果を第3図に示す。
(発明の効果)
前記各実施例の電波吸収特性を示す第3図、第4図、第
5図、第6図から明らかなように、第3図では試料表面
に入射する電磁波の電解成分が試料面内の異なる2つの
方向にある場合、電波吸収能に差が生じることが示され
ている。このような差は、本発明の実施例である第4図
、第5図の場合には見られず、本発明が電波吸収用塗膜
を等友釣に無作為に製造できる方法であり、施工膜厚精
度のよい方法として有効なことを実証している。さらに
、本発明の方法を利用し、100mesh以下の金属粉
を用いた比較例である第6図では、70wt%以上配合
しているにもがかわらず規定の高周波誘電率が得られず
、吸収性能、吸収周波数領域が劣っている。
図面の簡単な説明Figure 1 shows the radio wave absorption characteristics when the layer thickness is 45%, Figure 2 shows the radio wave absorption characteristics when the laminated film thickness changes by ±15%, and Figure 3 shows the electric field vector of the incident radio wave. Comparative Example 2) shows the radio wave absorption characteristics in two different directions within the sample plane, and FIG. 4 shows Example 1. FIG. 5 shows the radio wave absorption characteristics of Example 2 and FIG. 6 shows the radio wave absorption characteristics of Comparative Example 1. \-J,〉Noah 1-1 Figure 71-2 Figure FREQUENCY [MH2] E 3 Figure 4 FREQUENCY [:MH2] 71-5 Figure FREQUENCY [MH2] E 6 Figure FREQUENCY [MH2] Procedural amendment (method) 29 Name of the invention Construction method of radio wave absorber 3 Relationship with the amended case Applicant 5-33-1 Shiba, Minato-ku, Tokyo (423) Representative of NEC Corporation Tadahiro Sekimoto (lFl brother) 4. Agent: Sumitomo Sanda Building 5, 37-8 Shiba 5-chome, Minato-ku, Tokyo 108
, Date of amendment order July 30, 1985 (shipment date) 6. Column 7 for detailed explanation of the invention in the specification subject to amendment, Contents of amendment (1) Pages 9 onwards of the specification are attached. I'll replace it with something else. (No changes to the content other than those stated in the subject of amendment) Representative Patent Attorney Uchihara, Kyu +:, J', "'"j・,Mi' Table 1. Basic formulation of coating for absorption layer (Examples 1 and 2)
) Table 2. Formulation of comparative paint for absorption layer (Comparative Examples 1 and 2)
.. ) *1 By-product ferrite powder: Ferrite powder with an average particle size of 0.25 pm obtained by wastewater treatment using the ferrite method. *2 Pulverized copper powder: Flaky powder with an average particle size of 80 mesh obtained by grinding electrolytic copper with a stamp mill. *3 Sprayed zinc powder: A teardrop-shaped powder with an average particle size of 100 mesh obtained by spraying electrolytic zinc in an inert gas. *4 Nickel powder: Flaky powder with an average particle size of 325 mesh obtained by grinding reduced nickel with a stamp mill. *5 Brass fiber: serious chips with a length of 3 mm and a diameter of about 60 pm. Table 3. Basic formulation of paint for modified layer (Example 1) Table 4. Basic formulation of paint for modified layer (Example 2) Agent *1 By-product ferrite: Ferrite powder with an average particle size of 0.25 pm obtained by wastewater treatment by the ferrite method. Example 1 A mixture of 443 parts by weight of paint base material for absorbing layer A1 and 299 parts by weight of curing agent A was applied with a brush onto a 400 x 400 x 3.2 mm sandblasted copper plate, and Nitto Keisha's Chop Strand Mat MO900G was pressed down with a sponge roller. It was coated to obtain an absorbent layer coating with a specified thickness of 1.1 mm. After leaving it for another 24 hours, paint base material M1 for modified layer
Mix 197 parts by weight with 250 parts by weight of hardening agent M, apply it with a brush on top of the absorbent layer coating, layer 3 sheets of Nitto Keisha product glass cloth WS350D, apply pressure with a sponge roller, and leave at room temperature for 2 days. The mixture was dried and cured to obtain a composite coating film for radio wave absorbing material. FIG. 4 shows the results of evaluating the electromagnetic wave absorption ability of the prepared coated steel plate in the range of 8 to 13 GHz. Example 2: Absorbing layer paint base A1443 and curing agent Aa 379 parts by weight were mixed and applied with a brush onto a 400 x 400 x 3.2 mm degreased and polished aluminum plate, while impregnated with glass fiber roving cloth WR860B manufactured by Nitto Keisha with a plastic pressing roller. It was coated to obtain an absorbent layer coating with a specified thickness of 1.1 mm. After leaving for another 24 hours, hardening agent M49°4 was added to 227.6 parts by weight of paint base material Ma for modified layer.
Mix parts by weight and apply with a brush on the absorbent layer coating film,
3 layers of Nitto Keisha product glass cloth WS350D,
Paint while impregnating with a plastic pressure roller,
A modified layer coating with a specified thickness of 3.5 mm was obtained. 2 more
The mixture was left at room temperature for several days to dry and harden to obtain a composite coating film for radio wave absorbers. Figure 5 shows the results of measuring the radio wave absorption ability of the painted aluminum plate prepared. Comparative Example 1 A mixture of 4593 parts by weight of the paint base material for the absorption layer A4 and 450 parts by weight of the curing agent A was applied with a brush onto a 400 x 400 x 3.2 mm sandblasted copper plate, while impregnated with Nitto Keisha's glass fiber roving cloth WR860B using a plastic pressing roller. It was coated to create an absorption layer coating film with a thickness of 1.1 mm. Furthermore, after standing for 24 hours, hardening agent M2 was added to 197 parts by weight of the modified layer coating base material Mz.
Mix 50 parts by weight and apply with a brush on the absorption layer coating,
3 layers of Nitto Keisha product glass cloth WS350D,
It was applied with a sponge roller and left at room temperature for 2 days to dry and harden, thereby obtaining a composite coating film for absorbing radio waves. Figure 6 shows the results of measuring the radio wave absorption ability of the prepared painted steel plate. Comparative Example 2 Absorbent layer coating base material A1443 parts by weight and curing agent A6150
The weight parts were mixed and brushed onto a 400 x 400 x 3.2 mm sandblasted copper plate, and Nitto Keisha's Chopped Strand Mat M0900G was pressed down with a sponge roller to obtain an absorption layer coating film with a thickness of 1.1 mm. Furthermore, after standing for 24 hours, 250 parts by weight of hardening agent M was mixed with 1197 parts by weight of the paint base material for the modified layer M, and the mixture was applied with a brush onto the absorption layer coating.
Layer 3 sheets of 0D and apply with a sponge roller, 2
The mixture was left at room temperature for several days to dry and harden, thereby obtaining a composite coating film for absorbing radio waves. Figure 3 shows the results of measuring the radio wave absorption ability of the prepared painted steel plate. (Effects of the Invention) As is clear from FIGS. 3, 4, 5, and 6 showing the radio wave absorption characteristics of each of the above-mentioned Examples, in FIG. It has been shown that there is a difference in radio wave absorption ability when the sample is located in two different directions within the sample plane. Such a difference is not seen in the cases of FIGS. 4 and 5, which are examples of the present invention. This method has been proven to be effective as a method with good film thickness accuracy. Furthermore, in Figure 6, which is a comparative example using the method of the present invention and using metal powder of 100 mesh or less, the specified high frequency permittivity could not be obtained even though the metal powder was mixed at 70 wt% or more. Performance and absorption frequency range are poor. Brief description of the drawing
Claims (1)
塗布面に非導電性材質で格子状に形成した面状スペーサ
ーを接着させた後、少なくとも該面状スペーサーの開口
部を電波吸収塗料で充填させることを特徴とする電波吸
収体の施工方法。In the process of applying radio wave absorbing paint to a radio wave reflector, after adhering a planar spacer formed in a grid shape from a non-conductive material to the surface to be coated, at least the openings of the planar spacer are filled with radio wave absorbing paint. A method for constructing a radio wave absorber characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5044484A JPS6134997A (en) | 1984-03-16 | 1984-03-16 | Method of producing radio wave absorber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5044484A JPS6134997A (en) | 1984-03-16 | 1984-03-16 | Method of producing radio wave absorber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6134997A true JPS6134997A (en) | 1986-02-19 |
Family
ID=12859027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5044484A Pending JPS6134997A (en) | 1984-03-16 | 1984-03-16 | Method of producing radio wave absorber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6134997A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5617668A (en) * | 1979-07-24 | 1981-02-19 | Tdk Corp | Preparation of electromagnetic wave absorbing body |
-
1984
- 1984-03-16 JP JP5044484A patent/JPS6134997A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5617668A (en) * | 1979-07-24 | 1981-02-19 | Tdk Corp | Preparation of electromagnetic wave absorbing body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE68926494T2 (en) | Soundproofing materials | |
Verma et al. | Review on engineering designing of electromagnetic interference shielding materials using additive manufacturing | |
JP2005057093A (en) | Radio wave absorber and method for manufacturing the same | |
EP2527124A1 (en) | Method for producing a moulded part comprising a cavity structure for acoustic and/or thermal insulation and moulded part for acoustic and/or thermal insulation | |
JP4361189B2 (en) | Manufacturing method of electromagnetic wave absorbing building materials for interior | |
JP2020505306A (en) | Building material mixtures for shielding against electromagnetic radiation | |
US5932054A (en) | Radio wave absorber composition, radio wave absorber member, radio wave absorber, and method for producing radio wave absorber member | |
CN105599392B (en) | Glued board with Electro Magnetic Compatibility and preparation method thereof | |
JP5654249B2 (en) | Laminated wood-based electromagnetic wave absorbing plate and method | |
JP3394848B2 (en) | Radio wave absorber member, radio wave absorber, and method of manufacturing radio wave absorber member | |
JP4371426B2 (en) | Indoor wood-based magnetic wave absorption board | |
JPS6134997A (en) | Method of producing radio wave absorber | |
JP2006080498A (en) | Electric wave absorber and manufacturing method therefor | |
KR100241481B1 (en) | Electrically conductive graphite cement boards and process for producing the same | |
JP3159558B2 (en) | Radio wave antireflective body and radio wave antireflection method | |
JP4736517B2 (en) | Radio wave absorber | |
JPS60113996A (en) | Electromagnetic shielding reinforced plastic material | |
EP0026920A2 (en) | Process for the production of electrically conductive soft polyurethane foams and electrically conductive plastics composition | |
JP2000232295A (en) | Electromagnetic-wave absorbing material | |
JPH02223434A (en) | Sandwich panel using core, only edge face of which resin adheres to | |
JPH0328080B2 (en) | ||
JP2008069613A (en) | Radiowave absorbing wooden board and its manufacturing method | |
JP7467198B2 (en) | Antibacterial fiber-reinforced resin composite molding and its manufacturing method | |
JPH03199153A (en) | Laminated material consisting of expanded graphite sheet and plastic or wood and production thereof | |
JP2002094284A (en) | Electromagnetic wave absorption resin composition, and electromagnetic wave absorption building material |