JP5654249B2 - Laminated wood-based electromagnetic wave absorbing plate and method - Google Patents

Laminated wood-based electromagnetic wave absorbing plate and method Download PDF

Info

Publication number
JP5654249B2
JP5654249B2 JP2010051185A JP2010051185A JP5654249B2 JP 5654249 B2 JP5654249 B2 JP 5654249B2 JP 2010051185 A JP2010051185 A JP 2010051185A JP 2010051185 A JP2010051185 A JP 2010051185A JP 5654249 B2 JP5654249 B2 JP 5654249B2
Authority
JP
Japan
Prior art keywords
board
dielectric constant
ghz
laminated
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010051185A
Other languages
Japanese (ja)
Other versions
JP2011187671A (en
Inventor
秀樹 梶原
秀樹 梶原
圭一 久田
圭一 久田
英夫 岡
英夫 岡
Original Assignee
城東テクノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 城東テクノ株式会社 filed Critical 城東テクノ株式会社
Priority to JP2010051185A priority Critical patent/JP5654249B2/en
Publication of JP2011187671A publication Critical patent/JP2011187671A/en
Application granted granted Critical
Publication of JP5654249B2 publication Critical patent/JP5654249B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)

Description

本発明は、木質系粉末に磁性粉末又は導電性粉末を混合してバインダー樹脂で固めて成形
した磁性ボード又は導電性ボードを高誘電率層材料として使用した積層型木質系電波吸収
板材及びその作製方法に関する。
The present invention relates to a laminated wood-based radio wave absorbing plate material using a magnetic board or a conductive board formed by mixing a magnetic powder or a conductive powder in a wood-based powder and solidifying with a binder resin as a high dielectric constant layer material, and its production Regarding the method.

電波吸収材の種類は、(1)金属板裏打ち単層平板型、(2)抵抗皮膜を用いたサリスバ
リー型、(3)誘電損失材料を用いたテーパー型、(4)誘電損失材料を用いた多層平板
型、に大別される。
The types of radio wave absorbers are (1) single-layer flat plate type with metal plate backing, (2) Salisbury type using a resistive film, (3) taper type using dielectric loss material, and (4) using dielectric loss material. Broadly divided into multilayer flat plate types.

(4)の多層平板型の電波吸収材であって、電波吸収特性の異なる電波吸収層を積層した
、2.2〜2.8GHz帯域と4.8〜5.5GHz帯域に反射減衰量のピークを有する
双峰性特性を呈する電波吸収体が提案されている(特許文献1〜3)。また、入射側から
磁性材料を含むシート層、スペーサー層、カーボン及びフェライトを含む軽量体層、そし
て反射層から構成される電波吸収板からなり、2GHz帯と5GHz帯の複数のGHz帯
に有効な建材が提案されている(特許文献4)。
(4) The multilayer flat plate type wave absorber, wherein the peak of return loss is in the 2.2 to 2.8 GHz band and the 4.8 to 5.5 GHz band in which the wave absorbing layers having different wave absorbing characteristics are laminated. An electromagnetic wave absorber exhibiting a bimodal characteristic having a characteristic has been proposed (Patent Documents 1 to 3). In addition, it consists of a sheet layer containing magnetic material from the incident side, a spacer layer, a lightweight body layer containing carbon and ferrite, and a wave absorbing plate composed of a reflective layer, and is effective for multiple GHz bands of 2 GHz and 5 GHz. Building materials have been proposed (Patent Document 4).

また、 第1誘電体層と、第2誘電体層と、第3誘電体層とがこの順番で積層されること
で構成された電波整合層と、前記第2誘電体層とは反対側の第1誘電体層の表面に設けら
れた反射層とを含んで構成された電波反射抑制建材であって、前記第2誘電体層は、比誘
電率がほぼ1である低誘電率材料から構成され、前記第1、第3誘電体層は、比誘電率が
前記低誘電率材料よりも高い値の材料で構成され、前記反射層は、電波を反射する材料で
構成されている、ことを特徴とする電波反射抑制建材が提案されている(特許文献5)。
In addition, the radio wave matching layer formed by laminating the first dielectric layer, the second dielectric layer, and the third dielectric layer in this order, and the opposite side of the second dielectric layer A radio wave reflection-suppressing building material comprising a reflective layer provided on the surface of the first dielectric layer, wherein the second dielectric layer is made of a low dielectric constant material having a relative dielectric constant of approximately 1. The first and third dielectric layers are made of a material having a relative dielectric constant higher than that of the low dielectric constant material, and the reflection layer is made of a material that reflects radio waves. A characteristic radio wave reflection-suppressing building material has been proposed (Patent Document 5).

また、所定の厚さで、裏面に電磁波反射用の金属板が取り付けられた第1フェライト板と
、該第1フェライト板の前面側に位置し、かつ第1フェライト板より薄手状の厚さからな
る第2フェライト板と、第1及び第2フェライト板の間にて所定の幅からなる誘電手段(
空気層、低誘電率発泡樹脂、低誘電率繊維集合体)を設けた電磁波吸収体が提案されてい
る(特許文献6)。
Further, the first ferrite plate having a predetermined thickness and a metal plate for electromagnetic wave reflection attached to the back surface, and a thickness that is located on the front side of the first ferrite plate and is thinner than the first ferrite plate A dielectric means having a predetermined width between the second ferrite plate and the first and second ferrite plates (
An electromagnetic wave absorber provided with an air layer, a low dielectric constant foamed resin, and a low dielectric constant fiber assembly has been proposed (Patent Document 6).

さらに、本発明者らは、電波吸収性能に優れた木質系電波吸収ボードを開発している(特
許文献7〜9、非特許文献1,2)。
Furthermore, the present inventors have developed a wood-based radio wave absorption board excellent in radio wave absorption performance (Patent Documents 7 to 9, Non-Patent Documents 1 and 2).

特開2004-179479号公報JP 2004-179479 A 特開2004-186546号公報JP 2004-186546 A 特開2007-329397号公報JP 2007-329397 特開2005-150530号公報JP 2005-150530 A 特開2003-283180号公報JP 2003-283180 A 特開平9-219596号公報JP-A-9-219596 WO2005/069712WO2005 / 069712 特開2007-134466号公報JP 2007-134466 Gazette 特開2007-245419号公報Japanese Unexamined Patent Publication No. 2007-245419

成田幸一,岡英夫,磁性木材を用いたGHz帯用電波吸収体の作製に関する実験的検討,電気学会電磁環境研究会資料,社団法人電気学会,2000年 1月18日,EMC−00−1〜17,p.121−127Koichi Narita, Hideo Oka, Experimental study on fabrication of electromagnetic wave absorber for GHz band using magnetic wood, IEEJ electromagnetic environment study material, The Institute of Electrical Engineers of Japan, January 18, 2000, EMC-00-1 17, p. 121-127 佐藤光治、岡英夫、浪崎安治、Lichteneckerの対数混合則を用いた粉体型磁性木材の電波吸収特性に関する検討、計測自動制御学会東北支部 第288回研究集会、資料番号228−6(2006.5.17)1〜4頁Mitsuji Sato, Hideo Oka, Yasuji Namasaki, Examination on radio wave absorption characteristics of powder type magnetic wood using logarithmic mixing rule of Lichtenecker, Society of Instrument and Control Engineers Tohoku Branch 288th meeting, document number 228-6 (2006. 5.17) Pages 1-4

近年の通信機器の発達に伴い、建物内での電波干渉防止や電波漏洩防止、更には電波盗聴
防止等の電磁環境制御の要求が高まってきている。特に、無線LANの普及はめざましく
、マルチパスなどによる通信品質の劣化や電波の拡散による情報漏洩等の問題にも関心が
もたれている。現在、無線LANでは、2.4〜2.5GHz帯(2.4GHz帯ともい
う)と5.15〜5.25GHz帯(5.2GHz帯ともいう)との2つの帯域で電波が
使用されており、オフィス等では、2.4GHzと5.2GHzが混在する環境下にある
場合があり、建材として、この両帯域で吸収性能の高い電波吸収材が求められている。ま
た、5.8GHzのDSRC(ETC)用電波吸収体を含めた2〜10GHz用電波吸収
体も求められている。
With the recent development of communication equipment, there is an increasing demand for electromagnetic environment control such as prevention of radio wave interference, radio wave leakage prevention, and radio wave eavesdropping in buildings. In particular, the spread of wireless LAN is remarkable, and there is an interest in problems such as deterioration of communication quality due to multipath and information leakage due to radio wave diffusion. Currently, in wireless LAN, radio waves are used in two bands, 2.4 to 2.5 GHz band (also referred to as 2.4 GHz band) and 5.15 to 5.25 GHz band (also referred to as 5.2 GHz band). In offices and the like, there are cases where 2.4 GHz and 5.2 GHz are mixed, and a radio wave absorber having high absorption performance in both bands is required as a building material. There is also a need for a 2 to 10 GHz wave absorber including a 5.8 GHz DSRC (ETC) wave absorber.

電波吸収帯域を広くするために、誘電率、透磁率が異なる材料を積層化し、各層の界面で
反射(多重反射)を行わせる積層型電波吸収体に関する技術が提案されている。積層型電
波吸収体においては、電波吸収体の入射面での電波の大きな反射を防止するために入射方
向から電波吸収体の内部方向に各吸収体層の誘電率、透磁率等を段階的に大きくすること
が望ましい。
In order to widen the radio wave absorption band, a technique related to a laminated radio wave absorber in which materials having different dielectric constants and magnetic permeability are laminated and reflection (multiple reflection) is performed at the interface of each layer has been proposed. In multilayered wave absorbers, the dielectric constant, permeability, etc. of each absorber layer are stepped from the incident direction to the inside of the wave absorber in order to prevent large reflections of radio waves on the incident surface of the wave absorber. It is desirable to enlarge it.

しかし、電波吸収板材の電波吸収性能と薄型化とは相反する関係にあり、特に1〜3GH
zなどの低周波数の電磁波を吸収するための電磁波吸収板材ほど、電波吸収層の厚みが必
要であるので、薄型化、これによる軽量化は難しい。
However, the radio wave absorption performance of the radio wave absorbing plate material and the thinning are in a contradictory relationship, and in particular, 1 to 3 GH.
Since the electromagnetic wave absorbing plate material for absorbing low frequency electromagnetic waves such as z requires a thickness of the radio wave absorbing layer, it is difficult to reduce the thickness and weight.

また、積層型電波吸収体は、多層化するほど吸収できる周波数帯域は広くなるが、積層型
電波吸収体全体として必要な厚さが増大し、作製工程も増加しコスト高となる。
In addition, the multilayered wave absorber has a wider frequency band that can be absorbed as the number of layers increases. However, the thickness required for the laminated wave absorber as a whole increases, and the manufacturing process increases and the cost increases.

本発明者は、これまで、木粉とフェライト等の磁性粉とのバインダー樹脂による結合成形
体である木質系電波吸収ボードを開発してきたが、電波吸収のピークは、周波数0.8〜
1.4GHz帯域のように狭い帯域にとどまるものであった。また、10dB以上の電波
吸収能の帯域幅が1.5GHz以上である木質系電波吸収ボードも開発した(特許文献8
参照)が、これは、図9に示すように、5GHz帯域に電波吸収のピークを持つ実施例2
のものは、2.0〜2.8GHz帯域における電波吸収能が十分ではなかった。
The present inventor has so far developed a wood-based radio wave absorption board that is a bonded molded body made of a binder resin of wood powder and magnetic powder such as ferrite, but the peak of radio wave absorption has a frequency of 0.8 to
It was a narrow band such as the 1.4 GHz band. Moreover, a wood-based radio wave absorption board having a radio wave absorption capacity of 10 dB or more having a bandwidth of 1.5 GHz or more has been developed (Patent Document 8).
However, as shown in FIG. 9, the second embodiment has a radio wave absorption peak in the 5 GHz band.
In the case of No. 1, the radio wave absorption capability in the 2.0 to 2.8 GHz band was not sufficient.

従来の一般建材を使った3層型電波吸収体として、2.45GHzと5.2GHzに吸収
のピークを持たせたものが提案されてはいるものの、電波吸収量は15dBの水準にとど
まり、また、電波吸収の範囲も各ピークで狭い。
Although a conventional three-layered wave absorber using general building materials has been proposed with absorption peaks at 2.45 GHz and 5.2 GHz, the amount of radio wave absorption remains at a level of 15 dB. The range of radio wave absorption is also narrow at each peak.

本発明は、2〜6GHzの周波数帯域全域において最低の電波吸収性能が20dB水準(
19dB以上)、すなわち2GHz〜6GHzの全帯域内(帯域幅が4GHz)で電波吸
収性能が19dB以上と広帯域であり、2波長領域、特に2.4GHz帯域と5.2GH
z帯域の2波長付近における電波吸収能に優れ、室内の内装材や天井材等の建材に適し、
作製の容易な低価格の積層型電波吸収板材を提供することを目的とする。
In the present invention, the lowest radio wave absorption performance in the entire frequency band of 2 to 6 GHz is 20 dB level (
19 dB or more), that is, in the entire band of 2 GHz to 6 GHz (bandwidth is 4 GHz), the radio wave absorption performance is as wide as 19 dB or more, and is in a two-wavelength region, particularly 2.4 GHz band and 5.2 GHz
Excellent electromagnetic wave absorption in the vicinity of two wavelengths in the z-band, suitable for interior materials such as indoor interior materials and ceiling materials,
An object of the present invention is to provide a low-priced laminated wave absorbing plate material that is easy to manufacture.

本発明者らが先に開発した木質系電波吸収ボードは0.8〜1.4GHz帯域や5GHz
帯域等の狭い帯域のみに大きな電波吸収能を有するものであって2〜6GHzの広帯域で
は電波吸収能が十分ではないものであったが、本発明者らは、このような木質系電波吸収
ボードであっても、低誘電率層と組み合わせて積層することによって、2GHz〜6GH
zの全帯域内(すなわち、帯域幅が4GHz)で19dB以上の電波吸収性能を有する(
すなわち、帯域幅が4GHz)の積層型電波吸収板材が得られることを見出した。
The wood-based radio wave absorption board previously developed by the present inventors is a 0.8 to 1.4 GHz band or 5 GHz.
Although the present invention has a large radio wave absorption capability only in a narrow band such as a band and the radio wave absorption capability is not sufficient in a wide band of 2 to 6 GHz, the present inventors have proposed such a wooden radio wave absorption board. Even so, by laminating in combination with a low dielectric constant layer, 2 GHz to 6 GHz
It has a radio wave absorption performance of 19 dB or more within the entire band of z (that is, the bandwidth is 4 GHz) (
That is, it has been found that a laminated wave absorbing plate material having a bandwidth of 4 GHz) can be obtained.

本発明は、電磁波を反射する金属板上に、少なくとも2層の高誘電率層と、少なくとも1
層の低誘電率層とを組み合わせて積層した電波吸収板材であって、上記高誘電率層は、2
〜6GHz帯域における単層での誘電率が2以上31以下の(A)木質系磁性ボード又は
(B)木質系導電性ボードからなり、上記低誘電率層は、厚みが0.6mm以上で、2〜
6GHz帯域における単層での誘電率が1以上2未満の(C)非磁性ボード又は(D)空
気層からなり、金属板側の1層目が(A)木質系磁性ボード又は(B)木質系導電性ボー
ドであり、電波の入射側の表面層が、(A)木質系磁性ボード若しくは(B)木質系導電
性ボード、又は(C)非磁性ボードであり、2GHz〜6GHzの全帯域内で19dB以
上の電波吸収性能を有することを特徴とする積層型電波吸収板材、である。
The present invention comprises at least two high dielectric constant layers on a metal plate that reflects electromagnetic waves, and at least 1
A radio wave absorbing plate material laminated in combination with a low dielectric constant layer, wherein the high dielectric constant layer is 2
(A) a wood-based magnetic board having a dielectric constant of 2 to 31 in a single layer in a band of ˜6 GHz;
(B) It consists of a wooden conductive board, and the low dielectric constant layer has a thickness of 0.6 mm or more and 2 to 2
Dielectric constant at monolayer is also one or less than 2 (C) a non-magnetic board consists (D) Check <br/> air layer in 6GHz band, the first layer of the metal plate side (A) wood magnetic Board or (B) Wood-based conductive bow
The surface layer on the incident side of the radio wave is (A) a wooden magnetic board or (B) a wooden conductive
Or a non-magnetic board, and a laminated wave absorbing plate material characterized by having a wave absorbing performance of 19 dB or more in the entire band of 2 GHz to 6 GHz.

上記の木質系磁性ボードは、木粉とフェライト粉とをバインダー樹脂により結合して加圧
成形したものを用いることができる。上記の木質系導電性ボードは、グラファイト粉、炭
素繊維、導電性カーボンブラックから選ばれる炭素材をバインダー樹脂により結合して加
圧成形したものを用いることができる。
The wood-based magnetic board can be formed by pressing and molding wood powder and ferrite powder with a binder resin. The wood-based conductive board may be formed by press-molding a carbon material selected from graphite powder, carbon fiber, and conductive carbon black with a binder resin.

上記の非磁性ボードは、木粉又はパーライト粉をバインダー樹脂により結合して加圧成形
したボード、発泡ウレタン樹脂、発泡スチレン樹脂のいずれかを用いることができる。
As the nonmagnetic board, any of a board obtained by bonding wood powder or pearlite powder with a binder resin and press-molding, a foamed urethane resin, or a foamed styrene resin can be used.

上記の高誘電率層の誘電率は電波の入射側から反射側に順次大きい値となるようにするこ
とが好ましい。上記木質系磁性ボード又は木質系導電性ボードは、2GHz〜6GHz帯
域、特に4GHz〜6GHz帯域に電波吸収のピークを有するものが好ましい。上記の積
層型電波吸収板材として30dB以上の電波吸収ピークを有するものも作製できる。
It is preferable that the dielectric constant of the high dielectric constant layer be sequentially increased from the incident side to the reflection side of the radio wave. The wooden magnetic board or the wooden conductive board preferably has a radio wave absorption peak in the 2 GHz to 6 GHz band, particularly in the 4 GHz to 6 GHz band. A laminate having a radio wave absorption peak of 30 dB or more can be produced as the laminated radio wave absorber plate.

この積層型電波吸収板材は、木質系であるため、建材、特に内装材用建材として用いて室
内の電磁環境制御に役立つ。
Since this laminated type electromagnetic wave absorbing plate is made of wood, it is useful as a building material, particularly as a building material for interior materials, and is useful for indoor electromagnetic environment control.

また、本発明は、2GHz〜6GHz帯域における単層での誘電率が2以上31以下の木
質系磁性ボード又は木質系導電性ボードの少なくとも2層と、厚みが0.6mm以上で、
2〜6GHz帯域における単層での誘電率が1以上2未満の非磁性ボードの少なくとも1
層とを電磁波を反射する金属板上に接着剤を用いて積層することを特徴とする上記の積層
型電波吸収板材の作製方法、である。
Further, the present invention has a dielectric constant of 2 to 31 in a single layer in a band of 2 GHz to 6 GHz, at least two layers of a wooden magnetic board or a wooden conductive board, and a thickness of 0.6 mm or more,
At least one nonmagnetic board having a dielectric constant of 1 or more and less than 2 in a single layer in the 2 to 6 GHz band
A method for producing a laminated wave absorbing plate material as described above, wherein the layer is laminated on a metal plate that reflects electromagnetic waves using an adhesive.

さらに、本発明は、2〜6GHz帯域における単層での誘電率が2以上31以下の木質系
磁性ボード又は木質系導電性ボードの少なくとも2層を厚みが0.6mm以上の空気層を
介在させて電磁波を反射する金属板上に接着剤を用いて積層することを特徴とする請求項
1記載の積層型電波吸収板材の作製方法、である。
Furthermore, the present invention provides an air layer having a thickness of 0.6 mm or more between at least two layers of a wood-based magnetic board or a wood-based conductive board having a dielectric constant of 2 to 31 in a single layer in the 2 to 6 GHz band. 2. A method for producing a laminated wave absorbing plate material according to claim 1, wherein the laminate is laminated on a metal plate that reflects electromagnetic waves using an adhesive.

本発明は、2GHz〜6GHzの全帯域内(すなわち、帯域幅が4GHz)で19dB以
上(20dB水準)の電波吸収性能を有する積層型電波吸収板材を安価な材料を用いて簡
便な作製方法により提供することができる。本発明の積層型電波吸収板材によれば、例え
ば、2GHz帯と5GHz帯、又はDSRC(ETC)用5.8GHz帯の複数のGHz
帯の電波を同時に吸収できるので、効率良く通信環境を改善することができる。さらに、
利用価値の乏しい木材を活用して従来の無機質材料などに代わる内装建材として活用でき
る。
The present invention provides a laminated radio wave absorption plate material having a radio wave absorption performance of 19 dB or more (20 dB level) within the entire band of 2 GHz to 6 GHz (that is, the bandwidth is 4 GHz) by using an inexpensive material by a simple manufacturing method. can do. According to the laminated wave absorbing plate material of the present invention, for example, a plurality of GHz of 2 GHz band and 5 GHz band or 5.8 GHz band for DSRC (ETC).
Because the radio waves of the band can be absorbed simultaneously, the communication environment can be improved efficiently. further,
It can be used as an interior building material in place of conventional inorganic materials by utilizing timber with poor utility value.

木質系磁性ボードのNicolson-Ross法により算出した複素誘電率を示すグラフである。It is a graph which shows the complex dielectric constant computed by the Nicolson-Ross method of the wood type magnetic board. 木質系磁性ボードのNicolson-Ross法により算出した複素透磁率を示すグラフである。It is a graph which shows the complex magnetic permeability computed by the Nicolson-Ross method of the wood type magnetic board. 図1、図2に示される材料定数から算出した試料厚さが5mmと10mmの木質系磁性ボードの電波吸収特性を示すグラフである。It is a graph which shows the electromagnetic wave absorption characteristic of the wood type magnetic board whose sample thickness computed from the material constant shown by FIG. 1, FIG. 2 is 5 mm and 10 mm. 本発明の積層型電波吸収板材の多層構造の概念を示す断面図である。It is sectional drawing which shows the concept of the multilayer structure of the laminated | stacked electromagnetic wave absorption board | plate material of this invention. 実施例1,2及び比較例1の積層型電波吸収板材の電波吸収性能を示すグラフである。6 is a graph showing the radio wave absorption performance of the laminated radio wave absorption plate materials of Examples 1 and 2 and Comparative Example 1. 実施例3の積層型電波吸収板材の電波吸収性能を示すグラフである。6 is a graph showing the radio wave absorption performance of the laminated radio wave absorber plate of Example 3. 実施例4の積層型電波吸収板材の電波吸収性能を示すグラフである。7 is a graph showing the radio wave absorption performance of the laminated radio wave absorber plate of Example 4. 比較例2の積層型電波吸収板材の電波吸収性能を示すグラフである。7 is a graph showing the radio wave absorption performance of the laminated radio wave absorption plate material of Comparative Example 2. 実施例5の積層型電波吸収板材の電波吸収性能を示すグラフである。10 is a graph showing the radio wave absorption performance of the laminated radio wave absorber plate of Example 5. 実施例6の積層型電波吸収板材の電波吸収性能を示すグラフである。10 is a graph showing the radio wave absorption performance of the laminated radio wave absorption plate material of Example 6. 実施例7の積層型電波吸収板材の電波吸収性能を示すグラフである。10 is a graph showing the radio wave absorption performance of the laminated radio wave absorber plate of Example 7. 従来例の木質系磁性ボードの電波吸収特性を示すグラフである。It is a graph which shows the electromagnetic wave absorption characteristic of the wood type magnetic board of a prior art example.

本発明は、積層型電波吸収板材の高誘電率層として、2〜6GHz帯域における単層での
誘電率が2以上31以下の木質系磁性ボード又は木質系導電性ボードを用いる。このボー
ドは、木質系粉末に磁性粉末又は導電性粉末を混合してバインダー樹脂で固めて加圧成形
して作製される。磁性粉末はフェライト粉末が好ましい。導電性粉末は、グラファイト粉
、炭素繊維、導電性カーボンブラックから選ばれる炭素材が好ましい。以下、フェライト
粉末を用いる場合について詳述するが、導電性粉末を使用する場合は、フェライト粉末に
置き換えて導電性粉末を使用することで同様に実施できる。
In the present invention, a wood-based magnetic board or a wood-based conductive board having a dielectric constant of 2 to 31 in a single layer in the 2 to 6 GHz band is used as the high dielectric constant layer of the laminated wave absorbing plate material. This board is produced by mixing magnetic powder or conductive powder with wood-based powder, solidifying it with a binder resin, and press-molding it. The magnetic powder is preferably ferrite powder. The conductive powder is preferably a carbon material selected from graphite powder, carbon fiber, and conductive carbon black. Hereinafter, although the case where a ferrite powder is used is explained in full detail, when using electroconductive powder, it can implement similarly by replacing with ferrite powder and using electroconductive powder.

電波吸収体による電波の反射を低減する帯域と該帯域における減衰率は、基本的に電波吸
収体内に含まれる電波を吸収する物質の種類及び量と、吸収体の厚さによって決定される
。電波吸収体に含まれる物質が磁性粉末の場合は、透磁損失により電磁波を減衰させる。
電波吸収体に含まれる物質が導電性粉末の場合は、誘電損失により電磁波を減衰させる。
導電性(誘電性)物質の種類は複素比誘電率により表される。ある波長λの反射を効率的
に低減させ得る電波吸収体の厚さdは、複素比誘電率によって決定される。複素比誘電率
の実数部は大きいほど吸収効果が最大になる周波数における吸収体の厚さを薄くできる。
また、複素比誘電率の虚数部は大きいほど電磁波をよく吸収する。
The band for reducing the reflection of the radio wave by the radio wave absorber and the attenuation rate in the band are basically determined by the type and amount of the substance that absorbs the radio wave contained in the radio wave absorber and the thickness of the absorber. When the substance contained in the radio wave absorber is a magnetic powder, the electromagnetic wave is attenuated by magnetic permeability loss.
When the substance contained in the radio wave absorber is a conductive powder, the electromagnetic wave is attenuated by dielectric loss.
The type of conductive (dielectric) material is represented by a complex relative dielectric constant. The thickness d of the radio wave absorber that can efficiently reduce reflection at a certain wavelength λ is determined by the complex relative dielectric constant. The larger the real part of the complex dielectric constant, the thinner the absorber at the frequency where the absorption effect is maximized.
In addition, the larger the imaginary part of the complex dielectric constant, the better the electromagnetic wave is absorbed.

本発明においては、木質系ボードを用いるが、その原料である木質系粉末、磁性粉末又は
導電性粉末、バインダー樹脂の種類や組成比を調整することによって、誘電率を2以上、
31以下の範囲にすることができる。高誘電率層の厚みは、合計で20〜50mmが好ま
しく、それより厚くし過ぎてもコスト高になるだけで好ましくない。より好ましくは、2
5〜45mmである。このような高誘電率層を少なくとも2層用い、低誘電率層の少なく
とも1層と積層して2GHz〜6GHz帯域の所望の電波吸収性能を調整する。
In the present invention, a wood-based board is used, but the dielectric constant is 2 or more by adjusting the kind and composition ratio of the wood-based powder, magnetic powder or conductive powder, and the binder resin as the raw material,
The range can be 31 or less. The total thickness of the high dielectric constant layer is preferably 20 to 50 mm, and if it is too thick, the cost is increased, which is not preferable. More preferably, 2
5 to 45 mm. At least two such high dielectric constant layers are used and laminated with at least one low dielectric constant layer to adjust desired radio wave absorption performance in the 2 GHz to 6 GHz band.

磁性粉末としてフェライト粉末を用い5〜10MPa程度で加圧成形した場合は、比重を
0.7〜2.2程度と軽量化することができる。また、ボードの曲げ強度は10〜33N
/mm2程度であり建材として十分な強度を有している。
When ferrite powder is used as the magnetic powder and pressure-molded at about 5 to 10 MPa, the specific gravity can be reduced to about 0.7 to 2.2. The bending strength of the board is 10 to 33N.
It is about / mm 2 and has sufficient strength as a building material.

この高誘電率の木質系ボードを電磁波を反射するアルミニウムなどの金属板上に少なくと
も1層の低誘電率層と組み合わせて少なくとも2層積層する。積層は交互に限らず、高誘
電率層を低誘電率層を介在させずに積層してもよい。低誘電率層として電波吸収性能を向
上させるには厚さは少なくとも0.6mmは必要であり、合計では5〜35mm、より好
ましくは15〜30mmが好ましい。低誘電率層として非磁性ボード層を用いる場合は、
非磁性ボード層を積層してもよい。低誘電率層として非磁性ボードを用いる場合は、電波
入射側の最表面に設けてもよいが、空気層を用いる場合は、最表面の層よりも下層とする
。木質系ボード1層だけでは、低誘電率層と組み合わせても単板の木質系電波吸収ボード
と構造的にほぼ同じであり、2GHz〜6GHzの全帯域で19dB以上の電波吸収性能
が得られない。合計7層以上では、ボードの枚数、作製工程が増加し、コスト高になり好
ましくない。より好ましくは、合計4〜6層とする。
At least two layers of this high dielectric constant wood board are laminated on a metal plate such as aluminum that reflects electromagnetic waves in combination with at least one low dielectric constant layer. Lamination is not limited to alternating layers, and a high dielectric constant layer may be laminated without a low dielectric constant layer interposed. In order to improve the radio wave absorption performance as the low dielectric constant layer, the thickness is required to be at least 0.6 mm, and the total thickness is preferably 5 to 35 mm, more preferably 15 to 30 mm. When using a non-magnetic board layer as the low dielectric constant layer,
A nonmagnetic board layer may be laminated. When a nonmagnetic board is used as the low dielectric constant layer, it may be provided on the outermost surface on the radio wave incident side. However, when an air layer is used, the lower dielectric layer is lower than the outermost layer . Even when combined with a low dielectric constant layer, only one wooden board layer is structurally almost the same as a single board wooden radio wave absorption board, and a radio wave absorption performance of 19 dB or more cannot be obtained in the entire band of 2 GHz to 6 GHz. . A total of seven or more layers is not preferable because the number of boards and the manufacturing process increase, resulting in high costs. More preferably, the total is 4 to 6 layers.

低誘電率層は、2〜6GHz帯域における単層での誘電率が1以上2未満の非磁性ボード
又は空気層からなる。空気層の誘電率は、ほぼ1である。誘電率が1以上2未満の非磁性
ボードとしては、磁性粉末又は導電性粉末を含有しない木粉とフェノール樹脂のみ又はパ
ーライト粉末とフェノール樹脂のみからなる木質系ボード、発泡ウレタン樹脂シートドや
発泡スチレン樹脂シートなどが挙げられる。
The low dielectric constant layer is composed of a nonmagnetic board or air layer having a dielectric constant of 1 or more and less than 2 in a single layer in the 2 to 6 GHz band. The dielectric constant of the air layer is approximately 1. Non-magnetic boards having a dielectric constant of 1 or more and less than 2 include wood-based boards containing only magnetic powder or conductive powder and phenol resin, or wood-based boards made of pearlite powder and phenol resin alone, foamed urethane resin sheet or foamed styrene resin. A sheet etc. are mentioned.

低誘電率の非磁性ボードを高誘電率層と積層する方法としては、例えば、熱融着又は接着
剤を用いて積層する。接着剤としては、酢酸ビニル樹脂系の木工用ボンドやニトリルゴム
系のボンド、またはウレタン系、SBR系、塩化ビニル系やクロロプレンゴム系などの一
液系の接着剤や、エポキシ樹脂とポリアミドアミン(硬化剤)からなる二液系の接着剤な
どが挙げられる。低誘電率層として空気層を用いる場合は、2枚の高誘電率層間に適宜設
けたスペーサーと接着する。
As a method of laminating a low-permittivity nonmagnetic board with a high-dielectric constant layer, for example, heat laminating or using an adhesive is used. Adhesives include vinyl acetate resin-based woodworking bonds, nitrile rubber-based bonds, urethane, SBR, vinyl chloride and chloroprene rubber-based adhesives, epoxy resins and polyamidoamines ( A two-component adhesive comprising a curing agent). When an air layer is used as the low dielectric constant layer, it is bonded to a spacer appropriately provided between the two high dielectric constant layers.

このような木質系ボードの組成、加圧成形法は、本発明者らによって開発され、前記特許
文献7〜9、非特許文献1,2等に記載されている。例えば、一定形状の板状の枠の中に
木粉を一定量充填し、その枠内に、磁性粉又は導電粉とバインダーを混合分散したもの流
し込むか、又はスプレーで塗布することにより組成物を調製し、これを、プレスにより、
加熱・加圧により成形する。
The composition of such a wooden board and the pressure molding method were developed by the present inventors and described in Patent Documents 7 to 9, Non-Patent Documents 1 and 2, and the like. For example, a fixed amount of wood powder is filled into a plate-shaped frame, and the composition is poured into the frame by pouring mixed or dispersed magnetic powder or conductive powder and binder, or by spraying. Prepare this by pressing
Molded by heating and pressing.

木質系ボードを作成するためのバインダーとしては、フェノール樹脂、エポキシ樹脂、メ
ラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂などを用いるが、フェノール樹脂は、熱
硬化性樹脂であり、建材として用いる場合、耐熱性に優れており、また、原材料として粉
体状のものもあるため、作製上の取り扱いがしやすく好ましい。フェライト粉としては、
Mn−Zn系やNi−Zn系フェライト粉末が好ましい。
Phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, etc. are used as binders for making wood boards, but phenol resin is a thermosetting resin and it is heat resistant when used as a building material. It is excellent in properties, and some of the raw materials are in the form of powder. As ferrite powder,
Mn—Zn and Ni—Zn ferrite powders are preferred.

木粉としては、広葉樹、針葉樹のうちの各種のものから選択される1種または2種以上で
よく、チップ(木片)やオガ屑が好ましい。一般的には、木粉の平均粒径は200μm〜
2mmの範囲内にあり、フェライト粉の平均粒径は3〜200μm程度の範囲内にあるこ
とが好ましい。フェライト粉又は炭素材粉末や繊維は粒径の大きいものはより効果が高く
なるが、木粉との混合による板材中の均一な分散がより難しくなる。
The wood powder may be one or more selected from various types of hardwoods and conifers, and chips (wood pieces) and sawdust are preferable. Generally, the average particle size of wood flour is 200 μm ~
The average particle diameter of the ferrite powder is preferably in the range of about 3 to 200 μm. A ferrite powder or carbon material powder or fiber having a larger particle size is more effective, but it is more difficult to uniformly disperse the plate material by mixing with the wood powder.

木粉及びフェライト粉又は炭素材の粉末や繊維の各々の粒径、含有量、並びにボードの厚
みの組合せ設定により単板のGHz周波数帯域での電磁波反射のピーク周波数、減衰量を
調整することができる。
It is possible to adjust the peak frequency and attenuation of electromagnetic wave reflection in the GHz frequency band of a single plate by the combination setting of the particle size and content of wood powder and ferrite powder or carbon material powder and fiber, and board thickness. it can.

以下の方法で単板の木質系ボードを作製し、このボードを積層して積層型電波吸収板材を
作製し、その電波吸収特性を測定した。
<木質系ボードの作製>
磁性粉体と木粉とをフェノール樹脂をバインダーとして、190℃、49N/cm2にて10
分間熱圧縮して、250mm×250mm×18mmの形状のボード状に成形し、木質系
ボードを作製した。磁性粉体は、Mn−Znフェライト(BSF-547,戸田工業製、平均粒径
3,3μm)を、木粉にはオガ屑粉(粒径2mm以下、瀬川興業製)を、バインダーには
、フェノール樹脂(SA-100、旭有機材製)を用いた。粉体を混合する際には適量の水を
用いた。磁性粉体の重量含有量は33%(試料A)、50%(試料B)、66%(試料C
)、80%(試料D)の4段階に変えて表1に示す4種類の電波吸収ボードを作製して試
料とした。

Figure 0005654249
A single board wood board was prepared by the following method, and this board was laminated to produce a laminated wave absorbing plate material, and its wave absorption characteristics were measured.
<Production of wood-based board>
Magnetic powder and wood powder 10% at 190 ° C and 49 N / cm 2 with phenol resin as binder
It was heat-compressed for a minute and formed into a board shape having a shape of 250 mm × 250 mm × 18 mm to produce a wooden board. Magnetic powder is Mn-Zn ferrite (BSF-547, manufactured by Toda Kogyo Co., Ltd., average particle size 3, 3 μm), wood powder is sawdust (particle size 2 mm or less, manufactured by Segawa Kogyo), and binder is A phenol resin (SA-100, manufactured by Asahi Organic Materials) was used. An appropriate amount of water was used when mixing the powder. The magnetic powder has a weight content of 33% (Sample A), 50% (Sample B), and 66% (Sample C).
) And 80% (sample D), changing to four stages, four types of radio wave absorption boards shown in Table 1 were produced and used as samples.
Figure 0005654249

<電波吸収特性の測定法>
測定には、外径6.95mm、内径3.05mm、厚さ3.0mmに加工した環状試料を
用い、ネットワークアナライザー(Agilent E8361A)により、周波数0.5GHzから1
8GHzでの材料定数(複素誘電率、複素透磁率)をNicolson-Ross法により求めた。求
めた材料定数から、試料裏面をアルミニウム反射板で裏打ちした単層型電波吸収体として
、厚さを5mmと10mmに設定し、各試料ごとに電波吸収量の周波数特性を算出した。
<Measurement method of radio wave absorption characteristics>
For the measurement, an annular sample processed to an outer diameter of 6.95 mm, an inner diameter of 3.05 mm, and a thickness of 3.0 mm was used, and a frequency of 0.5 GHz to 1 was measured with a network analyzer (Agilent E8361A).
Material constants (complex dielectric constant and complex permeability) at 8 GHz were determined by the Nicolson-Ross method. From the obtained material constant, the thickness was set to 5 mm and 10 mm as a single-layer type wave absorber with the back surface of the sample lined with an aluminum reflector, and the frequency characteristics of the radio wave absorption amount were calculated for each sample.

<電波吸収特性の測定結果>
図1と図2に、Nicolson-Ross法により算出した材料定数のグラフを示す。図1−1に示
す複素誘電率の実部は、磁性粉体の重量含有率の高い試料が高い値を示し、周波数が高く
なるにつれ、各々減少している。また、図1−2に示す複素誘電率の虚部は、同様に磁性
粉体の重量含有率の高い試料が高い値を示し、実部とは逆に周波数が高くなるにつれて増
加している。図2−1に示す複素透磁率は、実部、虚部ともに周波数が高くなるにつれ減
少しているが、低周波数側では重量含有率の高い試料が高い値を示している。2〜6GH
zでの誘電率e´は、試料A=2.71〜2.54、試料B=4.38〜4.00、試料
C=6.77〜6.11、試料D=11.47〜10.39と算出された。
<Measurement results of radio wave absorption characteristics>
1 and 2 show graphs of material constants calculated by the Nicolson-Ross method. The real part of the complex dielectric constant shown in FIG. 1-1 shows a high value for the sample having a high weight content of the magnetic powder, and decreases as the frequency increases. In addition, the imaginary part of the complex dielectric constant shown in FIG. 1-2 similarly shows a high value for the sample having a high weight content of the magnetic powder, and increases as the frequency increases, contrary to the real part. The complex permeability shown in FIG. 2A decreases as the frequency increases in both the real part and the imaginary part, but the sample with a high weight content shows a high value on the low frequency side. 2-6GH
The dielectric constant e ′ at z is as follows: Sample A = 2.71 to 2.54, Sample B = 4.38 to 4.00, Sample C = 6.77 to 6.11, Sample D = 11.47 to 10 .39.

なお、試料A、B,C,Dの曲げ強さは、それぞれ10.1N/mm2、14.8N/mm2,22
.5N/mm2、33.0N/mm2であり、曲げ弾性率は、それぞれ1640N/mm2、2430N/m
m2,3970N/mm2、8830N/mm2であり、建材としての十分な強度を有していた。
The bending strengths of Samples A, B, C, and D are 10.1 N / mm 2 , 14.8 N / mm 2 , and 22 respectively.
. 5N / mm 2, a 33.0N / mm 2, the flexural modulus, respectively 1640N / mm 2, 2430N / m
m 2 , 3970 N / mm 2 , 8830 N / mm 2 , and sufficient strength as a building material.

図3に、材料定数から算出した試料厚さが5mm(図3−1)と10mm(図3−2)の
木質系ボードの電波吸収特性を示すグラフを示す。傾向として、磁性粉体の重量含有率が
高い試料ほど、低い周波数に高いピークを持つが、試料が厚いと重量含有率が低い試料で
も10GHzを超える周波数で最も高いピークを持つものもある。厚さが5mmから10
mmに増加するにつれ、電波吸収ピークが低周波数側にシフトしている。
FIG. 3 shows a graph showing the radio wave absorption characteristics of the wooden boards having sample thicknesses calculated from the material constants of 5 mm (FIG. 3-1) and 10 mm (FIG. 3-2). As a tendency, a sample having a higher weight content of magnetic powder has a higher peak at a lower frequency, but a sample having a lower weight content has a highest peak at a frequency exceeding 10 GHz when the sample is thicker. Thickness from 5mm to 10
As it increases to mm, the radio wave absorption peak shifts to the low frequency side.

また、20dBを超える吸収量は、試料厚さ5mmでは試料C(フェライト含有量66w
t%)では、6.02GHzにおいて28.5dBであり、試料厚さ10mmでは試料B
(フェライト含有量50wt%)では、12.05GHzにおいて24.2dBであり、
試料C(フェライト含有量66wt%)では、2.51GHzにおいて25.2dBであ
り、試料D(フェライト含有量80wt%)では、1.38GHzにおいて25.7dB
となり、良好な値を示した。しかし、2〜6GHz帯域における電波吸収量は小さい。
Also, the amount of absorption exceeding 20 dB is the value of sample C (ferrite content 66w) when the sample thickness is 5 mm.
t%) is 28.5 dB at 6.02 GHz, and the sample thickness is 10 mm.
(Ferrite content 50 wt%), it is 24.2 dB at 12.05 GHz,
Sample C (ferrite content 66 wt%) is 25.2 dB at 2.51 GHz, and sample D (ferrite content 80 wt%) is 25.7 dB at 1.38 GHz.
It showed a good value. However, the amount of radio wave absorption in the 2 to 6 GHz band is small.

[実施例1,2]
<積層型電波吸収板材の作製>
図4に、本発明の積層型電波吸収板材の多層構造の概念図を示す。図4は、試料層3層、
空気層2層の5層構造を示している。試料層として、試料A、試料B、試料C、試料Dを
組み合わせた構造の積層板を作製した。表2に、実施例1,2及び比較例1の各層に用い
た試料と厚みを示す。
[Examples 1 and 2]
<Preparation of laminated electromagnetic wave absorbing plate>
In FIG. 4, the conceptual diagram of the multilayered structure of the laminated | stacked electromagnetic wave absorption board | plate material of this invention is shown. FIG. 4 shows three sample layers,
5 shows a five-layer structure of two air layers. As a sample layer, a laminate having a structure in which Sample A, Sample B, Sample C, and Sample D were combined was produced. Table 2 shows the samples and thicknesses used in the layers of Examples 1 and 2 and Comparative Example 1.

Figure 0005654249
Figure 0005654249

図5に、実施例1,2及び比較例1の積層型電波吸収板材の電波吸収性能を示す。実施例
1では、積層型電波吸収板材の全体厚みは22.6mmで、電波吸収ボードの合計厚みは
7.6mmであり、図5に示すように、2.38GHzから7.45GHzの範囲で20
dBを超える吸収性能が得られた。実施例2では、積層型電波吸収板材の全体厚みは28
mmで、電波吸収ボードの合計厚みは16.3mmであり、1.98GHzから6.35
GHzの範囲で19dB以上の吸収性能が得られた。
FIG. 5 shows the radio wave absorption performance of the laminated radio wave absorbing plate materials of Examples 1 and 2 and Comparative Example 1. In Example 1, the total thickness of the laminated wave absorbing plate material is 22.6 mm, and the total thickness of the wave absorbing board is 7.6 mm. As shown in FIG. 5, the thickness is 20 in the range of 2.38 GHz to 7.45 GHz.
Absorption performance exceeding dB was obtained. In Example 2, the total thickness of the laminated wave absorbing plate material is 28.
mm, and the total thickness of the radio wave absorption board is 16.3 mm, from 1.98 GHz to 6.35.
Absorption performance of 19 dB or more was obtained in the GHz range.

比較例1では、積層型電波吸収板材の全体厚みは33mmで、電波吸収ボードの合計厚み
は26mmであり、0.77GHzから10.47GHzの広い帯域で10dBを超える
吸収性能が得られているが、2〜6GHzの帯域では19dBを超える吸収性能は得られ
なかった。この理由は、1層目と3層目との間の空気層の厚みが0.5mmであり、1層
目と3層目に介在させた効果が得られず、1〜3層で高誘電率層1層と実質的に相違しな
いためと推測される。
In Comparative Example 1, the total thickness of the laminated wave absorbing plate material is 33 mm, the total thickness of the wave absorbing board is 26 mm, and absorption performance exceeding 10 dB is obtained in a wide band from 0.77 GHz to 10.47 GHz. In the 2-6 GHz band, absorption performance exceeding 19 dB was not obtained. This is because the thickness of the air layer between the first layer and the third layer is 0.5 mm, and the effect interposed in the first layer and the third layer cannot be obtained. This is presumably because it is not substantially different from the rate layer 1 layer.

[実施例3〜7]
<木質系ボードの作製>
実施例1,2と同様に木質系ボードを作製した。導電性粉末は、グラファイト(1500M84C
伊藤黒鉛工業製)、炭素繊維(S-244大阪ガスケミカル製)、又はカーボンブラック(カ
ーボンMBPEC-416レジノカラー)を用いた。表3、4、5に試料E〜Pの組成を示す。ま
た、同様に、表6,7に示す組成の非磁性ボードを作製した。
[Examples 3 to 7]
<Production of wood-based board>
A wood-based board was produced in the same manner as in Examples 1 and 2. The conductive powder is graphite (1500M84C
Carbon fiber (S-244 Osaka Gas Chemical) or carbon black (Carbon MBPEC-416 Resino Color) was used. Tables 3, 4, and 5 show the compositions of Samples EP. Similarly, nonmagnetic boards having the compositions shown in Tables 6 and 7 were produced.

Figure 0005654249
Figure 0005654249

Figure 0005654249
Figure 0005654249

Figure 0005654249
Figure 0005654249

Figure 0005654249
Figure 0005654249

Figure 0005654249
Figure 0005654249

<積層型電波吸収板材の作製>
実施例1,2と同様に積層型電波吸収板材を作製した。それぞれの層構造を表8〜10に
示す。各表中の英文字は試料の種類、mmは試料又は空気層の厚み、その下段の数値は4
GHzにおける誘電率を示す。

Figure 0005654249
<Preparation of laminated electromagnetic wave absorbing plate>
A laminated wave absorbing plate was prepared in the same manner as in Examples 1 and 2. Each layer structure is shown in Tables 8-10. The alphabetical characters in each table are the sample type, mm is the thickness of the sample or air layer, and the numerical value at the bottom is 4
The dielectric constant in GHz is shown.
Figure 0005654249

Figure 0005654249
Figure 0005654249

Figure 0005654249
Figure 0005654249

また、実施例1,2と同様に測定した電波吸収特性を図6〜10に示す。実施例3では、
2GHz〜6GHz帯域での最低の電波吸収能は20.8dBであり、20dBの水準の
帯域は1.90GHz〜6.34GHzであった。実施例4では、2GHz〜6GHz帯
域での最低の電波吸収能は20.5dBであり、20dBの水準の帯域は1.81GHz
〜6.56GHzであった。実施例5では、2GHz〜6GHz帯域での最低の電波吸収
能は22.3dBであり、20dBの水準の帯域は1.82GHz〜6.91GHzであ
った。実施例6では、2GHz〜6GHz帯域での最低の電波吸収能は20.4dBであ
り、20dBの水準の帯域は1.95GHz〜6.03GHzであった。実施例7では、
2GHz〜6GHz帯域での最低の電波吸収能は22.3dBであり、20dBの水準の
帯域は1.89GHz〜6.41GHzであった。いずれも、2GHz〜6GHzの全帯
域内(帯域幅が4GHz)で19dB以上の電波吸収性能を有するものが得られたことが
分かる。
The radio wave absorption characteristics measured in the same manner as in Examples 1 and 2 are shown in FIGS. In Example 3,
The lowest radio wave absorptivity in the 2 GHz to 6 GHz band was 20.8 dB, and the 20 dB level band was 1.90 GHz to 6.34 GHz. In Example 4, the lowest radio wave absorption capability in the 2 GHz to 6 GHz band is 20.5 dB, and the 20 dB level band is 1.81 GHz.
It was ˜6.56 GHz. In Example 5, the lowest radio wave absorption capability in the 2 GHz to 6 GHz band was 22.3 dB, and the 20 dB level band was 1.82 GHz to 6.91 GHz. In Example 6, the lowest radio wave absorptivity in the 2 GHz to 6 GHz band was 20.4 dB, and the 20 dB level band was 1.95 GHz to 6.03 GHz. In Example 7,
The lowest radio wave absorption capability in the 2 GHz to 6 GHz band was 22.3 dB, and the 20 dB level band was 1.89 GHz to 6.41 GHz. In any case, it was found that a product having a radio wave absorption performance of 19 dB or more in the entire band of 2 GHz to 6 GHz (bandwidth: 4 GHz) was obtained.

比較例2は、低誘電率層を設けないで高誘電率層3層を積層した例であり、図8に示すと
り、電波吸収ボード単板の場合より5GHz帯域の電波吸収能は改善されるものの、所望
の電波吸収性能が得られなかった。
Comparative Example 2 is an example in which three layers of high dielectric constant layers are laminated without providing a low dielectric constant layer. As shown in FIG. 8, the radio wave absorption capability in the 5 GHz band is improved as compared with the case of a single radio wave absorption board. However, the desired radio wave absorption performance could not be obtained.

安価な木材の粉状体(木粉)を有効活用して、低価格で、軽量、高性能の2GHz〜6G
Hzの全帯域で19dB以上の電波吸収性能を有し、特に2.4GHz帯域と5.2GH
z帯域の2波長付近における電波吸収能に優れ、室内の内装材や天井材等の建材に適し、
作製の容易な低価格の積層型電波吸収板材としての利用が大いに期待される。
Effective use of inexpensive wood powder (wood powder), low price, light weight, high performance 2 GHz to 6 G
It has a radio wave absorption performance of 19 dB or more in the whole band of Hz, especially 2.4 GHz band and 5.2 GHz.
Excellent electromagnetic wave absorption in the vicinity of two wavelengths in the z-band, suitable for interior materials such as indoor interior materials and ceiling materials,
It is highly expected to be used as a low-priced laminated wave absorber that is easy to manufacture.

Claims (10)

電磁波を反射する金属板上に、少なくとも2層の高誘電率層と、少なくとも1層の低誘電
率層とを組み合わせて積層した電波吸収板材であって、
上記高誘電率層は、2〜6GHz帯域における単層での誘電率が2以上31以下の(A)
木質系磁性ボード又は(B)木質系導電性ボードからなり、
上記低誘電率層は、厚みが0.6mm以上で、2〜6GHz帯域における単層での誘電率
が1以上2未満の(C)非磁性ボード又は(D)空気層からなり、
金属板側の1層目が(A)木質系磁性ボード又は(B)木質系導電性ボードであり、
電波の入射側の表面層が、(A)木質系磁性ボード若しくは(B)木質系導電性ボード、
又は(C)非磁性ボードであり、
2GHz〜6GHzの全帯域内で19dB以上の電波吸収性能を有することを特徴とする
積層型電波吸収板材。
An electromagnetic wave absorbing plate material in which at least two high dielectric constant layers and at least one low dielectric constant layer are combined and laminated on a metal plate that reflects electromagnetic waves,
The high dielectric constant layer has a dielectric constant of 2 to 31 in a single layer in the 2 to 6 GHz band (A)
It consists of a wood-based magnetic board or (B) a wood-based conductive board,
The low dielectric constant layer is a thickness of 0.6mm or more, the dielectric constant of a single layer is also less than 2 (C) a non-magnetic board 1 or in 2~6GHz band consists (D) air layer,
The first layer on the metal plate side is (A) a wooden magnetic board or (B) a wooden conductive board,
The surface layer on the incident side of the radio wave is (A) a wooden magnetic board or (B) a wooden conductive board,
Or (C) a non-magnetic board,
A laminated wave absorbing plate material having a wave absorbing performance of 19 dB or more in the entire band of 2 GHz to 6 GHz.
木質系磁性ボードが木粉とフェライト粉とをバインダー樹脂により結合して加圧成形し
たものであることを特徴とする請求項1記載の積層型電波吸収板材。
2. The laminated electromagnetic wave absorbing plate material according to claim 1 , wherein the wood-based magnetic board is formed by bonding wood powder and ferrite powder with a binder resin and press-molding.
木質系導電性ボードがグラファイト粉、炭素繊維、導電性カーボンブラックから選ばれ
る炭素材をバインダー樹脂により結合して加圧成形したものであることを特徴とする請求
項1記載の積層型電波吸収板材。
Woody conductive board, graphite powder, carbon fiber, laminated electromagnetic wave absorber of the carbon material selected from conductive carbon black according to claim 1, wherein the bonded by a binder resin is obtained by pressure molding Board material.
非磁性ボードが、木粉又はパーライト粉をバインダー樹脂により結合して加圧成形したボ
ード、発泡ウレタン樹脂、発泡スチレン樹脂のいずれかであることを特徴とする請求項1
記載の積層型電波吸収板材。
The non-magnetic board is one of a board obtained by bonding wood powder or pearlite powder with a binder resin and press-molding, a foamed urethane resin, or a foamed styrene resin.
The laminated electromagnetic wave absorbing plate material described.
高誘電率層の誘電率は電波の入射側から反射側に順次大きい値であることを特徴とする請
求項1記載の積層型電波吸収板材。
2. The laminated wave absorbing plate material according to claim 1, wherein the dielectric constant of the high dielectric constant layer is sequentially increased from the incident side to the reflecting side.
木質系磁性ボード又は木質系導電性ボードは、4.0GHz〜7.5GHz帯域に電波吸
収のピークを有することを特徴とする請求項1記載の積層型電波吸収板材。
The laminated electromagnetic wave absorbing plate material according to claim 1, wherein the wooden magnetic board or the wooden conductive board has a peak of radio wave absorption in a 4.0 GHz to 7.5 GHz band.
30dB以上の電波吸収ピークを有することを特徴とする請求項1記載の積層型電波吸収
板材。
The laminated wave absorbing plate material according to claim 1, which has a wave absorption peak of 30 dB or more.
請求項1〜7のいずれかに記載した積層型電波吸収板材からなることを特徴とする建材。 A building material comprising the laminated wave absorbing plate material according to any one of claims 1 to 7. 2〜6GHz帯域における単層での誘電率が2以上31以下の木質系磁性ボード又は木質
系導電性ボードの少なくとも2層と、厚みが0.6mm以上で、2〜6GHz帯域におけ
る単層での誘電率が1以上2未満の非磁性ボードの少なくとも1層とを電磁波を反射する
金属板上に接着剤を用いて積層することを特徴とする請求項1記載の積層型電波吸収板材
の作製方法。
At least two layers of a wood-based magnetic board or a wood-based conductive board having a dielectric constant of 2 to 31 in a single layer in a 2 to 6 GHz band, and a thickness of 0.6 mm or more and a single layer in a 2 to 6 GHz band The method for producing a laminated wave absorbing plate material according to claim 1, wherein at least one layer of a nonmagnetic board having a dielectric constant of 1 or more and less than 2 is laminated on a metal plate that reflects electromagnetic waves using an adhesive. .
2〜6GHz帯域における単層での誘電率が2以上31以下の木質系磁性ボード又は木質
系導電性ボードの少なくとも2層を厚みが0.6mm以上の空気層を介在させて電磁波を
反射する金属板上に接着剤を用いて積層することを特徴とする請求項1記載の積層型電波
吸収板材の作製方法。
Metal that reflects electromagnetic waves with an air layer having a thickness of 0.6 mm or more between at least two layers of a wooden magnetic board or a wooden conductive board having a dielectric constant of 2 to 31 in a single layer in the 2 to 6 GHz band 2. The method for producing a laminated wave absorbing plate material according to claim 1, wherein the lamination is performed using an adhesive on the plate.
JP2010051185A 2010-03-08 2010-03-08 Laminated wood-based electromagnetic wave absorbing plate and method Active JP5654249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010051185A JP5654249B2 (en) 2010-03-08 2010-03-08 Laminated wood-based electromagnetic wave absorbing plate and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010051185A JP5654249B2 (en) 2010-03-08 2010-03-08 Laminated wood-based electromagnetic wave absorbing plate and method

Publications (2)

Publication Number Publication Date
JP2011187671A JP2011187671A (en) 2011-09-22
JP5654249B2 true JP5654249B2 (en) 2015-01-14

Family

ID=44793612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010051185A Active JP5654249B2 (en) 2010-03-08 2010-03-08 Laminated wood-based electromagnetic wave absorbing plate and method

Country Status (1)

Country Link
JP (1) JP5654249B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105101769A (en) * 2015-07-31 2015-11-25 武汉理工大学 Embedded composite meta-material absorber

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5474236B1 (en) * 2013-05-17 2014-04-16 健 鈴木 Heat treatment method for fuel materials
JP6196823B2 (en) * 2013-06-26 2017-09-13 エア・ウォーター・エコロッカ株式会社 Antistatic deck material
JP6429139B2 (en) * 2013-09-05 2018-11-28 国立大学法人岩手大学 Wood-based magnetic molding material
SG11202100481WA (en) 2019-06-10 2021-02-25 Fuji Polymer Industries Co Ltd Electromagnetic wave absorbing thermally conductive composition and sheet thereof
US11785752B2 (en) 2019-06-10 2023-10-10 Fuji Polymer Industries Co., Ltd. Electromagnetic wave absorbing thermally conductive composition and sheet thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191500A (en) * 1988-01-27 1989-08-01 Kajima Corp Radio-wave absorber
JP3925835B2 (en) * 2000-04-10 2007-06-06 株式会社日立製作所 Electromagnetic wave absorber, its production method and various uses using it
JP2008135485A (en) * 2006-11-27 2008-06-12 Taika:Kk Radio wave absorber and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105101769A (en) * 2015-07-31 2015-11-25 武汉理工大学 Embedded composite meta-material absorber

Also Published As

Publication number Publication date
JP2011187671A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
JP5654249B2 (en) Laminated wood-based electromagnetic wave absorbing plate and method
Wang et al. Radar stealth and mechanical properties of a broadband radar absorbing structure
KR101759580B1 (en) Multi-layered electromagnetic wave absorber and method for producing a multi-layered electromagnetic wave absorber
CN104582458A (en) Wave absorbing metamaterial
JP2005057093A (en) Radio wave absorber and method for manufacturing the same
JP4528334B2 (en) Electromagnetic wave absorber
JPH08204379A (en) Radio wave absorber
JPS62248299A (en) Electric wave absorbing composite unit
JP4371426B2 (en) Indoor wood-based magnetic wave absorption board
JP6674436B2 (en) Noise suppression sheet
JPH04340299A (en) Millimeter radio wave absorber
JP2004119450A (en) Radio wave absorber and its manufacturing method
JP2021145033A (en) Sheet member and millimeter wave absorber including the same
JP2000244167A (en) Electromagnetic-wave-disturbance preventive material
JP2004193460A (en) Radio wave absorber
CN204796033U (en) Inhale super material of ripples and inhale ripples device
JP2005228939A (en) Electromagnetic wave absorber and its production process
US7544427B2 (en) Woody electric-wave-absorbing building material
JP4879077B2 (en) Radio wave absorber
JP2007059456A (en) Wave absorber
JP2012038836A (en) Magnetic body core
JPH01155691A (en) Radio wave absorbing composite material
JP2000232295A (en) Electromagnetic-wave absorbing material
JP2005167179A (en) Wave absorption wood board and wave absorber using the board
KR100764659B1 (en) Glass Fiber Reinforced Nano Composites For Outdoor Antenna Having Microwave Shielding Property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140618

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140825

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140910

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141120

R150 Certificate of patent or registration of utility model

Ref document number: 5654249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250