JPS6134484B2 - - Google Patents
Info
- Publication number
- JPS6134484B2 JPS6134484B2 JP57225813A JP22581382A JPS6134484B2 JP S6134484 B2 JPS6134484 B2 JP S6134484B2 JP 57225813 A JP57225813 A JP 57225813A JP 22581382 A JP22581382 A JP 22581382A JP S6134484 B2 JPS6134484 B2 JP S6134484B2
- Authority
- JP
- Japan
- Prior art keywords
- ion concentration
- ions
- total
- concentration
- conductivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 150000002500 ions Chemical class 0.000 claims description 52
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 7
- 239000007864 aqueous solution Substances 0.000 claims description 7
- 229910052731 fluorine Inorganic materials 0.000 claims description 7
- 239000011737 fluorine Substances 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 238000010586 diagram Methods 0.000 description 11
- 229910001385 heavy metal Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000012074 organic phase Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000003723 Smelting Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- -1 fluoride ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000001139 pH measurement Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
【発明の詳細な説明】
本発明は主としてフツ素とアンモニウムの両者
を含有する水溶液の濃度管理方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention primarily relates to a method for controlling the concentration of an aqueous solution containing both fluorine and ammonium.
従来技術
有機溶媒中に抽出含有している金属イオンを剥
離して各種金属イオンを製造する方法は、本発明
人が出願した特願昭55―119308号、(特開昭57−
43914号)、特願昭56−110038号、(特開昭58−
15039号)、特願昭56−181035号、(特開昭58−
84126号)、特願昭55−148189号(特開昭57−
73138号)及びその装置として特願昭56−179644
号(特開昭58−81402号)等において開示されて
いる。Prior Art A method for producing various metal ions by peeling off metal ions extracted and contained in an organic solvent is disclosed in Japanese Patent Application No. 119308/1983 filed by the present inventor,
(No. 43914), Patent Application No. 110038 (1983), (Japanese Patent Application No. 1983-
(No. 15039), Patent Application No. 181035 (1981), (Japanese Patent Application No. 1983-
84126), Japanese Patent Application No. 148189 (1982)
No. 73138) and its device as patent application No. 179644
(Japanese Unexamined Patent Publication No. 58-81402).
これらの技術を工業化する時一番問題となるの
は、剥離液であるフツ素とアンモニウムを含有す
る水溶液の管理方法についてである。すなわち、
両イオンの全濃度によつて有機相の金属剥離率が
変化し、フツ素とアンモニウムの混合比率によつ
て例えば次の(1)及び(2)式に示すように抽出剤の形
態が変化するためである。 The biggest problem when commercializing these technologies is how to manage the stripping solution, an aqueous solution containing fluorine and ammonium. That is,
The metal removal rate of the organic phase changes depending on the total concentration of both ions, and the form of the extractant changes depending on the mixing ratio of fluorine and ammonium, for example, as shown in the following equations (1) and (2). It's for a reason.
CuR2+2NH4HF2
2RH+(NH4)2CuF4……(1)
CuR2+2NH4HF2
RH+RNH4+NH4CuF3+HF…(2)
このように水溶液中のフツ素イオン(F-イオ
ン)濃度とアンモニウムイオン(NH4 +イオン)
濃度を制御することが非常に重要であるが、従来
両イオンをそれぞれ分析するか、あるいは水素イ
オン(H+イオン)濃度を測定する程度であり、
両イオンを連続的に読みとるような制御管理方法
はなかつた。 CuR 2 +2NH 4 HF 2 2RH+ (NH 4 ) 2 CuF 4 ...(1) CuR 2 +2NH 4 HF 2 RH+RNH 4 +NH 4 CuF 3 +HF...(2) In this way, fluoride ions (F - ions) in aqueous solution Concentration and ammonium ion ( NH4 + ion)
Controlling the concentration is very important, but conventionally both ions are analyzed individually or the hydrogen ion (H + ion) concentration is measured.
There was no control management method that could read both ions continuously.
発明の開示
本発明はフツ素を利用した新しい金属製錬にお
いて重要なF-イオン及びNH4 +イオンの全濃度の
測定方法及び管理方法を提供するものである。Disclosure of the Invention The present invention provides a method for measuring and managing the total concentration of F - ions and NH 4 + ions, which are important in new metal smelting using fluorine.
本発明はF-イオンとNH4 +イオンを主として含
有する水溶液の電導度とH+イオン濃度とを測定
し、電導度とF-イオン濃度との関係並びにH+イ
オン濃度とNH4 +イオン/F-イオンのモル比率と
の関係も求め、両関係から全F-イオン濃度及び
全NH4 +イオン濃度を求めることによつて、全F-
イオン濃度及び全NH4 +イオン濃度を読みとるこ
とを特徴とする、フツ素とアンモニウム含有液の
管理方法に存する。 The present invention measures the electrical conductivity and H + ion concentration of an aqueous solution containing mainly F - ions and NH 4 + ions, and determines the relationship between the electrical conductivity and the F - ion concentration, and the relationship between the H + ion concentration and the NH 4 + ion concentration. The relationship with the molar ratio of F - ions is also determined, and the total F - ion concentration and total NH 4 + ion concentration are determined from both relationships .
The invention consists in a method for managing a liquid containing fluorine and ammonium, which is characterized by reading the ion concentration and total NH 4 + ion concentration.
以下本発明の詳細を図に基づきさらに具体的に
説明するが、本発明はこれに限定されるものでは
ない。 The details of the present invention will be explained in more detail below based on the drawings, but the present invention is not limited thereto.
第3図に示すように、主としてF-イオンと
NH4 +イオンとを含有する水溶液(これ以外に
Fe,Cu,Co,Ni等の重金属イオンが共存しても
よい)の電導度(electric conductivity)を測定
すると、電導度はNH4 +イオン濃度あるいは重金
属イオンの存在に関係なく全F-イオン濃度にの
み比例的に変化する。また、第4図からは電導度
は液温に比例することが判る。 As shown in Figure 3, mainly F - ions and
Aqueous solutions containing NH 4 + ions (in addition to
(Fe, Cu, Co, Ni, and other heavy metal ions may coexist)), the electrical conductivity is determined by the total F - ion concentration regardless of the NH 4 + ion concentration or the presence of heavy metal ions. It changes only proportionally. Furthermore, from FIG. 4, it can be seen that the conductivity is proportional to the liquid temperature.
全F-イオン濃度を一定にしてNH4 +/F-のモル
比率を変化させたときの電導度変化を第5図に示
す。この図からNH4 +/F-モル率が0.1〜0.55の間
まで一次曲線となり、さらに遊離NH4 +イオンが
多くなると電導度は変化しないことが判る。 Figure 5 shows the change in conductivity when the molar ratio of NH 4 + /F - was varied while keeping the total F - ion concentration constant. From this figure, it can be seen that the conductivity becomes a linear curve when the NH 4 + /F - molar ratio is between 0.1 and 0.55, and as the number of free NH 4 + ions increases, the conductivity does not change.
次に、H+イオン濃度(pHで表示)とNH4 +/
F-のモル比率との関係を測定した結果を第6図
に示す。この図からpHが約4.5〜6.5の範囲では
一次曲線であり、すなわちNH4 +/F-のモル比率
がほぼ0.35〜0.8の間では共存する重金属イオン
濃度に関係なく、pHの測定によつてNH4 +/F-の
モル比率が求められることを示している。 Next, the H + ion concentration (expressed as pH) and NH 4 + /
Figure 6 shows the results of measuring the relationship with the molar ratio of F - . This figure shows that in the pH range of approximately 4.5 to 6.5, it is a linear curve, that is, when the molar ratio of NH 4 + /F - is approximately 0.35 to 0.8, it is determined by pH measurement regardless of the coexisting heavy metal ion concentration. This shows that the molar ratio of NH 4 + /F - is required.
このように主としてF-イオンとNH4 +イオンと
を含有する水溶液の電導度及び水素イオン濃度と
を求めることにより、NH4 +/F-のモル比率を求
めF-イオン濃度及びNH4 +イオン濃度とを求める
ことができる。 In this way, by determining the conductivity and hydrogen ion concentration of an aqueous solution containing mainly F - ions and NH 4 + ions, the molar ratio of NH 4 + /F - can be determined and the F - ion concentration and NH 4 + ion concentration. The concentration can be determined.
第1図は主として連続的に有機相中の重金属イ
オンを剥離する装置において、全F-イオン濃度
及びNH4 +イオン濃度を制御する概略図の一例を
示す。この装置を操業する際、まず剥離液中で求
めたpHとの電導度の信号を演算器に送りこみ、
上記のような方法によりF-イオン濃度及びNH4 +
イオン濃度を求めて記録する。両イオンの所望イ
オン濃度を得るためにHF並びにNH4OH又はNH3
ガスを液中に添加して濃度制御する。 FIG. 1 shows an example of a schematic diagram for controlling the total F - ion concentration and NH 4 + ion concentration in an apparatus that mainly continuously strips heavy metal ions in an organic phase. When operating this device, first, the pH and conductivity signals determined in the stripping solution are sent to the computer,
The F - ion concentration and NH 4 +
Determine and record the ion concentration. HF as well as NH 4 OH or NH 3 to obtain the desired ion concentration of both ions.
Gas is added to the liquid to control the concentration.
第2図に示す剥離装置の概略図の一例ではF-
イオン濃度及びNH4 +イオン濃度を回分的に制御
する場合によく利用する方法であるが、勿論連続
的に使用することもできる。第1図の装置と同様
にpH計及び電導度計からの信号を演算器に送り
込み、F-イオン濃度及びNH4 +イオン濃度を記録
する。制御方法も同一である。 In an example of a schematic diagram of a peeling device shown in Fig. 2, F -
This method is often used to control the ion concentration and NH 4 + ion concentration batchwise, but it can of course also be used continuously. Similar to the apparatus shown in FIG. 1, signals from the pH meter and conductivity meter are sent to a computing unit, and the F - ion concentration and NH 4 + ion concentration are recorded. The control method is also the same.
以下実施例に基づき本発明をさらに具体的に説
明する。 The present invention will be described in more detail below based on Examples.
実施例
純水にHFを一定割合に添加し、電導度を測定
した結果を第3図に〇―〇で示す。一次曲線で増
減することが判る。また、純水にNH3ガスを添加
した時の電導度の測定結果を同じく第3図に×―
×で示す。NH4 +イオンの増減は電導度の値を変
化させない。Example HF was added to pure water at a certain ratio, and the conductivity was measured. The results are shown in Figure 3 as 〇-〇. It can be seen that it increases and decreases in a linear curve. Figure 3 also shows the measurement results of conductivity when NH 3 gas was added to pure water.
Indicated by ×. Increase or decrease of NH 4 + ions does not change the conductivity value.
次にNH4 +/F-のモル比0.5の液をつくり、全
F-イオン濃度75g/(第4図中〇―〇)及び
35g/(第4図中△―△)の溶液の温度変化に
対して電導度がどのように変化するかを測定し
た。結果を第4図に示す。 Next, prepare a liquid with a molar ratio of NH 4 + /F - of 0.5, and
F - ion concentration 75g/(〇-〇 in Figure 4) and
It was measured how the electrical conductivity of a solution of 35 g/(△-△ in Figure 4) changes with respect to temperature changes. The results are shown in Figure 4.
全F-イオン濃度を一定にしてNH4 +/F-のモル
比率を変化させた結果を第5図に示す。全F-イ
オン濃度は75g/(図中〇―〇)及び30g/
(図中▲―▲)で測定した。NH4 +/F-モル比率
0.1〜0.55においては一次曲線であり、遊離NH4 +
イオンが多くなると電導度は変化しないことが判
つた。 Figure 5 shows the results of varying the molar ratio of NH 4 + /F - while keeping the total F - ion concentration constant. The total F -ion concentration is 75g/(○-○ in the figure) and 30g/
(▲-▲ in the figure). NH 4 + /F - molar ratio
Between 0.1 and 0.55, it is a linear curve, and free NH 4 +
It was found that the conductivity did not change as the number of ions increased.
H+イオン濃度(pHで表示)とNH4 +/F-のモ
ル比率との関係を測定した結果を第6図に示す。
全F-イオン濃度80g/―Fe3+0g/(図中
〇)、全F-イオン濃度80g/―Fe3+0.6g/
(図中▲)、全F-イオン濃度35g/―Fe3+1.3
g/(図中×)の組合せでNH4 +/F-のモル比
率を変化させた。その結果、全F-イオン濃度変
化及びFe3+イオン濃度変化に関係なく、NH4 +/
F-のモル比率がほぼ0.35〜0.8の範囲において一
次曲線でpHに対応することが見出せ、pH4.5〜
6.5ではpHを測定することによりNH4 +/F-のモ
ル比率が求められることが判つた。 Figure 6 shows the results of measuring the relationship between H + ion concentration (expressed in pH) and the molar ratio of NH 4 + /F - .
Total F -ion concentration 80g/-Fe 3+ 0g/ (○ in the figure), total F - ion concentration 80g/-Fe 3+ 0.6g/
(▲ in the figure), total F - ion concentration 35g/-Fe 3+ 1.3
The molar ratio of NH 4 + /F - was changed by the combination of g/(x in the figure). As a result, NH 4 + /
It was found that the molar ratio of F - corresponds to pH in the range of approximately 0.35 to 0.8, and that it corresponds to pH in the range of approximately 0.35 to 0.8.
6.5, it was found that the molar ratio of NH 4 + /F - could be determined by measuring the pH.
以上第3図ないし第6図の結果をまとめて示し
たのが第7図である。この第7図に基づき工業プ
ラントに於いて、有機相に抽出含有したFe3+イ
オンの剥離にF-イオンとNH4 +イオン含有液に液
濃度を制御したところ、順調にFe3+イオンが剥
離され工業的に充分利用できることが立証され
た。 FIG. 7 shows a summary of the results shown in FIGS. 3 to 6 above. Based on this figure 7, in an industrial plant, the concentration of the liquid containing F - ions and NH 4 + ions was controlled to remove the Fe 3+ ions extracted and contained in the organic phase, and the Fe 3+ ions were smoothly removed. It has been proven that it can be peeled off and used industrially.
発明の効果
本発明によればフツ素を利用した新しい金属製
錬で重要なF-イオン及びNH4 +イオンの全濃度を
継続的に測定・管理することができる。Effects of the Invention According to the present invention, the total concentration of F - ions and NH 4 + ions, which are important in new metal smelting using fluorine, can be continuously measured and managed.
第1図は本発明に基いてF-イオン及びNH4 +イ
オンの濃度制御を行なう場合の概略図、第2図は
本発明に基づきF-イオン及びNH4 +イオン濃度を
回分的に制御する場合の概略図、第3図はF-イ
オン全濃度及びNH4 +イオン全濃度と電導度との
関係を示す図、第4図はF-イオン全濃度及び
NH4 +イオン全濃度の温度と電導度との関係を示
す図、第5図はNH4 +イオン/F-イオンのモル比
率と電導度との関係を示す図、第6図はNH4 +イ
オン/F-イオンのモル比率とpHとの関係を示す
図、第7図は第3図ないし第6図で求めた関係を
まとめて示した図である。
Figure 1 is a schematic diagram of controlling the concentration of F - ions and NH 4 + ions based on the present invention, and Figure 2 is a schematic diagram of controlling the concentrations of F - ions and NH 4 + ions batchwise based on the present invention. Figure 3 is a diagram showing the relationship between total F - ion concentration and total NH 4 + ion concentration and conductivity. Figure 4 is a diagram showing the relationship between total F - ion concentration and NH 4 + ion concentration and conductivity.
A diagram showing the relationship between the temperature and conductivity of the total concentration of NH 4 + ions, Figure 5 is a diagram showing the relationship between the molar ratio of NH 4 + ions/F - ions and conductivity, and Figure 6 is a diagram showing the relationship between the NH 4 + ion/F - ion molar ratio and conductivity. FIG. 7 is a diagram showing the relationship between the molar ratio of ions/F - ions and pH, and is a diagram summarizing the relationships obtained in FIGS. 3 to 6.
Claims (1)
水溶液の電導度とH+イオン濃度とを測定し、電
導度とF-イオン濃度との関係並びにH+イオン濃
度とNH4 +イオン/F-イオンのモル比率との関係
を求め、両関係から全F-イオン濃度及び全NH4 +
イオン濃度を求めることによつて、全F-イオン
濃度及び全NH4 +イオン濃度を読みとることを特
徴とする、フツ素とアンモニウム含有液の管理方
法。1. Measure the electrical conductivity and H + ion concentration of an aqueous solution containing mainly F - ions and NH 4 + ions, and determine the relationship between the electrical conductivity and F - ion concentration as well as the H + ion concentration and NH 4 + ion /F - Determine the relationship between the molar ratio of ions and calculate the total F - ion concentration and total NH 4 + from both relationships.
A method for managing a liquid containing fluorine and ammonium, characterized by reading the total F - ion concentration and the total NH 4 + ion concentration by determining the ion concentration.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57225813A JPS59116337A (en) | 1982-12-24 | 1982-12-24 | Method for controlling solution containing fluorine and ammonium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57225813A JPS59116337A (en) | 1982-12-24 | 1982-12-24 | Method for controlling solution containing fluorine and ammonium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59116337A JPS59116337A (en) | 1984-07-05 |
JPS6134484B2 true JPS6134484B2 (en) | 1986-08-08 |
Family
ID=16835191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57225813A Granted JPS59116337A (en) | 1982-12-24 | 1982-12-24 | Method for controlling solution containing fluorine and ammonium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59116337A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63163289A (en) * | 1986-12-26 | 1988-07-06 | Nec Corp | High frequency characteristic measuring instrument for semiconductor device |
-
1982
- 1982-12-24 JP JP57225813A patent/JPS59116337A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63163289A (en) * | 1986-12-26 | 1988-07-06 | Nec Corp | High frequency characteristic measuring instrument for semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JPS59116337A (en) | 1984-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Biederman et al. | On the solubility product of precipitated iron hydroxide | |
MacDougall et al. | Passivation of iron in sulfate, perchlorate, and borate solutions: role of borate in the passivation process | |
JPS6134484B2 (en) | ||
JPS6199683A (en) | Method and apparatus for regenerating copper chloride etching solution | |
Pauker et al. | Novel method for measuring water evaporation into still air. | |
Kondo et al. | KINETICS OF EXTRACTION AND STRIPPING OF COPPER WITH ANTI 2-HYDROXY-5-NONYLBENZ0PHENONE OXIME | |
Song et al. | ON THE TRANSPASSIVATION-REPASSIVATION OF TYPE 304 STAINLESS STEEL IN HIGH POTENTIAL RANGE(Chinese) | |
Moser et al. | EMF and calorimetric measurements on the Mg-In liquid solutions | |
Wasai et al. | Thermodynamic Considerations of Infinite Dilute Solutions of Metal--Oxygen Liquid Binary Systems Based on Associated Solution Model | |
Nightingale Jr | Potentiometric titration at constant current of copper (ii) in ammoniacal medium | |
Laubry et al. | Interactions between metal cations and the ionophore lasalocid. Part 5.—A potentiometric, polarographic and electron spin resonance study of copper (II)–lasalocid equilibria in methanol | |
Chen et al. | General Transformation Formula for SHG Coefficients of a Crystal and Those of Its Anionic Groupings | |
Slifkin et al. | Relaxation studies of polyvalent and monovalent electrolytes using a modulated heating technique | |
Arpadjan et al. | Application of Mathematical Methods to the Study of the Corrosion of Iron--Nickel Alloys in Sulfuric Acid Media | |
Lívanský | Kinetics of pH equilibration in solutions of hydrogen carbonate during bubbling with a gas containing carbon dioxide | |
Burova | Phase Composition Determination of Polycrystalline Mixtures With the Aid of a Computer | |
Horányi et al. | Radiotracer study of adsorption phenomena on copper electrodes: Adsorption of aliphatic acids on “copperized” electrodes | |
Fang et al. | Simultaneous Spectrophotometric Determination of Iron (III) and Titanium (IV) and Comparison of Several Methods | |
Chen et al. | A Program for Refinement of Atomic Coordinates in the X-Ray Powder Diffraction Method | |
JPS53108654A (en) | Removing fine amount of impurtities contained in water | |
JPH083148B2 (en) | Metal etching method | |
Meisel et al. | Degradation of passive layers of iron studied by conversion electron Mössbauer spectroscopy | |
Evans et al. | Conductivity and solubility studies of some glycollates and lactates | |
Kalmykov et al. | Calculation of Rolling Energy--Force Parameters in Gripping(a Rolled Material by the Rolls) | |
Majima et al. | Water and Solute Activities of H sub 2 SO sub 4--Fe sub 2(SO sub 4) sub 3--H sub 2 O and HCl--FeCl sub 3--H sub 2 O Solution Systems. II. Activities of Solutes |