JPS6134236B2 - - Google Patents

Info

Publication number
JPS6134236B2
JPS6134236B2 JP8506178A JP8506178A JPS6134236B2 JP S6134236 B2 JPS6134236 B2 JP S6134236B2 JP 8506178 A JP8506178 A JP 8506178A JP 8506178 A JP8506178 A JP 8506178A JP S6134236 B2 JPS6134236 B2 JP S6134236B2
Authority
JP
Japan
Prior art keywords
glass
sheathed heater
sealing
solder glass
jacket tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8506178A
Other languages
Japanese (ja)
Other versions
JPS5512641A (en
Inventor
Masaru Itoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP8506178A priority Critical patent/JPS5512641A/en
Publication of JPS5512641A publication Critical patent/JPS5512641A/en
Publication of JPS6134236B2 publication Critical patent/JPS6134236B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、外被管の内部に絶縁体を介して発熱
体が設けられてなるシーズヒータに関する。 シーズヒータは、外被管と発熱体間の高絶縁に
より、安全かつ効率の良い熱源として使用され
る。したがつて外被管と発熱体間の絶縁性能の良
いことが要望される。絶縁性能の劣化は、外被管
端末部の封止部において生ずることが多い。なか
でも特に高い絶縁性能を要求されるガラスを封止
材とするシーズヒータにおいては信頼性の高い封
止状態を安定して得るこことが困難であつた。こ
のため従来から発熱体の端子材質の改善あるいは
封止条件の改善等がなされている。しかしながら
これらの改善はまだ充分でなかつた。 したがつて本発明の目的は、良好な絶縁性能を
有するシーズヒータを提供することである。 本発明の他の目的は、安定した封止状態を有す
るシーズヒータを提供することである。 本発明の他の目的は、封止条件が広い範囲を有
するシーズヒータを提供することである。 本発明の他の目的は封止作業が簡単なシーズヒ
ータを提供することである。 従来ガラスを封止材とするシーズヒータにおい
ては、鉛ガラスが用いられている。しかしながら
鉛ガラスは安定した封止状態を得ることは難かし
かつた。 発明者は、鉛ガラスによるシーズヒータの封止
状態を研究した結果、安定した封止状態が得られ
ないのは次のことに起因することを見出した。 まず、端末封止時800〜900℃に加熱するが、鉛
ガラスの軟化温度は600〜650℃と高いため鉛ガラ
スは外部の末端部から徐々に溶融し外被管内の端
部の鉛ガラスが溶融する前に外被管端末では封止
されてしまう。そのためその後外被管内の端部が
溶融するまで加熱した場合、外被管内部のガスが
膨張して外部に逃げようとし、このガスが泡状と
なり封止されたガラスを外部に押し出して封止状
態を劣化させる。 また、封止ガラス外被管外部に押し出されるの
を防ぐために従来溶融したガラスを外部から内部
に押し治具により押込んでいるが、押し治具に接
触するガラス表面は急激に冷却されて歪を発生
し、この歪が封止状態を劣化させる。更に、外被
管内部のガラスが充分に溶融しない前に押し込む
ことによる封止状態の劣化もある。 更に鉛ガラスの軟化温度が600〜650℃と高いた
め800〜900℃で数分間加熱しているが、この加熱
により外被管および端子の表面が過度に酸化して
しまい封止状態を劣化させる。 また、封止作業も前述の押し治具による押し込
み工程の後、端子のネジ部に付着したガラスある
いは外被管外部にあふれたガラスを取り除くため
にあらためてダイスを通したり、叩き落す工程が
必要であつた。 また、押し治具の押込みにより封止部を形成す
るためガラスは端子の周囲に均一に配置すること
が難かしく、封止状態を劣化させる。 発明者は、上記の点を改善すべく研究を重ねた
結果、従来はシーズヒータの端末封止材としては
適さないとされていたソルダーガラスを封止材と
して用いることにより良好な絶縁状態を有するシ
ーズヒータを得られることを見出した。ソルダー
ガラスは、ガラス、セラミツクあるいは金属など
の接合に用いられる半田ガラスである。 すなわち本発明は、外被管の内部に絶縁体を介
して発熱体が設けられるシーズヒータであつて外
被管端部をソルダーガラスで封止してなることを
特徴とする。 第1図に本発明に係るシーズヒータの一実施例
の端部を示す。第1図において、例えばステンレ
スでなる外被管1の内部には、例えばマグネシア
粉末でなる絶縁体2を介して例えばニクロム線で
なる発熱体3が設けられており、外被管1の端部
は、ソルダーガラスでなる封止材4で封止されて
いる。発熱体3の端部は端子5に接続されてい
る。 本発明に係るシーズヒータは次の点で特に優れ
ている。すなわち封止材であるソルダーガラス
は、金属との濡れ性が良いうえに軟化温度が低く
良好な封止状態を得るこそができる。 実施例を述べる。 表1に示すソルダーガラスを封止材として第1
図に示すようなシーズヒータを製造し特性を評価
した。なお外被管はステンレス(SUS)、鉄
(Fe)および銅(Cu)材を用い、端子はステンレ
ス(SUS430相当)を用い絶縁体は酸化マグネシ
ウム粉末である。外被管は13φ、端子径は4φで
ある。
The present invention relates to a sheathed heater in which a heating element is provided inside a jacket tube with an insulator interposed therebetween. Sheathed heaters are used as safe and efficient heat sources due to the high insulation between the jacket tube and the heating element. Therefore, it is desired that the insulation performance between the jacket tube and the heating element be good. Deterioration of insulation performance often occurs at the sealed portion of the end portion of the jacket tube. In particular, it has been difficult to stably obtain a highly reliable sealed state in sheathed heaters using glass as a sealing material, which requires particularly high insulation performance. For this reason, efforts have been made to improve the terminal material of the heating element or the sealing conditions. However, these improvements were still not sufficient. Therefore, an object of the present invention is to provide a sheathed heater with good insulation performance. Another object of the present invention is to provide a sheathed heater with a stable sealing state. Another object of the present invention is to provide a sheathed heater having a wide range of sealing conditions. Another object of the present invention is to provide a sheathed heater that is easy to seal. Lead glass is conventionally used in sheathed heaters that use glass as a sealing material. However, it has been difficult to obtain a stable sealing state with lead glass. As a result of researching the sealing state of sheathed heaters using lead glass, the inventor found that the reason why a stable sealing state cannot be obtained is due to the following. First, when sealing the terminal, it is heated to 800-900℃, but since the softening temperature of lead glass is as high as 600-650℃, the lead glass gradually melts from the outer end, and the lead glass at the end inside the jacket tube melts. Before melting, the end of the jacket tube is sealed. Therefore, when the end of the envelope tube is heated until it melts, the gas inside the envelope tube expands and tries to escape to the outside, and this gas forms bubbles and pushes the sealed glass outside, sealing the tube. deteriorate the condition. In addition, conventionally, molten glass is pushed into the interior from the outside using a pushing jig to prevent it from being pushed out of the sealing glass envelope tube, but the glass surface that comes into contact with the pushing jig is rapidly cooled and distorted. This distortion deteriorates the sealing state. Furthermore, the sealing condition may deteriorate due to the glass being pushed in before the glass inside the envelope tube is sufficiently melted. Furthermore, since lead glass has a high softening temperature of 600 to 650 degrees Celsius, it is heated at 800 to 900 degrees Celsius for several minutes, but this heating excessively oxidizes the surface of the jacket tube and terminal, deteriorating the sealing condition. . In addition, the sealing process requires a process of passing the die through the die or knocking it off in order to remove the glass that has adhered to the threaded part of the terminal or the glass that has overflowed to the outside of the jacket tube after the pushing process using the aforementioned pushing jig. It was hot. Furthermore, since the sealing portion is formed by pressing with a pushing jig, it is difficult to uniformly arrange the glass around the terminal, which deteriorates the sealing state. As a result of repeated research to improve the above points, the inventor has found that by using solder glass as a sealing material, which was conventionally considered unsuitable as a terminal sealing material for sheathed heaters, a good insulation state can be achieved. It was discovered that a sheathed heater can be obtained. Solder glass is a solder glass used for joining glass, ceramic, metal, etc. That is, the present invention is a sheathed heater in which a heating element is provided inside a jacket tube through an insulator, and the end portion of the jacket tube is sealed with solder glass. FIG. 1 shows an end portion of an embodiment of a sheathed heater according to the present invention. In FIG. 1, a heating element 3 made of, for example, nichrome wire is provided inside a jacket tube 1 made of stainless steel, for example, with an insulator 2 made of magnesia powder interposed therebetween. is sealed with a sealing material 4 made of solder glass. An end of the heating element 3 is connected to a terminal 5. The sheathed heater according to the present invention is particularly excellent in the following points. That is, solder glass, which is a sealing material, has good wettability with metal and has a low softening temperature, making it possible to obtain a good sealing state. An example will be described. The first solder glass shown in Table 1 was used as a sealing material.
A sheathed heater as shown in the figure was manufactured and its characteristics were evaluated. The jacket tube is made of stainless steel (SUS), iron (Fe), and copper (Cu), the terminal is made of stainless steel (equivalent to SUS430), and the insulator is magnesium oxide powder. The jacket tube is 13φ and the terminal diameter is 4φ.

【表】 表1に示すガラスの高温絶縁性を第2図に示
す。第2図より明らかなように従来の鉛ガラスよ
り優れた値を示している。 表1に示すガラスを封止材とし、2〜5分間酸
化雰囲気にてガラスが十分に溶融するまで加熱し
て封止を行ない封止の状態を観察し、気密性を評
価した。なお濡れ性は封止部の状態により評価
し、気密性はVEECO製のヘリウム気密試験装置
にて評価した。 結果を表2に示す。封止のガラス量は約1gで
ある。
[Table] Figure 2 shows the high temperature insulation properties of the glasses shown in Table 1. As is clear from FIG. 2, this value is superior to that of conventional lead glass. The glass shown in Table 1 was used as a sealing material and was sealed by heating in an oxidizing atmosphere for 2 to 5 minutes until the glass was sufficiently melted.The state of the seal was observed and the airtightness was evaluated. The wettability was evaluated based on the state of the sealed portion, and the airtightness was evaluated using a helium airtight test device manufactured by VEECO. The results are shown in Table 2. The amount of glass in the seal is about 1 g.

【表】 表2から明らかなように番号1〜3のソルダー
ガラスを用いた濡れ性、外観、作業性とも外被管
の材質の相違に関係なく極めて良好で気密性も良
好であつた。番号4のものは、封止時にガラスが
結晶化をはじめ流れが悪かつた。 次に表2に示すシーズヒータを用いサーマルシ
ヨツクテストを行なつたところ、いずれもクラツ
クは発生せず良好な結果を得た。サーマルシヨツ
クテストは、200℃迄炉で昇温した後水中に投入
して行なつた。 次に耐振動テストを行なつた。表2中の番号2
のものにつき下記条件で振動テストを行なつた
後、更に湿度試験を行ない絶縁抵抗の劣化を調べ
た。振動テストは全振幅0.4mm、加速度1G、振動
数50Hz、時間1時間で行なつた。湿度試験は40
℃、相対湿度90%中に24時間放置した。これらの
試験後の絶縁抵抗を測定したところ、ほとんど劣
化はなかつた。 次に強制耐候性試験を行ない、電気抵抗劣化を
評価した。試験は、スガ試験機製ヂユーサイクル
サンシヤインウエザーメータにより行ない条件
は、温度65℃、湿度90%、散水2時間毎に18分
間、時間100時間で行なつた。この結果を表3に
示す。
[Table] As is clear from Table 2, the wettability, appearance, and workability of the solder glasses Nos. 1 to 3 were extremely good, regardless of the difference in the material of the jacket tube, and the airtightness was also good. In the case of No. 4, the glass began to crystallize during sealing and had poor flow. Next, a thermal shock test was conducted using the sheathed heaters shown in Table 2, and good results were obtained with no cracks occurring in either case. Thermal shock tests were carried out by raising the temperature to 200°C in a furnace and then immersing it in water. Next, we conducted a vibration resistance test. Number 2 in table 2
After conducting a vibration test under the following conditions, a humidity test was further conducted to examine the deterioration of insulation resistance. The vibration test was conducted with a total amplitude of 0.4 mm, an acceleration of 1 G, a vibration frequency of 50 Hz, and a duration of 1 hour. Humidity test is 40
℃ and 90% relative humidity for 24 hours. When the insulation resistance was measured after these tests, there was almost no deterioration. Next, a forced weathering test was conducted to evaluate electrical resistance deterioration. The test was carried out using a Ducycle Sunshine Weather Meter manufactured by Suga Test Instruments, and the conditions were: temperature 65°C, humidity 90%, watering every 2 hours for 18 minutes, and time for 100 hours. The results are shown in Table 3.

【表】 表3より明らかなように耐候試験後においても
実用上充分な電気抵抗を有している。 本発明に係るシーズヒータは上述のように従来
の鉛ガラス封止材とするシーズヒータと比較して
各特性は優れている。 本発明に係るシーズヒータの優れている点につ
き考察する。まずソルダーガラスは鉛ガラスより
も軟化温度が低いことから次の効果をもたらす。
すなわち封止時の温度(例えば700℃〜800℃)で
短時間に全体が軟化し、鉛ガラスの場合のような
外被管内部のガス膨張による弊害がなく安定した
絶縁性能が得られる。また軟化したガラスの濡れ
性が良いことにより更に絶縁性能は向上する。ま
た、短時間で軟化し封止できるので外被管および
端子表面には封着に適する酸化膜が形成され、こ
のことも絶縁性能を向上させる。上記の点および
封止時の温度が通常700〜900℃を考慮するとソル
ダーガラスの軟化温度は500℃以下であることが
望ましい。また表2にて明らかになつたように封
止時に結晶化するものは流れがわるくなるととも
に濡れ性も低下する。このことおよび封止時の温
度条件を考慮すると結晶化をはじめる温度が500
℃以上の望ましくは700℃以上のソルダーガラス
が好ましい。 また、封止材されたガラスは信頼性の点からコ
ンプレツシヨンシールの状態が好ましい。このこ
ととシーズヒータの外被管は通常SUS系、Fe
系、Cu系であること、端子はSUS系、Cu系であ
ることを考慮すれば熱膨張係数は96×10-7/℃以
上であることが望ましい。 なお、この観点から熱膨張係数は外被管>ガラ
ス〓端子部とすることがよい。 封止工程時、溶融したガラスは絶縁体である例
えば酸化マグネシウム粉末中に浸透する。端末部
の絶縁を考慮すれば深く浸透することが望ましい
が、浸透したガラスは、シーズヒータの使用時に
約200℃以上になると、急激に絶縁劣化を生ず
る。このことから浸透したガラスは発熱体とは離
隔しておることが望ましい。また封止部のガラス
の量は、絶縁効果および長平方向の熱膨張を考慮
すると1〜5mmの厚さであることが望ましい。作
業性、信頼性および価格を考慮すれば2〜3mmが
よい。 更にガラス量を一定にし絶縁状体を安定にする
ために、封止時に供給されるガラスは、粉末より
も所定の形状に成形されたものとすることが望ま
しい。 上記したように、ソルダーガラスによる封止は
充分な絶縁性能を有するが、屋外での使用等のよ
うに苛酷な条件で使用されるものは、ソルダーガ
ラスの封止部表面にはつ水性のシリコーンを被覆
することが効果がある。シリコーンはソルダーガ
ラスとの密着性がよく、ソルダーガラスでの封止
後、すみやかにシリコーンを被覆しておけばガラ
スの表面劣化を防止することができ、保管時の劣
化を防ぐことができる。 シリコーンの被覆は、溶融したシリコーンにシ
ーズヒータ端部の封止部を浸漬することにより行
なえる。
[Table] As is clear from Table 3, it has practically sufficient electrical resistance even after the weathering test. As described above, the sheathed heater according to the present invention has excellent characteristics compared to the conventional sheathed heater using a lead glass sealing material. The advantages of the sheathed heater according to the present invention will be discussed. First, solder glass has a lower softening temperature than lead glass, which brings about the following effects.
In other words, the entire structure is softened in a short time at the temperature during sealing (for example, 700° C. to 800° C.), and stable insulation performance can be obtained without the adverse effects caused by gas expansion inside the jacket tube as in the case of lead glass. Furthermore, the insulation performance is further improved due to the good wettability of the softened glass. In addition, since it can be softened and sealed in a short time, an oxide film suitable for sealing is formed on the surface of the jacket tube and terminal, which also improves insulation performance. Considering the above points and the fact that the temperature during sealing is usually 700 to 900°C, it is desirable that the softening temperature of the solder glass is 500°C or less. Furthermore, as shown in Table 2, those that crystallize during sealing have poor flow and poor wettability. Considering this and the temperature conditions during sealing, the temperature at which crystallization begins is 500°C.
Solder glass having a temperature of at least .degree. C., preferably at least 700.degree. C. is preferred. Further, from the viewpoint of reliability, it is preferable that the glass sealed with the sealing material be in the state of a compression seal. In addition to this, the jacket tube of a sheathed heater is usually made of SUS or Fe.
Considering that the material is Cu-based and the terminal is SUS-based and Cu-based, it is desirable that the thermal expansion coefficient is 96×10 -7 /°C or more. From this point of view, it is preferable that the coefficient of thermal expansion is such that the envelope tube>glass=terminal part. During the sealing process, the molten glass penetrates into an insulator, such as magnesium oxide powder. Deep penetration is desirable when considering the insulation of the terminal portion, but the penetration of the penetrated glass causes rapid insulation deterioration when the temperature exceeds approximately 200°C when using a sheathed heater. For this reason, it is desirable that the infiltrated glass be separated from the heating element. Further, the amount of glass in the sealing portion is desirably 1 to 5 mm thick, considering the insulation effect and thermal expansion in the longitudinal direction. Considering workability, reliability, and price, 2 to 3 mm is preferable. Further, in order to keep the amount of glass constant and stabilize the insulating body, it is preferable that the glass supplied at the time of sealing be formed into a predetermined shape rather than powder. As mentioned above, sealing with solder glass has sufficient insulation performance, but when used under harsh conditions such as outdoor use, the surface of the solder glass seal is coated with water-repellent silicone. It is effective to cover the Silicone has good adhesion to solder glass, and if it is coated with silicone immediately after sealing with solder glass, the surface of the glass can be prevented from deteriorating, and deterioration during storage can be prevented. The silicone coating can be performed by immersing the sealing portion at the end of the sheathed heater in molten silicone.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係るシーズヒータの端部を
断面して示した図面、第2図は、本発明の封止材
の高温絶縁性を示すグラフである。 1……外被管、2……絶縁体、3……発熱体、
4……封止材、5……端部。
FIG. 1 is a cross-sectional view of the end of a sheathed heater according to the present invention, and FIG. 2 is a graph showing the high-temperature insulation properties of the sealing material of the present invention. 1... jacket tube, 2... insulator, 3... heating element,
4... Sealing material, 5... End portion.

Claims (1)

【特許請求の範囲】 1 外被管の内部に絶縁体を介して発熱体が設け
られてなるシーズヒータであつて外被管端部を軟
化温度が500℃以下でかつ結晶化温度が500℃以上
であるソルダーガラスにて封止したことを特徴と
するシーズヒータ。 2 封止したソルダーガラスの表面にシリコーン
を被覆してなる特許請求の範囲第1項に記載のシ
ーズヒータ。 3 ソルダーガラスの熱膨張係数が96×10-7/℃
以上である特許請求の範囲第1項に記載のシーズ
ヒータ。 4 絶縁体に浸透したソルダーガラスは発熱体と
隔離してなる特許請求の範囲第1項に記載のシー
ズヒータ。 5 封止部のソルダーガラスは、1〜5mmの厚さ
を有してなる特許請求の範囲第4項に記載のシー
ズヒータ。 6 外被管の熱膨張係数は、ソルダーガラスより
大きく、端子の熱膨張係数はソルダーガラスとほ
ぼ同等である特許請求の範囲第3項に記載のシー
ズヒータ。
[Scope of Claims] 1. A sheathed heater in which a heating element is provided inside a jacket tube with an insulator interposed therebetween, in which the end of the jacket tube has a softening temperature of 500°C or less and a crystallization temperature of 500°C. A sheathed heater characterized by being sealed with the solder glass as described above. 2. The sheathed heater according to claim 1, wherein the surface of the sealed solder glass is coated with silicone. 3 The thermal expansion coefficient of solder glass is 96×10 -7 /℃
The sheathed heater according to claim 1, which is the above. 4. The sheathed heater according to claim 1, wherein the solder glass that has penetrated into the insulator is separated from the heating element. 5. The sheathed heater according to claim 4, wherein the solder glass of the sealing portion has a thickness of 1 to 5 mm. 6. The sheathed heater according to claim 3, wherein the thermal expansion coefficient of the jacket tube is larger than that of the solder glass, and the thermal expansion coefficient of the terminal is approximately equal to that of the solder glass.
JP8506178A 1978-07-14 1978-07-14 Sheathed heater Granted JPS5512641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8506178A JPS5512641A (en) 1978-07-14 1978-07-14 Sheathed heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8506178A JPS5512641A (en) 1978-07-14 1978-07-14 Sheathed heater

Publications (2)

Publication Number Publication Date
JPS5512641A JPS5512641A (en) 1980-01-29
JPS6134236B2 true JPS6134236B2 (en) 1986-08-06

Family

ID=13848113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8506178A Granted JPS5512641A (en) 1978-07-14 1978-07-14 Sheathed heater

Country Status (1)

Country Link
JP (1) JPS5512641A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10790340B2 (en) 2018-05-31 2020-09-29 Samsung Display Co., Ltd. Display device
US11005078B2 (en) 2017-11-30 2021-05-11 Samsung Display Co., Ltd. Display apparatus
US11158686B2 (en) 2018-04-12 2021-10-26 Samsung Display Co., Ltd. Display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100639698B1 (en) * 2006-03-16 2006-10-31 주식회사 아키에이엠디 Lead free material having high insulation capacity for sealing sheath heater module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11005078B2 (en) 2017-11-30 2021-05-11 Samsung Display Co., Ltd. Display apparatus
US11158686B2 (en) 2018-04-12 2021-10-26 Samsung Display Co., Ltd. Display device
US10790340B2 (en) 2018-05-31 2020-09-29 Samsung Display Co., Ltd. Display device
US11158684B2 (en) 2018-05-31 2021-10-26 Samsung Display Co., Ltd. Display device

Also Published As

Publication number Publication date
JPS5512641A (en) 1980-01-29

Similar Documents

Publication Publication Date Title
US2100187A (en) Entrance insulation for electrical conductors
GB968277A (en) Improvements in or relating to bonding agents and processes and bonded assemblies produced therewith
US2043195A (en) Electric heater
US2685015A (en) Resistance thermometer element
JPS6134236B2 (en)
US3035372A (en) Method for making a glass to metal seal
US2280257A (en) Resistor device and method of making the same
US1692998A (en) Leading-in conductor
US3136973A (en) Sealed resistor
US4163656A (en) Method of manufacturing a lead-through of a metal element through a ceramic component by means of sealing
JPS6134237B2 (en)
JPS6124178A (en) Method of contacting conductor with conductive strip or conductive layer in thermal resistant manner
JP3416101B2 (en) Double metal tube sheath
US3470348A (en) Anodic bonding of liquid metals to insulators
JPS6133422Y2 (en)
US2189928A (en) Electric discharge vessel
JPS595284B2 (en) How to manufacture an electric cooker
JPS589061B2 (en) Glass Compound Niyor Fuushihouhou
JPS6322642Y2 (en)
JPS58169887A (en) Method of producing sheathed heater
JPS6110979B2 (en)
JPS6047392A (en) Sheathed heater
SU131808A1 (en) Sealed cable lug
FR3075362A1 (en) HIGH TEMPERATURE SENSOR WITH ELECTRIC VITROCERAMIC INSULATION
JPH0431187B2 (en)