JPS6134122A - Method for separating and recovering element convertible into basic oxide incorporated in molten iron - Google Patents

Method for separating and recovering element convertible into basic oxide incorporated in molten iron

Info

Publication number
JPS6134122A
JPS6134122A JP59155181A JP15518184A JPS6134122A JP S6134122 A JPS6134122 A JP S6134122A JP 59155181 A JP59155181 A JP 59155181A JP 15518184 A JP15518184 A JP 15518184A JP S6134122 A JPS6134122 A JP S6134122A
Authority
JP
Japan
Prior art keywords
elements
molten iron
slag
oxide
hot metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59155181A
Other languages
Japanese (ja)
Other versions
JPH0371491B2 (en
Inventor
Akira Sato
彰 佐藤
Akira Fukuzawa
福沢 章
Futoshi Ozaki
太 尾崎
Goro Arakane
吾郎 荒金
Shiro Yoshimatsu
吉松 史朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP59155181A priority Critical patent/JPS6134122A/en
Publication of JPS6134122A publication Critical patent/JPS6134122A/en
Publication of JPH0371491B2 publication Critical patent/JPH0371491B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To separate and recover efficiently and selectively valuable elements convertible into basic oxides incorporated in a molten iron when the molten iron is refined by oxidation, by adding the specified amount of a flux contg. B2O3, which is an acidic oxide as the principal component, oxidizing the elements convertible into basic oxides at a specified temp., and transferring selectively the resulting oxides to the slag. CONSTITUTION:When the molten iron is refined by oxidation, a flux contg. B2O3, which is an acidic oxide as the principal component is added in <0.3 ratio of MOx/B2O3 (M is an element convertible into basic oxide in the molten iron). The elements converticle into basic oxides such as Mn and Ni are then oxidized at 1,400-1,500 deg.C, and the resulting oxides are selectively transferred to the slag.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は溶銑中に含有する有価諸元素である塩基性酸化
物となる元素、例えば、Mn、Ni等を選択的に分離回
収する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for selectively separating and recovering elements that form basic oxides, which are valuable elements contained in hot metal, such as Mn and Ni.

従来技術 従来の溶銑中に含有す乙元素を分離する処理法としては
、塩基性酸化物のフラックスを使用し、鉄鋼材料に有害
な燐、硫黄を除去する方法が行われている。それ以外の
元素を回収する方法として、強塩基性酸化物となるソー
ダ灰(NazOOi )を使用し、溶銑に含有する燐、
硫黄を除去し、ソーダ灰の回収過程において、同時にバ
ナジウムを回収する方法が開発された。この方法忙おい
ては、塩基性酸化物となる有価元素は回収できない。さ
らに溶銑中に残存する塩基性酸化物となる元素は、他の
有価元素の分離回収の際に夾雑物となるため、予め分離
しておくことが望ましい。
Prior Art As a conventional treatment method for separating element B contained in hot metal, a method is used in which a basic oxide flux is used to remove phosphorus and sulfur, which are harmful to steel materials. As a method for recovering other elements, soda ash (NazOOi), which is a strong basic oxide, is used to recover phosphorus contained in hot metal,
A method has been developed to remove sulfur and simultaneously recover vanadium during the soda ash recovery process. If this method is too busy, valuable elements that become basic oxides cannot be recovered. Furthermore, the elements remaining in the hot metal that become basic oxides become contaminants when other valuable elements are separated and recovered, so it is desirable to separate them in advance.

しかるに、溶銑中に含有する低濃度の有価元素を積極的
に分離回収する処理法、特に塩基性酸化物となる有価元
素を選択的に分離回収する方法は未だ知られていない。
However, a treatment method for actively separating and recovering low-concentration valuable elements contained in hot metal, particularly a method for selectively separating and recovering valuable elements that become basic oxides, is not yet known.

発明の目的 本発明の目的は溶銑中に含有する塩基性酸化物となる元
素例えばMn、Ni等の元素を選択的に分離回収する溶
銑の処理法を提供するにある。
OBJECTS OF THE INVENTION An object of the present invention is to provide a method for treating hot metal that selectively separates and recovers elements that form basic oxides contained in the hot metal, such as Mn and Ni.

発明の構成 本発明者らは前記目的を達成すぺ〈鋭意研究の結果、溶
銑中に含有する珪素を酸素ガスの吹込み、または酸化鉄
の添加によって脱珪[7、この脱珪スラグを除去した後
、1400〜1500℃の溶銑に酸化ほう素を主とする
フラックスを、MOx/B2O5(0,3(ただし、M
は塩基性酸化物となる元素を表わす)の舞を添加し、酸
素ガスを吹込むかまたは酸化鉄を添加して酸化すると、
塩基性酸化物となる元素は酸化されてスラグに移行され
る。これKよ如スラグより容易に選択的に塩基性酸化物
となる元素を分離回収し、得られることが分った。この
知見に基いて本発明を完成した。
Structure of the Invention The present inventors have achieved the above object.As a result of intensive research, it was found that silicon contained in hot metal was desiliconized by blowing oxygen gas or adding iron oxide [7, and this desiliconizing slag was removed. After that, a flux mainly composed of boron oxide was added to the hot metal at 1400 to 1500°C at a concentration of MOx/B2O5 (0.3 (however, M
represents an element that becomes a basic oxide) and oxidizes by blowing in oxygen gas or adding iron oxide,
Elements that become basic oxides are oxidized and transferred to slag. It has been found that elements that form basic oxides can be easily and selectively separated and recovered from Kyoyo slag. The present invention was completed based on this knowledge.

本発明の要旨は、溶銑の酸化精錬に際17て、酸性酸化
物の酸化ほう素を主とするフラックスを、MOx /B
zOs < 0.3 (ただし、Mは塩基性酸化物とな
る元素を表わす)の量加え゛、1.400〜1500℃
で塩基酸化物となる元素を酸化させて選択的にスラグ中
に分離することを特徴とする溶銑中に含有する塩基性酸
化物となる元素の分離回収法にある。
The gist of the present invention is that during the oxidative refining of hot metal, a flux mainly composed of boron oxide, an acidic oxide, is used as MOx /B
Add the amount of zOs < 0.3 (however, M represents an element that becomes a basic oxide), 1.400 to 1500°C
A method for separating and recovering elements that become basic oxides contained in hot metal, characterized by oxidizing the elements that become basic oxides and selectively separating them into slag.

本発明における溶銑は予め含有されるSiは前記のよう
にして大部分を除去しておくのが好ましい。溶銑中にS
iが高濃度に残存していると、後の工程でのスラグ中に
回収目的の元素の濃度が低下するからである。しかし、
Siを過度に酸化除去しようとすると、回収目的の元素
も同時に酸化されて、元素の回収率を低下させるので、
Siの酸化除去率は回収元素の酸化除去率が10チ以下
であるようにすることが望ましい。
It is preferable that most of the Si contained in the hot metal in the present invention be removed in advance as described above. S in hot metal
This is because if i remains at a high concentration, the concentration of the element to be recovered in the slag in the subsequent process will decrease. but,
If an attempt is made to remove Si by excessive oxidation, the element to be recovered will also be oxidized at the same time, reducing the recovery rate of the element.
It is desirable that the oxidation removal rate of Si is such that the oxidation removal rate of the recovered element is 10 or less.

本発明において使用するフラックスB2O3は低融点(
450℃)であり、溶銑の処理温度で液体となるために
、反応性が良好で、かつ処理後のスラグを溶銑から分離
するのが容易である。しか本酸性酸化物であるため、ス
ラグ中の塩基性酸化物と結合し、塩基性酸化物をスラグ
中に保持する。これによって溶銑中の塩基性酸化物とな
る元素はスラグ中へ移行させる。この処理に際しては、
溶銑とスラグ間の接触を良好にし、前記反応を促進し、
選択性を増大するために十分攪拌することが好ましい。
The flux B2O3 used in the present invention has a low melting point (
450° C.) and becomes liquid at the hot metal treatment temperature, it has good reactivity and is easy to separate the slag from the hot metal after treatment. However, since it is an acidic oxide, it combines with the basic oxide in the slag and retains the basic oxide in the slag. As a result, elements that become basic oxides in the hot metal are transferred to the slag. During this process,
improve the contact between hot metal and slag to promote the reaction,
Adequate agitation is preferred to increase selectivity.

処理温度は1400℃より低いと溶銑中に含有する全元
素が酸化除去されるので、除去元素の選択性ができ難く
なる。1500’Cより高いと回収目的の有価元素の回
収率が低下するので、1400〜1500℃であること
が好ましい。
If the treatment temperature is lower than 1400°C, all the elements contained in the hot metal will be oxidized and removed, making it difficult to select the elements to be removed. If the temperature is higher than 1500'C, the recovery rate of the valuable elements to be recovered will decrease, so the temperature is preferably 1400 to 1500C.

B2O2の添加量はMOx /B2O3(0,3である
ことが元素の選択的回収を効果的にするために必要であ
る。BzOsljがこれより少々いと、回収目的元素以
外の溶銑中に共存する元素もすべて酸化されて混入して
くる。回収元素の回収率を向上させるには、共存元素の
混入割合の制限がある。
The amount of B2O2 added must be MOx /B2O3 (0.3) in order to make the selective recovery of elements effective. If BzOslj is a little more than this, elements coexisting in the hot metal other than the target elements to be recovered may be added. In order to improve the recovery rate of recovered elements, there is a limit to the proportion of coexisting elements mixed in.

そのだめには、酸化強さも調整するのが好オしい。To prevent this, it is preferable to adjust the oxidation strength as well.

分離回収の目的元素を含有するB2O3を主とするフラ
ックスからなるスラグを溶銑から分離し7、高温水に投
入する。B2O3は容易に高温水に溶解するから回収目
的元素の酸化物とB2O3とは濾過によって容易に分離
することができる。得られだ高温水を冷却することKよ
ってBzOsを晶出し得られる。このB2O3け再循還
して使用し得られるので公害をおこすこともない。
A slag consisting of a flux mainly consisting of B2O3 containing the target elements to be separated and recovered is separated from the hot metal 7, and is poured into high-temperature water. Since B2O3 easily dissolves in high-temperature water, the oxide of the element to be recovered and B2O3 can be easily separated by filtration. By cooling the obtained high temperature water, BzOs can be crystallized. Since this B2O3 can be recycled and used, it does not cause any pollution.

発明の効果 本発明の方法によると、次のような優れた効果を奏し得
られる。
Effects of the Invention According to the method of the present invention, the following excellent effects can be achieved.

l)フラックスとして特定割合のB201を用いること
により、溶銑中に含有する塩基性酸化物となる有価元素
を選択的に分離回収]7、新しい資源として活用し得ら
れる。
l) By using a specific proportion of B201 as a flux, valuable elements contained in hot metal that become basic oxides can be selectively separated and recovered] 7. It can be utilized as a new resource.

2)溶銑から塩基性酸化物となる元素をB20mのスラ
グ中に含有させるため、1h(hの水溶特性から元素の
回収が容易である。
2) Since elements that become basic oxides from hot metal are contained in B20m slag, it is easy to recover the elements due to the water-solubility properties of 1h (h).

3)各種元素を含む鉄鉱石から製造された銑鉄に含有す
る有価諸元素を順次分離し、新資源として利用し得られ
ると同時に、これらの元素を除くことにより高品質な鉄
鋼材料の製造に供し得られる。従って、未利用鉄鉱石を
新しい資源として活用することができる。
3) Valuable elements contained in pig iron manufactured from iron ore containing various elements are successively separated and used as new resources, and at the same time, by removing these elements, it can be used for the manufacture of high-quality steel materials. can get. Therefore, unused iron ore can be utilized as a new resource.

実施例 ニオブ、マ/ガ/、燐を含む鉄鉱石から得られた溶銑を
脱珪処理して珪素濃度を0.13チまでにした。得られ
た脱珪溶銑(溶銑の炭素濃度−飽和)K、1400℃の
下で、B2O2を溶@ton当り20に9、及び酸化鉄
を溶銑ton当り25Kfを加えて処理した。処理前、
処理後の組成を示すと次の通りであった。
Example Hot metal obtained from iron ore containing niobium, ma/ga/, and phosphorus was subjected to a desiliconization treatment to reduce the silicon concentration to 0.13 h. The obtained desiliconized hot metal (carbon concentration of hot metal - saturation) K was treated at 1400° C. by adding B2O2 at a rate of 20 to 9 per ton and iron oxide at a rate of 25 Kf per ton of hot metal. Before processing,
The composition after treatment was as follows.

溶銑に含有する元素 Mn  Nb  Si    I
ノ処理前の組成(wtチ)  O,fi2  (’16
2 0.13 0.46処理後の組成(wtチ)  0
.18 0,57 0.015 0.46除去率(%)
   ?1.08.1 88.5 0この結果が示すよ
うに1塩基性酸化物となるMnは71.0チ除去される
に対し、酸性酸化物となるNbはわずか8.1チ除去さ
れるに過ぎない。Pは全然除されなく、容易VcIIP
化除去されるSiは885チと除去されるがスラグ中に
は予め低濃度としておいたので、濃度は低い。
Elements contained in hot metal Mn Nb Si I
Composition before treatment (wt) O, fi2 ('16
2 0.13 0.46 Composition after treatment (wt) 0
.. 18 0.57 0.015 0.46 Removal rate (%)
? 1.08.1 88.5 0 As these results show, 71.0% of Mn, which becomes a monobasic oxide, is removed, while only 8.1% of Nb, which becomes an acidic oxide, is removed. Not too much. P is not removed at all and is easily VcIIP
Although 885 pieces of Si were removed, the concentration was low because the slag had been kept at a low concentration in advance.

次にスラグを100℃の水に溶解させた。 (20゜及
び100℃で、それぞれ水100f当り、5fX15f
溶解する。) 水処理前、処理後のスラグの組成を示すと次の通りであ
った。
Next, the slag was dissolved in 100°C water. (At 20° and 100°C, 5f x 15f per 100f of water, respectively)
dissolve. ) The composition of the slag before and after water treatment was as follows.

スラグの成分 B*Ox MnONbzOs 5iOi
 FeO処理前の組成(wtチ)629 17.9 2
3  12050処理後の組成(wtチ)    48
.1 6.1  320 135この・結果が示すよう
に、スラグの水処理により、M n O濃度は48.1
%までになり、金属マンガン製造原料としての最低濃度
である31%よりも高く、金属マンガン製造原料として
fFjl用し得られるっ水に溶解(7たB2usは水の
温度を低下させて析出させ、再使用し得られる。
Slag component B*Ox MnONbzOs 5iOi
Composition before FeO treatment (wt) 629 17.9 2
3 Composition after 12050 treatment (wt) 48
.. 1 6.1 320 135 As shown in this result, by water treatment of slag, the M n O concentration was 48.1
%, which is higher than the minimum concentration of 31% as a raw material for producing metallic manganese, and dissolved in the water obtained when fFjl is used as a raw material for producing metallic manganese. Can be reused and obtained.

ji、1:、    ・ 1□I  9.−1ji, 1:, ・ 1□I 9. -1

Claims (1)

【特許請求の範囲】[Claims] 溶銑の酸化精錬に際して、酸性酸化物の酸化ほう素を主
とするフラックスを、MOx/B_2O_3<0.3(
ただし、Mは塩基性酸化物となる元素を表わす)の量使
用し、1400〜1500℃で塩基酸化物となる元素を
酸化させて選択的にスラグ中に分離することを特徴とす
る溶銑中に含有する塩基性酸化物となる元素の分離回収
法。
During oxidative refining of hot metal, a flux mainly composed of boron oxide, an acidic oxide, is used at MOx/B_2O_3<0.3 (
However, M represents an element that becomes a basic oxide), and the element that becomes a basic oxide is oxidized at 1400 to 1500°C and selectively separated into slag. A method for separating and recovering elements that become basic oxides.
JP59155181A 1984-07-27 1984-07-27 Method for separating and recovering element convertible into basic oxide incorporated in molten iron Granted JPS6134122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59155181A JPS6134122A (en) 1984-07-27 1984-07-27 Method for separating and recovering element convertible into basic oxide incorporated in molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59155181A JPS6134122A (en) 1984-07-27 1984-07-27 Method for separating and recovering element convertible into basic oxide incorporated in molten iron

Publications (2)

Publication Number Publication Date
JPS6134122A true JPS6134122A (en) 1986-02-18
JPH0371491B2 JPH0371491B2 (en) 1991-11-13

Family

ID=15600254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59155181A Granted JPS6134122A (en) 1984-07-27 1984-07-27 Method for separating and recovering element convertible into basic oxide incorporated in molten iron

Country Status (1)

Country Link
JP (1) JPS6134122A (en)

Also Published As

Publication number Publication date
JPH0371491B2 (en) 1991-11-13

Similar Documents

Publication Publication Date Title
JPS5514802A (en) Treating method for molten metal generated at reduction treatment for slag from steel manufacture
JPS58130114A (en) Purification of silicon
US3099552A (en) Method of making low sulfur steel
KR100603165B1 (en) Method for removing chrome and/or nickel from liquid slags
JPS6134122A (en) Method for separating and recovering element convertible into basic oxide incorporated in molten iron
US3262773A (en) Process for the removal of arsenic, antimony, tin and other acid oxide producing impurities from copper
JPH10147821A (en) Method for refining copper
JP2000063963A (en) Method for smelting copper sulfide concentrate
US2049721A (en) Process for purifying nickel
US2043575A (en) Process for detinning lead alloys
JPH05148525A (en) Treatment of molten iron
JP3747852B2 (en) Method for recovering high-purity copper from treated waste
US416814A (en) Thomas twynam
KR20220089546A (en) Method for recovering valuable metals
JPS6213541A (en) Method for recovering valuable metal from converter slag
JP3709728B2 (en) Copper recovery and purification method
SU1013493A1 (en) Method for smelting niobium-containing steel in reduction electric furnace
JPS59126706A (en) Treatment of molten iron
JPS6250543B2 (en)
JPS6233740A (en) Method for dephosphorizing mn alloy
US1745464A (en) Process for the purification of metals
US1127163A (en) Method of treating mill-scale.
JPS61147805A (en) Treatment of molten iron to be used in production of stainless steel
JPS61153222A (en) Manufacture of low p, low s, high mn steel
JPS5953637A (en) Treatment for regeneration of slag for dephosphorization

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term