JPS6134004B2 - - Google Patents

Info

Publication number
JPS6134004B2
JPS6134004B2 JP55146321A JP14632180A JPS6134004B2 JP S6134004 B2 JPS6134004 B2 JP S6134004B2 JP 55146321 A JP55146321 A JP 55146321A JP 14632180 A JP14632180 A JP 14632180A JP S6134004 B2 JPS6134004 B2 JP S6134004B2
Authority
JP
Japan
Prior art keywords
electromagnets
electromagnet
rotating body
deviation
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55146321A
Other languages
Japanese (ja)
Other versions
JPS5773223A (en
Inventor
Kazutoshi Miura
Shigeru Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP55146321A priority Critical patent/JPS5773223A/en
Publication of JPS5773223A publication Critical patent/JPS5773223A/en
Publication of JPS6134004B2 publication Critical patent/JPS6134004B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0485Active magnetic bearings for rotary movement with active support of three degrees of freedom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0489Active magnetic bearings for rotary movement with active support of five degrees of freedom, e.g. two radial magnetic bearings combined with an axial bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/55Flywheel systems

Description

【発明の詳細な説明】 本発明は回転体を無接触で浮上及び案内支持す
るフライホイールの磁気軸装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic shaft device for a flywheel that levitates, guides and supports a rotating body without contact.

従来同心円上に等間隔に配置された直流電磁石
3個で回転体を浮上支持する場合は第1図に示す
ように直流電磁石1a,1b,1cを配置してい
た。第2図は電磁石の断面を示している。また第
3図は上記のように直流電磁石1a,1b,1c
を配置した場合の回転方向に対する各直流電磁石
の磁束φa,φb,φcの分布を示す。この場合
は外極側(図においてN極)を示し、その大きさ
はφa=φb=φcである。
Conventionally, when a rotating body is floated and supported by three DC electromagnets arranged concentrically at equal intervals, the DC electromagnets 1a, 1b, and 1c are arranged as shown in FIG. FIG. 2 shows a cross section of the electromagnet. In addition, FIG. 3 shows the DC electromagnets 1a, 1b, 1c as described above.
The distribution of magnetic fluxes φa, φb, and φc of each DC electromagnet with respect to the rotation direction when arranging them is shown. In this case, the outer pole side (N pole in the figure) is shown, and its size is φa=φb=φc.

このような磁束分布で回転体を浮上支持し、回
転すると直流電磁石1a,1b,1cの磁束φ
a,φb,φcは第3図に示すように磁束の変化
分△φが表され、直流電磁石1a,1b,1cに
対向して回転体に設けた二次鉄心内に誘導起動力
e=−dφ/dtが生じ、うず電流が流れてうず電
流損が発生する。
With such a magnetic flux distribution, the rotating body is suspended and supported, and when it rotates, the magnetic flux φ of the DC electromagnets 1a, 1b, 1c
a, φb, φc represent the change in magnetic flux △φ as shown in Fig. 3, and the induced starting force e=- in the secondary core provided on the rotating body facing the DC electromagnets 1a, 1b, 1c dφ/dt occurs, eddy current flows, and eddy current loss occurs.

このうず電流損は回転体の回転体の損失すなわ
ち制動力として回転体に作用する。このために回
転体を駆動する装置(電動機)の容量が上記制動
力に相当する容量だけ増大する。また上記うず電
流損は上式より、磁束の変化分と回転数に比例す
ることがわかる。従つて高速回転するフライホイ
ールの磁気軸受としては好ましくない。
This eddy current loss acts on the rotating body as a loss of the rotating body, that is, a braking force. For this reason, the capacity of the device (electric motor) that drives the rotating body increases by a capacity corresponding to the braking force. Also, from the above equation, it can be seen that the eddy current loss is proportional to the change in magnetic flux and the rotation speed. Therefore, it is not preferred as a magnetic bearing for a flywheel that rotates at high speed.

本発明は上記の欠点を軽減するためになされた
もので、浮上用直流電磁石3個を同心円上に等間
隔及び同極配置し、直流電磁石3個の鉄心端の内
極間及び外極間を磁性体のリング板で短絡するこ
とによつてうず電流損を軽減できる合理的なフラ
イホイールの磁気軸受装置を提供するものであ
る。
The present invention has been made to alleviate the above-mentioned drawbacks, and consists of three levitation DC electromagnets arranged concentrically at equal intervals and with the same poles, and between the inner and outer poles of the iron core ends of the three DC electromagnets. The present invention provides a rational magnetic bearing device for a flywheel that can reduce eddy current loss by short-circuiting with a magnetic ring plate.

第4図に本発明における浮上用直流電磁石の基
本的構成を示す。第5図はその断面図である。
FIG. 4 shows the basic configuration of the levitation DC electromagnet according to the present invention. FIG. 5 is a sectional view thereof.

第4図において直流電磁石1a,1b,1cは
同心円上に等間隔で同極配置され、鉄心端のN極
側、S極側を磁性体のリング板3a,3bで短絡
している。
In FIG. 4, DC electromagnets 1a, 1b, and 1c are arranged on concentric circles with the same poles at equal intervals, and the N-pole side and the S-pole side of the iron core end are short-circuited by magnetic ring plates 3a, 3b.

第6図は第4図の直流電磁石1a,1b,1c
の回転方向に対する磁束分布を示すものである。
この磁速分布は外極側(N極)を示し、磁束φの
大きさはφa=φb=φcとする。
Figure 6 shows the DC electromagnets 1a, 1b, 1c in Figure 4.
This shows the magnetic flux distribution with respect to the rotation direction.
This magnetic velocity distribution indicates the outer pole side (N pole), and the magnitude of the magnetic flux φ is assumed to be φa=φb=φc.

この場合磁束分布は回転方向に対して各直流電
磁石間(1a−1b間、1b−1c間、1c−1
a間)の中点を最小磁束となるような磁束分布を
示し、磁束変化分△φは磁束φa,φb,φc
より小さくなる。
In this case, the magnetic flux distribution is between each DC electromagnet (1a-1b, 1b-1c, 1c-1
The magnetic flux distribution is such that the minimum magnetic flux is at the midpoint between
become smaller.

従つて直流電磁石1a,1b,1cの鉄心端を
リング板3a,3bで短絡することによつて第6
図のように回転方向に対する磁束分布の変化分△
φを小さくし、これによつて回転力の損失とな
る回転体の二次鉄心に発生するうず電流損を軽減
することができる。
Therefore, by short-circuiting the core ends of the DC electromagnets 1a, 1b, 1c with the ring plates 3a, 3b, the sixth
As shown in the figure, the change in magnetic flux distribution with respect to the rotation direction △
By reducing φ2 , it is possible to reduce eddy current loss occurring in the secondary core of the rotating body, which causes loss of rotational force.

第7図は本発明を適用したフライホイール装置
の概略構成を示す。第7図において13は架台で
この架台13の上部に同心円上に等間隔及び同極
性に3個の直流電磁石1a,1b,1cを配置す
る。これらの直流電磁石は夫々独立して回転体6
に対して電磁吸引力を発生する。この場合直流電
磁石1a,1b,1cは回転体6に対向する磁極
面の内極間及外極間をリング板3a,3bで短絡
している。
FIG. 7 shows a schematic configuration of a flywheel device to which the present invention is applied. In FIG. 7, reference numeral 13 denotes a pedestal, and on the top of this pedestal 13, three DC electromagnets 1a, 1b, and 1c are arranged concentrically at equal intervals and with the same polarity. These DC electromagnets are each independently connected to the rotating body 6.
Generates electromagnetic attraction force against. In this case, the DC electromagnets 1a, 1b, 1c have ring plates 3a, 3b short-circuiting between the inner and outer poles of the magnetic pole faces facing the rotating body 6.

また上記直流電磁石1a,1b,1cに対応し
て回転体6と直流電磁石1a,1b,1cの空隙
長を検出する変位計7a,7b,7cを設ける。
上記回転体6は外周部が厚部を形成し上記直流電
磁石1a,1b,1cに対向する面には二次鉄心
を設け、フライホイールの役目をする。この回転
体6の下部には案内用の二次鉄心14を設け、こ
の二次鉄心14の周囲に等間隔に案内用直流電磁
石8a,8b,8c,8dを配置する。
Furthermore, displacement meters 7a, 7b, and 7c are provided corresponding to the DC electromagnets 1a, 1b, and 1c to detect the gap lengths between the rotating body 6 and the DC electromagnets 1a, 1b, and 1c.
The rotating body 6 has a thick outer circumferential portion, and a secondary iron core is provided on the surface facing the DC electromagnets 1a, 1b, and 1c, and serves as a flywheel. A secondary core 14 for guiding is provided at the lower part of the rotating body 6, and DC electromagnets 8a, 8b, 8c, and 8d for guiding are arranged around this secondary core 14 at equal intervals.

ここで案内用直流電磁石8a,8b,8c及び
二次鉄心14と案内用直流電磁石8の空隙長を検
出する変位計9の配置の一例を第8図に示す。
FIG. 8 shows an example of the arrangement of the displacement meter 9 for detecting the gap length between the guiding DC electromagnets 8a, 8b, 8c and the secondary core 14 and the guiding DC electromagnet 8.

第8図において12は軸でその周囲は二次鉄心
14である。この二次鉄心14の周囲に案内用直
流磁石8a,8b,8c,8dを等間隔に配置す
る。この場合変位計9は直流電磁石8a,8b,
8c,8dの中の2個に対応し、かつ90度の位相
差を持ち位置に配置する。第8図では直流電磁石
8a,8bに対応して配置している。
In FIG. 8, reference numeral 12 denotes a shaft, and surrounding the shaft is a secondary core 14. Guide DC magnets 8a, 8b, 8c, and 8d are arranged around this secondary core 14 at equal intervals. In this case, the displacement meter 9 includes DC electromagnets 8a, 8b,
It corresponds to two of 8c and 8d and is placed at a position with a phase difference of 90 degrees. In FIG. 8, they are arranged corresponding to DC electromagnets 8a and 8b.

また第7図において、回転体6の上部には軸1
2を介して回転子10を設け、その周囲には電機
子巻線11を設け、回転体6に回転駆動を与える
無接触電動機を形成する。この電動機は回転体6
に回転駆動を与えると供に、フライホイールの役
目を行なう回転体6の回転エネルギを電気エネル
ギに変換するときは発電機として使用される。
In addition, in FIG. 7, the upper part of the rotating body 6 has a shaft 1
A rotor 10 is provided through the rotor 2, and an armature winding 11 is provided around the rotor 10, thereby forming a contactless electric motor that provides rotational drive to the rotating body 6. This electric motor has a rotating body 6
It is used as a generator when converting the rotational energy of the rotating body 6, which acts as a flywheel, into electrical energy.

次に浮上用直流電磁石1a,1b,1cの空隙
長制御回路の一例を第9図に示す。第9図は説明
の便宜上直流電磁石1aに対応する空隙長制御回
路のみを示していた。
Next, FIG. 9 shows an example of a gap length control circuit for the levitation DC electromagnets 1a, 1b, and 1c. For convenience of explanation, FIG. 9 shows only the gap length control circuit corresponding to the DC electromagnet 1a.

第9図において、変位計7aと空隙長設定器1
6の各出力は比較器30に接続されている。この
比較器30は両者の出力の比較し、偏差εを発
生し、これを並列補償回路17の出力とともに比
較器31に接続する。この場合、並列補償回路1
7は変位計7aの変位の1次微分(速度)及び2
次微分(加速度)の回路からなつており、制御系
を安定にする働きをする。
In FIG. 9, the displacement meter 7a and the gap length setting device 1
Each output of 6 is connected to a comparator 30. This comparator 30 compares the outputs of both, generates a deviation ε 1 , and connects this to the comparator 31 together with the output of the parallel compensation circuit 17. In this case, parallel compensation circuit 1
7 is the first derivative (velocity) of the displacement of the displacement meter 7a and 2
It consists of a second derivative (acceleration) circuit and works to stabilize the control system.

比較器31は上記偏差εに並列補償回路17
の出力を加えた偏差εを発生し、直列補償回路
18を介して比較器32に接続する。この直列補
償回路18は制御ループゲインを増加する働きを
し、定常偏差を小さくするものである。(定常偏
差を零にするために積分制御が行なわれることが
ある。)比較器32は直列補償回路18を通つた
偏差εを零を最大とした負の波形出力を発生す
る鋸歯状波発振器19の出力の加え偏差εを加
えたとき正方向に持ち上げられた波形分を出力ε
として発生し、シユミツト回路20を介して電
力変換器列えばチヨツパ回路22aに入力する。
The comparator 31 connects the above deviation ε 1 to the parallel compensation circuit 17.
A deviation ε 2 is generated by adding the output of , and is connected to the comparator 32 via the series compensation circuit 18 . This series compensation circuit 18 functions to increase the control loop gain and reduce the steady state deviation. (In some cases, integral control is performed to make the steady-state deviation zero.) The comparator 32 is a sawtooth wave oscillator that generates a negative waveform output with the deviation ε 2 passed through the series compensation circuit 18 as a maximum value of zero. When the additional deviation ε of the output of 19 is added, the waveform portion lifted in the positive direction is output ε
3 , which is inputted via the Schmitt circuit 20 to a power converter array, such as a chopper circuit 22a.

このチヨツパ回路に直流電磁石1aを直列に接
続し、さらにホイーリングダイオード23aを直
流電磁石1aに並列に接続している。出力ε
上記偏差εで持ち上げられた期間だけチヨツパ
回路22aをオンし、オン期間に応じた電流が直
流電磁石1aに供給する。これによつて電磁石1
aは電流に比例した吸引力を回転体6の浮上力と
して発生する。
A DC electromagnet 1a is connected in series to this chopper circuit, and a wheeling diode 23a is connected in parallel to the DC electromagnet 1a. The output ε 3 turns on the chopper circuit 22a for a period increased by the deviation ε 2 , and a current corresponding to the on period is supplied to the DC electromagnet 1a. By this, electromagnet 1
A generates an attractive force proportional to the current as a levitation force of the rotating body 6.

上記のような構成で直流電磁石1aの電流を制
御することにより、直流電磁石1aと回転体6の
空隙長を一定に制御することができる。他の直流
電磁石1b,1cについても同様である。
By controlling the current of the DC electromagnet 1a with the above configuration, the gap length between the DC electromagnet 1a and the rotating body 6 can be controlled to be constant. The same applies to the other DC electromagnets 1b and 1c.

次に案内直流電磁石8の空隙長制御回路の一例
を第10図に示す。第10図は説明の便宜上直流
電磁石8a,8cに対応する案内支持の空隙長制
御回路のみについて示している。第10図におい
て、直流電磁石8aの制御回路は第9図で説明し
た浮上支持空隙長制御回路と全つたく同じなので
その説明は省略し、直流電磁績8aと対称の位置
に設けた直流電磁石8cについて説明する。
Next, an example of a gap length control circuit for the guide DC electromagnet 8 is shown in FIG. For convenience of explanation, FIG. 10 shows only the guide and support gap length control circuit corresponding to the DC electromagnets 8a and 8c. In FIG. 10, the control circuit for the DC electromagnet 8a is completely the same as the floating support gap length control circuit explained in FIG. 9, so its explanation will be omitted. I will explain about it.

第10図において24は直列補償回路18を介
した偏差εを反転する反転回路で、その出力は
比較器30で鋸歯状波発振器19の出力と加算さ
れる。この比較器36は鋸歯状波振器19の出力
を正方向に持ち上げられた波形分をεとして出
力し、シユミツト回路25を介して電力変換器例
えばチヨツパ回路26cに入力する。このチヨツ
パ回路26aには直流電磁石8cを直列に接続
し、さらにホイーリングダイオード28cを直流
電磁石8cに並列に接続している。
In FIG. 10, reference numeral 24 denotes an inverting circuit that inverts the deviation ε 2 passed through the series compensation circuit 18, and its output is added to the output of the sawtooth wave oscillator 19 in a comparator 30. This comparator 36 outputs the waveform portion of the output of the sawtooth wave oscillator 19 lifted in the positive direction as ε 4 , and inputs it via the Schmitt circuit 25 to a power converter, for example, a chopper circuit 26c. A DC electromagnet 8c is connected in series to this chopper circuit 26a, and a wheeling diode 28c is connected in parallel to the DC electromagnet 8c.

次に以上のような構成で案内支持制御を行つた
場合の制御動作を第8図と第10図を参照して説
明する。
Next, the control operation when guiding and supporting control is performed with the above configuration will be explained with reference to FIGS. 8 and 10.

(1) 空隙長xa=xcで回転体6が中心の位置にあ
る場合。
(1) When the gap length xa = xc and the rotating body 6 is at the center position.

変位計9aの出力x0と空隙長設定器16の出
力xrは等しいので、偏差ε=0となる。この
ためチヨツパ回路26a,26cはオフ状態で
直流電磁石8a,8cに電流は流れない。
Since the output x 0 of the displacement meter 9a and the output xr of the gap length setting device 16 are equal, the deviation ε 1 =0. Therefore, the chopper circuits 26a, 26c are in an off state, and no current flows through the DC electromagnets 8a, 8c.

(2) 空隙長xa>xcの場合。(2) When the void length xa>xc.

比較器30は偏差ε=xr−(−x0)となつて
正の偏差を出力する。この出力偏差εは並列
補償回路17からの出力加算され、偏差とな
り直列補償回路18に入る。この場合直列補償
回路18は単なる増幅器とし、その増幅率をK
とすると、偏差εは、ε×Kとなり、比較
器32によつて発振器19の鋸歯状波形に加算
される。従つて鋸歯状波形はε=ε×Kだ
け正の方向に持ち上げられ、シユミツト回路2
0は持ち上げられた期間でけチヨツパ回路26
aをオンにする。これによつて直流電磁石8a
に電流が流れ、二次鉄心14に吸引力が働き、
直流電磁石8aの方向に引きつけられる。一方
直流電磁石8cの制御は直列補償回路18の出
力ε×Kは反転回路を通るためにε×Kは
負となる。従つて比較器36は発振器19の鋸
歯状波形を−(ε×K)だけ下げるためにε
=0になりチヨツパ26cはオフ状態とな
る。
The comparator 30 outputs a positive deviation with the deviation ε 1 =xr−(−x 0 ). This output deviation ε 1 is added to the output from the parallel compensation circuit 17, resulting in a deviation 2 , which is input to the series compensation circuit 18. In this case, the series compensation circuit 18 is simply an amplifier, and its amplification factor is K.
Then, the deviation ε 2 becomes ε 2 ×K, which is added to the sawtooth waveform of the oscillator 19 by the comparator 32 . Therefore, the sawtooth waveform is lifted in the positive direction by ε 32 ×K, and the Schmitt circuit 2
0 is the lifted period and the chopper circuit 26
Turn on a. As a result, the DC electromagnet 8a
A current flows through the secondary core 14, and an attractive force acts on the secondary core 14.
It is attracted in the direction of the DC electromagnet 8a. On the other hand, in controlling the DC electromagnet 8c, the output ε 2 ×K of the series compensation circuit 18 passes through an inverting circuit, so ε 2 ×K becomes negative. Therefore, the comparator 36 reduces the sawtooth waveform of the oscillator 19 by -(ε 2 ×K).
4 =0, and the chopper 26c is turned off.

(3) 空隙長xa<xcの場合。(3) When the void length xa<xc.

比較器30は偏差ε=xr−x0てなり負の偏差
を出力し、前記xa>xcの場合と反対の動作す
る。この場合比較器32の入力ε×Kは負、
比較器36の入力ε×Kは正となり、チヨツ
パ回路26aはオフ状態でチヨツパ回路26c
はオン状態になる。よつて直流電磁石8cへ電
流が流れ、二次鉄心14に吸引力が働き、電流
電磁石8cの方向に引きつけられる。
The comparator 30 outputs a negative deviation of the deviation ε=xr− x0 , and operates in the opposite manner to the case where xa>xc. In this case, the input ε 2 ×K of the comparator 32 is negative,
The input ε 2 ×K of the comparator 36 becomes positive, and the chopper circuit 26a is turned off and the chopper circuit 26c
turns on. Therefore, a current flows to the DC electromagnet 8c, and an attractive force acts on the secondary iron core 14, causing it to be attracted in the direction of the current electromagnet 8c.

このように対称に配置さた直流電磁石8a,8
cの空隙長xa,xcを上記のように制御すると回
転体6は常に中心位置に保持することができる。
また上記制御回路の説明では鋸歯状波発振器19
の波形レベルの最大を零として行なつたが、この
方式では空隙長xa≠xcで空隙長の大きい方に直
流電磁石のみに電流を流すためにダンピング特性
が悪い。この場合は発振器19の波形レベルの最
大を零より大きくし、前記xa=xcの場合にも直
流電磁石8a,8cに等しい電流を供給するよう
にすれば上記ダンピング特性を改善することがで
きる。
The DC electromagnets 8a, 8 symmetrically arranged in this way
By controlling the gap lengths xa and xc of c as described above, the rotating body 6 can always be held at the center position.
In addition, in the description of the control circuit above, the sawtooth wave oscillator 19
The maximum waveform level was set to zero, but in this method, the damping characteristics are poor because the air gap length xa≠xc and the current flows only through the DC electromagnet with the larger air gap length. In this case, the damping characteristic can be improved by making the maximum waveform level of the oscillator 19 greater than zero and supplying equal current to the DC electromagnets 8a and 8c even when xa=xc.

さらに第11図に本発明の他の実施例を示す。
第11図において1a,1b,1cは等間隔及び
同極性に配置した浮上用直流電磁石3個を示す。
直流電磁石1a,1b,1cの鉄心は一体に加工
され、外極(N極)のみ3分割されたコの字形鉄
心を形成している。従つて電磁石の巻線は外極の
鉄心のに巻装し、各直流電磁石1a,1b,1c
の鉄心端の短絡するリング板は3a1個ですむ。上
記のような構成にするこによつて前記第4図と同
じ効果が得られるとともに、浮上用直流電磁石の
構成が簡単で堅牢にすることができる。
Further, FIG. 11 shows another embodiment of the present invention.
In FIG. 11, 1a, 1b, and 1c indicate three levitation DC electromagnets arranged at equal intervals and with the same polarity.
The cores of the DC electromagnets 1a, 1b, and 1c are integrally processed to form a U-shaped core in which only the outer pole (N pole) is divided into three parts. Therefore, the windings of the electromagnets are wound around the outer iron core, and each DC electromagnet 1a, 1b, 1c
Only one 3A ring plate is required for the short-circuiting of the iron core end. By adopting the above structure, the same effect as shown in FIG. 4 can be obtained, and the structure of the levitation DC electromagnet can be made simple and robust.

以上説明したように本発明によれば浮上用直流
電流電磁石の各鉄心端をリング板で短絡すること
によつて、回転にともなつて二次鉄心に発生する
うず電流損を軽減する合理的なフライホトールの
磁気軸受装置を得ることができる。
As explained above, according to the present invention, by short-circuiting each core end of the levitation DC electromagnet with a ring plate, it is possible to reduce the eddy current loss generated in the secondary core as it rotates. You can get a flyhotol magnetic bearing device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の直流電磁石の配置を示す図、第
2図はその断面図、第3図はその磁束分布を示す
図、第4図は本発明における直流電磁石の配置を
示す図、第5図はその断面図、第6図はその磁束
分布を示す図、第7図は本発明を適用したフライ
ホイール装置の一例を示す断面図、第8図は本発
明における案内用直流電磁石と変位計の配置を示
す図、第9図および第10図はそれぞれ浮上支持
及び案内支持の空隙長制御回路を示す図、第11
図は本発明の他の実施例における浮上用直流電磁
石の配置を示す図、第12図はその断面図であ
る。 1,1a,1b,1c……浮上用直流電磁石、
3a,3b……リング板、6……回転体、7,9
……変位計、8……案内用直流電磁石、10……
回転子、11……電機子巻線、12……回転軸。
FIG. 1 is a diagram showing the arrangement of a conventional DC electromagnet, FIG. 2 is a cross-sectional view thereof, FIG. 3 is a diagram showing its magnetic flux distribution, FIG. 4 is a diagram showing the arrangement of a DC electromagnet in the present invention, and FIG. Figure 6 is a cross-sectional view of the same, Figure 6 is a diagram showing its magnetic flux distribution, Figure 7 is a cross-sectional view of an example of a flywheel device to which the present invention is applied, and Figure 8 is a guiding DC electromagnet and a displacement meter in the present invention. 9 and 10 are diagrams showing the gap length control circuit for floating support and guide support, respectively.
This figure shows the arrangement of levitation DC electromagnets in another embodiment of the present invention, and FIG. 12 is a sectional view thereof. 1, 1a, 1b, 1c... levitation DC electromagnet,
3a, 3b...Ring plate, 6...Rotating body, 7, 9
...Displacement meter, 8...Direct current electromagnet for guidance, 10...
Rotor, 11...armature winding, 12...rotating shaft.

Claims (1)

【特許請求の範囲】[Claims] 1 フライホイールを複数の浮上用電磁石と案内
用電磁石とによつて回転軸を中心に浮上支持する
フライホイールの磁気軸受装置において、複数の
浮上用電磁石をN極とS極がそれぞれ同心円上に
あるように配置すると共に、N極、S極の少くと
も一方を極性体のリング板で結合したことを特徴
とするフライホイールの磁気軸受装置。
1. In a flywheel magnetic bearing device in which a flywheel is suspended and supported around a rotating shaft by a plurality of levitation electromagnets and guide electromagnets, the N and S poles of the levitation electromagnets are located on concentric circles, respectively. 1. A magnetic bearing device for a flywheel, characterized in that at least one of the north pole and the south pole is connected by a ring plate of a polar body.
JP55146321A 1980-10-21 1980-10-21 Magnetic bearing device of fly-wheel Granted JPS5773223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55146321A JPS5773223A (en) 1980-10-21 1980-10-21 Magnetic bearing device of fly-wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55146321A JPS5773223A (en) 1980-10-21 1980-10-21 Magnetic bearing device of fly-wheel

Publications (2)

Publication Number Publication Date
JPS5773223A JPS5773223A (en) 1982-05-07
JPS6134004B2 true JPS6134004B2 (en) 1986-08-05

Family

ID=15405020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55146321A Granted JPS5773223A (en) 1980-10-21 1980-10-21 Magnetic bearing device of fly-wheel

Country Status (1)

Country Link
JP (1) JPS5773223A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668885A (en) * 1984-02-06 1987-05-26 Scheller Wilhelm G Flywheel energy storage device
JPH0738542B2 (en) * 1987-02-14 1995-04-26 株式会社安川電機 Power amplifier for generating magnetic attraction
JPH0783221B2 (en) * 1987-02-16 1995-09-06 株式会社安川電機 Power amplifier for generating magnetic attraction
US4874346A (en) * 1988-01-06 1989-10-17 How Wachspress Free flying magnetic levitator
AT513498B1 (en) * 2013-01-22 2014-05-15 Tech Universität Wien Apparatus and method for magnetic axial bearing of a rotor

Also Published As

Publication number Publication date
JPS5773223A (en) 1982-05-07

Similar Documents

Publication Publication Date Title
US5977684A (en) Rotating machine configurable as true DC generator or motor
US5302874A (en) Magnetic bearing and method utilizing movable closed conductive loops
US3877761A (en) Electromagnetic bearing means
US6097118A (en) Reluctance apparatus for flywheel energy storage
JPS63140647A (en) Total flux reversible and variable reluctance brushless apparatus
WO2001029956A1 (en) Low inductance electrical machine for flywheel energy storage
JP2001520498A (en) Linear electromagnetic machine
CN111075839B (en) New structure radial two-freedom six-pole alternating current/direct current hybrid magnetic bearing
US4268095A (en) Magnetic bearing
CN104141685A (en) Driving and driven inner rotor magnetic bearing
CN108599501B (en) Axial single-degree-of-freedom bearingless asynchronous motor
CN112815005B (en) Design method of hexapole heteropolar alternating current hybrid magnetic bearing
JPS6134004B2 (en)
Rubio et al. Design and analysis of a bearingless motor with passive axial suspension through null-flux coils
CN104121288A (en) Active and passive outer rotor magnetic bearing
CN214367289U (en) Hexapole heteropolar alternating current hybrid magnetic bearing
JP3710547B2 (en) Disk type magnetic levitation rotating machine
CN211574039U (en) New structure radial two-degree-of-freedom hexapole alternating current/direct current hybrid magnetic bearing
CN108712044B (en) Stator permanent magnet offset lamellar inner rotor bearingless asynchronous motor
CN104121290B (en) A kind of internal rotor magnetic bearing
JPH06141512A (en) Magnetic levitation motor
JPH07208470A (en) Synchronized dynamo-electric machine with magnetic bearing and controlling device therefor and method thereof
JPH06133493A (en) Magnetic levitation induction motor
JPS6399742A (en) Magnetic bearing integrating type motor
SU905950A1 (en) Thyratron motor-flywheel with electromagnetic suspension of rotor